当前位置:文档之家› 谐波抑制和无功功率补偿(王兆安)-第八章

谐波抑制和无功功率补偿(王兆安)-第八章

谐波抑制和无功功率补偿(王兆安)-第八章
谐波抑制和无功功率补偿(王兆安)-第八章

第8章高功率因数变流器

第4章、第5章和第7章论述的都是设置补偿装置来补偿无功功率和谐波。对于作为主要谐波源且功率因数很低的整流器来说,抑制谐波和提高功率因数的另一种方法就是对整流器本身进行改进,使其尽量不产生谐波且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器[165]。当功率因数近似为1时可称为单位功率因数变流器。与设置补偿装置来补偿谐波和无功功率相比,在某种意义上说,本章介绍的改进变流器自身性能的方法是一种更为积极的方法。

采用整流器的多重化来减少谐波的方法是一种传统方法。用这种方法构成的整流器还不能称之为高功率因数整流器,但是它对减少谐波是很有效的,并因而也使功率因数有所提高,所以在本章加以介绍。这种方法目前仍在广泛应用。采用全控型开关器件构成的PWM整流器功率因数可接近1,已在某些领域获得应用,这种电路适用于中等容量的整流器。带斩波器的二极管整流电路也可得到接近1的功率因数,适用于小功率范围,已在各种开关电源中获得了广泛的应用。此外,一种新型的矩阵式变频电路正在受到人们的关注。这种变频器中没有中间直流环节,属于直接变频器,它也是一种高功率因数变流器。

8.1 整流电路的多重化和自换相整流电路

将几个桥式整流电路多重联结可以减少输入电流谐波,采用自换相整流电路可以提高位移因数。此外,在晶闸管多重整流电路中采用顺序控制的方法也可提高功率因数。如把上述方法配合使用,会产生更好的效果。

8.1.1 移相多重联结[101]

整流电路的多重联结有并联多重联结和串联多重联结。在采

用并联多重联结时,需要使用平衡电抗器来平衡各组整流器的电流。对于交流输入电流来说,采用这两种多重联结方式的效果是相同的,因此这里只叙述串联多重联结时的情况。采用多重联结不仅可以减少交流输入电流的谐波,同时也可减小直流输出电压中的谐波幅值并提高纹波频率,因而可减小平波电抗器。为了简化分析,下面的论述均不考虑变压器漏抗引起的重叠角,并假设整流变压器各绕组的线电压之比为1:1。

1. 移相30?构成串联2重联结

图8-1是这种电路的原理图。整流变压器二次绕组分别采用星形和三角形接法构成相位相差30?、大小相等的两组电压,接到相互串联的2组整流桥。因绕组接法不同,变压器一次绕组和两组二次绕组的匝比如图所示,为1:1:3。图8-2为该电路输入电流波形图。其中图c 的i ’ab 2在图8-1中未标出,它是第II 组桥电流i ab 2折算到变压器一次侧A 相绕组中的电流。图d 的总输入电流i A 为图a 的i a 1和图c 的i ’ab 2之和。

b 2

a 2i a

b 2i a 2i A

i a 1B A

E l

E l

C

c 2c 1b 1

a 1

i d I II

I

II

u d R

L

3

1

10

o

滞后30

o

*

**

图8-1 移相30?串联2重联结电路

对图8-2波形i A 进行傅里叶分析,可得其基波幅值A 1和n 次谐波幅值A n 分别如下:

A I I d

d 14323=

π

π

()单桥时为

(8-1)

图8-2 移相30?串联2重联结电路电流波形

A k I k k d

121112143

123±=±=π

,,, (8-2) 即输入电流谐波次数为11、13;23、25;35、37…,其幅值

与次数成反比而降低。

该电路的其他特性如下:

直流输出电压 U E d L

=62π

αc o s

(单桥时为

32E L

π

αcos ,E L 为输入线电压有效值)

直流输出电压纹波频率 12f

(单桥时为6f ,f 为电源频率) 输入电流有效值 I 1=1.577I d (单桥时为0.8165I d )

谐波与无功补偿技术原理

波功功率补偿术谐波和无功功率补偿技术 基本原理 基本原 1

目录 第1章绪论 1.1电能质量控制技术简介 谐波与无功简介 第2章谐波和无功功率 2.1谐波和谐波分析 无功功率和功率因数 谐波和无功功率的产生 2.4无功功率的影响和谐波的危害

第1章绪论 1.1电能质量控制技术简介 11 1.2谐波与无功简介 12 3/

111.1 电能质量控制技术简介 电能质量问题 1.1.2电能质量问题的典型危害和影响电能质量控制技术分类 1.1.4电力电子技术与电力系统、电能质量 控制的关系 1.1.5用于电能质量控制的新型电力电子装置用能质控制新力子装 4/

111 1.1.1 电能质量问题z 频率的问题z 幅值的问题 –稳态过电压、欠电压及电压波动–闪变(flicker ) –幅值凹陷(sag ,dip )、凸升(swell )、短时中断(interruption ) z 波形和对称度的问题 –三相不对称(imbalance )–谐波(harmonics )–缺口(notching ) –暂态脉冲(impulsive transient )、暂态振荡( oscillatory transient )5/ p y

112 1.1.2 电能质量问题的典型危害和影响电压频率不稳,不对称,以及稳态过电压、欠电压及电压波动、闪变等的危害。z 谐波 –使产生、传输和利用电能的效率降低; 使电气设备过热振动产生噪音或绝缘老化缩短–使电气设备过热、振动、产生噪音或绝缘老化,缩短其寿命,甚至发生故障、烧毁;–使继电保护和自动装置误动作;–对通信和电子设备产生干扰。z 电压骤降 对精密仪器设备的危害 6/ –对精密仪器设备的危害;–给高产值的连续生产过程造成的损失。

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

无功功率补偿装置的几种方式

无功功率补偿装置的几种方式 国家认监委于2007年4月18日发布的2007年第9号公告《强制性认证产品目录描述与界定表》,明确将低压无功功率补偿装置列入强制性产品认证。 于2007年8月6日发布的国家认监委2007年第21号公告《关于部分电子电器产品发布新版实施规则的公告》,其中包括了《CNCA-01C-010;2007低压成套开关设备强制性认证实施规则》。该实施规则对低压无功功率补偿装置的各项要求进行了明确的规定。 中国质量认证中心于2007年7月20日发布了《低压无功功率补偿装置实施CCC认证的原则和程序》明确了低压无功功率补偿装置的认证原则及申请、受理、资料等要求。 因此,本文针对已列入强制性产品认证的无功功率补偿装置的关键环节-保护问题,进行进一步较深入的讨论,以期使无功功率补偿装置的功能和性能得到进一步的提高,确保认证产品的性能安全可靠。 2.无功功率补偿装置的主回路构成 一般无功功率补偿装置主回路的典型构成,如下图所式 体积小.其缺点是对电网存在污染,易损坏, 过载能力低,成本高,对工作环境要求较高.此种投切方式适用于负载变化大,功率因数变化快,控制精度高的场所. 这种投切方式是近几年才开发出来的产品,其构成就是把机电开关和电力电子开关复合在一起,以求把这两种投切方式的优点进行组合,抑制缺点. 其结构就是将机电开关和电力电子开关并联在一起,进行工作.其工作原理是先将晶闸管投入运行,待电流稳定后,在投入机电开关,然后晶闸管撤除工作,完成投入.断开时,先将晶闸管投入工作,机电开关停止工作,晶闸管在停止工作,完成切除.这种将机电开关和电力电子开关的复合投切方式,可以说,尽可能的利用各自的优点,降低缺点. 目前,此种投切方式在目前的市场上,使用量还是比较大的.但一些固有的缺 点仍然存在,例如对电网的污染问题. 此外, 电力电子开关方式和复合式开关方式的制造商,还在其制造的产品上,增加了一些辅助和保护功能.还须视各产品分别看待.

工厂无功功率因数的补偿

工厂无功功率因数的补 偿 Document number:BGCG-0857-BTDO-0089-2022

许多企业一般都是在企业内部配电室里二次侧的千伏母线上集中安装一些电容器柜,对变配电系统的无功功率进行补偿,这对于提高企业内部的供电能力,节约变配电损耗都有积极作用。可是,由于企业内部的电动机大都通过低压导线连接,即在供配电线路的未端,分散在各个生产车间里面,形成了企业内部的输配电网络,其结果造成大量的无功电流仍然在企业内部的输配电线路中流动,所造成很大的损耗。由此,企业尽可能提高自然功率因数外,还必须采取分组补偿和就地补偿等措施,来提高功率因数,最终实现节能降耗的目的。 二、现状 在二十五家企业中,抽查了他们的变压器和总共119条输配电线路运行情况,绝大多数企业能将自己变电系统中的功率因数补偿到以上的规定指标,以免被罚款。这就是说在功率因数的补偿工作中,他们的集中补偿做的不错,但仍有部分企业的分组补偿和就地补偿做的就差些了,或根本就没做,补偿好的单位,其主变压器的二次端至各车间的输配电线路的功率因数基本上在以上,而补偿差些的单位其输配电线路大部分功率因数在以下,如温州某皮革有限公司(以下简称A公司)抽查七条输配电线路,有五条在以下的,而温州某钢业有限公司(以下简称B公司)的一条输配电线路的功率因数只有。综合这些单位被抽查的输配电线路的功率因数,在以上的约占52%,在~之间的约占27%,在以下的约占21%。 可见分组补偿和就地补偿做得远远不够,这主要是企业对功率因数认识不足引起的,如B公司企业规模较大,企业内有二级变压从35KV变 10KV,到车间再变至380V,有企业变电站,中心控制室,全电脑控制显示,其设施和环境可谓一流,但检查发现其补偿就有问题,将无功补偿

谐波抑制与无功功率补偿

《谐波抑制与无功功率补偿》第二次作业 题目要求: 对于晶闸管可控整流电路,主电路为:1)三相桥式全控整流电路,变压器Yd11 联结(1:3) ;变压器一次侧相电压有效值U1=220V;阻感负载,R=30Ω,L=800mH,α=60°。 试设计LC 滤波器和电容补偿(如果需要的话),对上述负载的谐波和无功进行有效的补偿,使电源电流为与电源电压近似同相的正弦波(网测功率因数>0.96)。 要求: 1. 设计无源滤波器,并计算相应的参数。 2. 如果需要的话,设计计算无功补偿电容器。 3. 对建立的仿真电路进行仿真,给出有关的仿真波形,并对仿真结果进行分析。 4. 对设计步骤给出必要的文字说明。 按照要求,先进行滤波。对5、7、11、13次谐波采用单谐调滤波器,对13次以上谐波采用二阶高通滤波器。 所要确定的参数有:各单调谐滤波器与电阻R,电容C,电感L。 首先求最小补偿电容C min:在不加滤波和无功补偿的情况下,基波与各主要谐波情况如下图所示: 图1 基波与各次谐波电流 从图中可以看出, I f5≈1.411A I f7≈0.937A I f11≈0.626A I f13≈0.508A 根据教材给出的公式,按照最小安装容量求出最小电容器 C min=I f(n) (1)s × n2?1 nn2 将数据带入式(1),可以分别求出最小电容器分别为: C5=4.978μF C7=2.916μF C11=1.576μF

C13=1.126μF 调谐在n次谐波频率的单调谐滤波器电容器和电抗器关系是 n w s L= 1 nw s C (2) 据此可以求出各滤波器对应的电感L L5=81.14mH L7=70.89mH L11=53.1mH L13=49.4mH 取Q=45,分别求出对应的电阻值: R5=2.827Ω R7=3.46Ω R11=4.10Ω R11=5.06Ω对于高通滤波器,定义Q值为 Q=R X0 (2) 接下来,设计能滤掉13次以上谐波的高通滤波器,高通滤波器的特性可以由以下两个参数来描述: f0=1 (3) m= L R2C (4) 式(3)中,f0称为截止频率,高通滤波器的截止频率一般选为略高于所装设的单调谐滤波器的最高特征谐波频率。式(4)中的m是一个与Q直接有关的参数,直接影响着滤波器调谐曲线的形状,一般Q值取为0.7~1.4,相应的m值在2~0.5之间。电容按照无功补偿计算,设高通滤波器同时补偿容量为Q C=400var。 Q C= U2 C1L1 (5) 由式(5)与式(2)可以求出,C≈48μF。带入式(3)(4),取m=0.5可以求出,R≈5Ω,L≈6.25mH。 在滤波完成后,尚有较大无功,功率因数不满足题目要求,故对电路进行无功补偿。剩余的无功为Q≈232var Q=U2 C (6) 解得C≈28μF。 经过滤波与无功补偿,对所得的电路进行谐波分析,如下图所示。

无功功率补偿容量计算方法

论文:无功功率补偿容量计算方法 一、概述 在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常的运行情况,因为它们会破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。按照传统的计算方法有标么值法和有名值法等。采用标么值法计算时,需要把不同电压等级中元件的阻抗,根据同一基准值进行换算,继而得出短路回路总的等值阻抗,再计算短路电流等。这种计算方法虽结果比较精确,但计算过程十分复杂且公式多、难记忆、易出差错。下面根据本人在实际工作中对短路电流的计算,介绍一种比较简便实用的计算方法。 二、供电系统各种元件电抗的计算 通常我们在计算短路电流时,首先要求出短路点前各供电元件的相对电抗值,为此先要绘出供电系统简图,并假设有关的短路点。供电系统中供电元件通常包括发电机、变压器、电抗器及架空线路(包括电缆线路)等。目前,一般用户都不直接由发电机供电,而是接自电力系统, 因此也常把电力系统当作一个“元件”来看待。 假定的短路点往往取在母线上或相当于母线的地方。图1便是一个供电系统简图,其中短路点出前的元件有容量为无穷大的电力系统,70km 的110kV架空线路及3台15MVA的变压器,短路点d2前则除上述各元 件外,还有6kV, 0.3kA,相对额定电抗(XDK%)为4的电抗器一台。

下面以图1为例,说明各供电元件相对电抗(以下“相对”二字均略)的计算方法。 1、系统电抗的计算 系统电抗,百兆为1,容量增减,电抗反比。本句话的意思是当系统短路容量为100MVA时,系统电抗数值为1;当系统短路容量不为100MVA,而是更大或更小时,电抗数值应反比而变。例如当系统短路容量为200MVA时,电抗便是0.5(100/200=0.5);当系统短路容量为50MVA时,电抗便是2(100/50=2),图1中的系统容量为“』,则100/oo=0,所以其电抗为0。图1供电系统图 本计算依据一般计算短路电流书中所介绍的,均换算到100MVA基准容量条件下的相对电抗公式而编出的(以下均同),即X*xt=习z/Sxt (1) 式中:Sjz为基准容量取100MVA. Sxt为系统容量(MVA)O 2、变压器电抗的计算 若变压器高压侧为35kV,则电抗值为7除变压器容量(单位MVA, 以下同);若变压器高压侧为110kV,则电抗值为10.5除变压器容量;若变压器高压侧为10(6)kV,则电抗值为4?5除变压器容量,如图1中每台变压器的电抗值应为10.5/15=0.7,又如一台高压侧35kV, 5000kVA 及一台高压侧6kV, 2000kVA的变压器,其电抗值分别为7/5=1.4, 4.5/2=2.25 本计算依据公式为:X*b=(ud%/100).⑸z/Seb) (2) 式中ud%为变压器短路电压百分数,Seb为变压器的额定容量(MVA) 该公式中ud%由变压器产品而定,产品变化,ud%也略有变化。计算方法中按10⑹kV、35kV、110kV电压分别取ud%为4.5、7、10.5。

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

配电网无功功率补偿方法的

第04期2011年2月 企业研究Business research No.04FEB.2011 1引言 无功功率补偿是当今电气自动化技术及电力系统研究领域所面临的一项重大课题,正在受到越来越多的关注。电网中无功功率不平衡主要有以下两个方面的原因:一方面是供电部门传送的电力质量不高;另一方面是用户的电气性能不够好。这两方面的综合原因导致无功功率的不均匀分布和各种问题的产生。显然,这些需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的方法是在大量需要无功功率的地方安装无功补偿装置并进行无功功率的就地补偿。 2SVC 补偿原理 静态无功功率补偿装置(SVC)是对电力系统中的无功功率进行快速动态补偿,不仅可以实现对动态无功功率因数的修正、提高电力系统的静态和动态稳定性使系统能够抵御的大的故障诸如单相接地短路、两相短路和三相短路,还可以减少电压和电流的不平衡。 图2-1a)所示为系统、负载和补偿器的单相等效电路图。其中,U 代表电路的电压,R 和X 分别代表电路的电阻和电抗。设负载变化很小,故有,则当时,表示电路电压与无功功率变化的特性曲线如图2-1b)中所示,由于电路电压变化率较小,其横 坐标也可以换为无功功率的电流。由此可以得出,该特性曲线 是向下倾斜的,即随着系统供给的无功功率Q 的不断增加,系统电压逐渐逐级下降。 3TCR 型无功补偿装置3.1晶闸管控制电抗器(TCR) TCR 是SVC 中最重要的组成部分之一,其单相基本结构是两个反并联的晶闸管与一个电抗器相串联。如图3-1所示,串联的晶闸管要求同时触发导通。这样的电路并联到电网上, 相当于电感负载的交流调压电路的结构。IEEE 将晶闸管控制电抗器(TCR)定义为一种并联型晶闸管控制电抗器,通过控制晶闸管的导通时间,进而可以使其有效电抗连续变化。反并联的两个晶闸管就像一个双向开关,晶闸管阀T1在电压的正半周期导通,而晶闸管阀T2在电压的负半周期导通。 通过改变晶闸管的触发角α,可以 改变电抗器电流的大小,即可以达到连续调节电抗器的基波无功功率的目的。由于电感的存在,在TCR 触发角α<90°时触 发的晶闸管中包含直流分量,且不对称;因此,TCR 型晶闸管的触发角的有效范围在90°-180°。当α=90°时,晶闸管完全导通,相当于与晶闸管串联的电抗直接接到了电力网络中,这时其吸收的无功功率最大。当触发角在90°-180°之间时, 配电网无功功率补偿方法的研究 李学勤 作者简介:李学勤,河北电力设备厂,河北,邯郸,056004) 装置的电路图 无功补偿原理 图2-1无功功率动态补偿原理 图3-1TCR 的基本结构 127 ··

谐波抑制和无功补偿

绪论 电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。我国对电能质量的三方面都有明确的标准和规范。 随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。举个常见的例子来说,电子节能灯在使用量所占比重较小的电网中运行,的确比常用的白炽灯好,不仅亮度高又省电,而且使用寿命也长。但是相反,在大量投运节能灯后,就会发现节能灯的损坏率大大提高。这是由于节能灯是非线性负荷,它产生较大的谐波污染了这一片电网,造成三相负荷基本平衡情况下,中心线电流居高不下,造成了该片电网供电质量下降,用电设备发热增加,电网线损增加,使得该区的配变发热严重,严重影响其使用寿命。因此我们对非线性用电设备产生的谐波必须进行治理,使谐波分量不超过国家标准。

第一章 基础概念 1.1 电力系统的组成 电力系统是由发电、输电、用电三部分组成。其中过程为发电厂发电经升压变压器升压并网,再由输电网络输送的各个变电站,变电站进行降压后输送给各个用户,用户经过再一次降压后给用电设备供电。主要设备为发电机、升压变压器、输电网络、降压变压器、用电设备及二次保护系等组成。 发电机的电压等级一般为6KV 、10KV ,输电网络为110KV 、220KV 、500KV ,配电网络为10KV 、35KV ,用电设备一般为380V 、220V 。 我国电力系统采用三相50HZ 交流供电。 1.2 功率的概念 在供电系统中,通常总是希望交流电压和交流电流时正弦波形(不含有谐波的情况下),正如电压为: ()ωt U t U sin 2= 式中 U ------电压有效值 ω--------角频率 f πω2= f ---------频率 (50HZ) 正弦电压施加在线性无源负载上如电阻、电容、电感上时,其电流的表达式为: ()()?-= ωt I t I sin 2 I --------电流有效值 φ--------相位角 电压和电流的关系从相位图上看如:(绿色为电压,红色为电流)

10kV高压谐波治理兼无功补偿治理方案(模板示例)

10kV高压谐波治理兼无功补偿治理方案 1 系统概述 根据某铜业厂提供的现有配电系统情况可知,工厂现有35KV进线一条,该线非该厂专线。厂内主要负荷为电解铜生产线及大功率电机等用电设备。因电解铜生产线采用的是可控硅整流装置。由于可控硅整流装置的六脉及12脉整流特性,在运行过程中将产生以6N±1和12N±1(N为正整数)为主的谐波电流注入电网,危及到其它用电设备及电网的用电安全。同时因系统功率因数比较低,故用户在10KV母线上安装了一套高压电容补偿柜,但由于电解铜等用电设备在运行时产生了较大的谐波注入系统,而电容补偿柜在投入后又与系统发生并联谐振,对系统谐波进一步放大,造成电容补偿装置在谐波环境下运行因过载而发生较大的异常声音,甚至造成部分电容柜无法正常投入,经常造成高压补偿电容器的熔丝爆炸烧毁。 用户配电系统一次示意图如图1所示。 图1用户配电系统示意图 2系统用电参数分析 根据对厂内变电站10KV I段母线的谐波测试数据分析,可将运行时有功功率、无功功率、功率因数及谐波的变化可归纳为: (1)10KV母线平均功率因数约为0.92左右, (2)母线协议容量10MVA, (3)主要谐波源类型:热电解铜及大功率电机等, (4)10KV线路三相功率数据分析 段10KV I段母线正常运行时负荷基本相等,且负载相对较稳定。有功功率基本都8000kW左右,功率因数相对较低,约0.92左右,无功功率也基本在2800kVar~3300kVar之间变化。 3谐波分析 因负载大部分采用的是六脉波及12脉波整流,产生的主要谐波为:6N±1次及12N±1(N为工频频率倍数)。故10KV段谐波的特征次为5、7、11、13......。其中5、7、11次谐波相对较大,故滤波装置应考虑以滤除5、7、11次谐波为主的滤波方式。根据我司于2007/09/21日对配电系统10KV母线 I段的谐波测试数据分析,将设备运行时产生的各次谐波值分析如下: 35kV侧用户协议容10MVA,设备容量90MVA,正常方式下短路容量为689MVA。 为了对滤波装置的滤波效果要求更为严格,故各次谐波电流注入允许值可按最小短路容量为689MVA的标准来考核,见表1。

无功功率补偿原理及方法分析

无功功率补偿原理及方法分析 摘要:无功功率补偿是保障电力系统能源质量的有效方法,其在降低电能消耗以及能源节约方面的效果是非常明显的,所以其在长距离电能运输中的作用是不可忽视的。为保障电网系统运行的效益,我国加大了对无功功率补偿技术研究的力度,本文通过对电网系统进行研究,探讨一下无功功率补偿的原理和方法以及其在电网系统中的应用。 关键词:无功功率补偿补偿原理补偿方法 无功功率补偿是当今电气自动化技术及电力系统研究领域所面临的一项重大课题,正在受到越来越多的关注。电网中无功功率不平衡主要有以下两个为一面的原因:一为一面是供电部门传送的电力质量不高;另一为一面是用户的电气性能不够好,这两为一面的综合原因导致无功功率的不均匀分布和各种问题的产生。显然,这此需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的为一法是在大量需要无功功率的地为一安装无功补偿装置并进行无功功率的就地补偿。 1 无功补偿的原理 电流在电感元件中做功时,电流滞后于电压90o;而电流在电容元件中作功时,电流超前于电压90o。在同一电路中,电感电流与电容电流方向相反,互差180o。如果在电磁元件电路中安装一定的电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能做功的能力,这就是无功补偿的道理。图1和图2分别为感性阻抗和容性阻抗中电流、电压和功率的波形变化规则。在第一个四分之一周期内,电流由零逐渐增大,此时,电感吸收功率,转化为磁场能量,而电容放出储存在电场中的能量;第二个四分之一周期,电感放出磁场能量,电容吸收功率,以后的四分之一周期重复上述循环。 从图3可以看出并联电容器无功补偿原理。将并联电容器C与供电设备(如变压器)或负荷(如电动机)并联,则供电设备或负荷所需要的无功功率,可以全部或部分由并联电容器供给,即并联电容器发出的容性无功,可以补偿负荷所消耗的感性无功。

电力系统谐波抑制及无功补偿方法的研究文献综述报告

电力系统谐波抑制及无功补偿方法的研究文献综述报告辽宁工业大学硕士研究生 研究方向: 电力系统谐波抑制 及无功补偿方法的研究 +++ 研究生: 11+++ 学号: +++ 指导教师: 专业: 电气工程 辽宁工业大学研究生学院 文献综述 21 世纪能源与环境问题成为人类发展必须面对的重要问题,如何在保证可持续发展和保持良好环境的前提下为人类提供安全可靠、优质经济的电能,是电力系统面临的主要问题。国家“十一五”规划《纲要》提出推进国民经济和社会信息化,切实走新型工业化道路,坚持节约发展、清洁发展、安全发展,实现可持续发展。纲要明确指出:通过开发推广节能技 [1]术,实现技术节能。为电力工业的建设提出了明确要求。电力系统也是一种“环境”,面临着污染,各种电力电子装置所消耗的无功功率使电网的供电质量恶化,公用电网中的谐波电 [2]流和谐波电压是对电网环境影响最严重的一种污染。一方面是因为电力电子装置自身的非线性使得电网电压、电流发生畸变,产生了严重的谐波污染;另一方面是因为大多数电力电 [3]子装置本身功率因数很低,其无功需求给电网带来额外负担,会严重影响电网供电质量。

无功、谐波给电力系统和用户带来的负面影响主要有增大各类电气设备的额定电压和额定电流,引起额外的功率损耗,导致设备用电效率降低;“谐波影响各种电气设备的正常工作,导致继电保护和自动控制装置的误动作;对通信系统产生干扰,使其无法正常工作;谐波会 [4]引起公用电网中局部的并联和串联谐振”电网的谐波和无功问题日益突出,整个供配电系统的安全运行存在较大的隐患。世界各国电力系统近年来纷纷采用了动态无功补偿装置和谐 [5]波治理装置来提高电网的电能质量。电力电子装置的广泛应用,不但要消耗大量的无功功率,还有产生大量的谐波电流。因此,进一步深入无功补偿和谐波抑制的研究具有非常重要的意 [6]义,对无功补偿和谐波抑制的方法研究是今后一个重大研究课题。 1.国内外无功补偿和谐波抑制的研究 1.1国内外无功补偿的研究 无功功率补偿技术随着电力系统的出现而出现,并随着电力工业的发展和电力负荷的多样性而不断进步。电力系统发展到现在已出现三代无功补偿技术:同步发电机补偿、同步调相机补偿、并联电容器补偿、并联电抗器补偿等属于第一代补偿技术;基于自然关断晶闸管技术的SVC(相控电抗器(TCR)、磁控电抗器(MCR))属于第二代无功补偿技术;基于IGBT、IGCT等大功率可控器件的补偿装置SVG(Static VAR Genarator)属于第三代无功补偿技术。SVG是当前世界上最先进也是最复杂的补偿技术产品,它不再采用大容量的电容器、电抗器,而是通过大功率电力电子器件的高频开关实现无功补偿的变换,在响应速度、稳定电网电压、降低系统损耗、增加传输能力、提高瞬变电压极限、降低谐波和减少占地面积等多方面具有更 [7]加优越的性能。

无功补偿与谐波治理技术(铜业协会)

无功补偿与谐波治理技术
报告人:许强 全国电压电流等级和频率标准化技术委员会 中国电工技术学会电力电子学会 委员 理事
报告日期:2009年4月

一、功率因数为什么会变低?什么是无功功率?
我们知道,通常我们所 用的交流电压是50Hz的正 弦波,在电压的两端接上 负载就会产生电流,如我 们在220伏(或380V)的 电源上接一个电灯,电灯 中流过电流,灯就亮了。 当负载是电阻时,电压波 形的相位与电流波形的相 位完全相同,即电压波形 与电流波形重叠在一起。 这时电网送出的功率也与 消耗的功率相等。

而现实生活中电阻负载使用 的较少,大多数负载都有一定 的电感,如变压器、电动机、 洗衣机、冰箱、空调等都是带 有电感性的负载,这样就使电 压波形的相位与电流波形的相 位不能重叠,电流的波形(红 色)就会比电压波形(蓝色) 迟后△T的时间,△T时间越 大,功率因数越低,消耗的无 功功率也越大。那么电网送出 的功率(视在功率)也与消耗 的功率(有功功率)就不再相 等了,电网送出的功率是如下 表达式: 电网送出的功率(视在功率)=实际消耗的功率(有功功率)+无功功率

什么是无功功率:
无功功率决不是无用功率,它是另外一种能量消耗的表达形 式,如电动机需要建立和维持旋转磁场,使转子转动,从而 带动机械运动,电动机的旋转磁场就是靠从电源取得无功功 率建立的。变压器也同样需要无功功率,才能使变压器的一 次线圈产生磁场,在二次线圈感应出电压。因此没有无功功 率的话,电动机不会转动,变压器不会变压等。 因此在正 常情况下,用电设备不但从电网中取得有功功率,同时还需 要从电网中取得无功功率。如果电网中的无功功率供不应 求,用电设备就没有足够的无功功率来建立正常的电磁场, 那么这些用电设备就不能维持在额定情况下的工作。能反映 无功功率被使用的指标是用电的功率因数,即COS?。

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

中频电炉无功补偿和谐波治理的成功案例(DOC)

815V、5吨中频电炉无功补偿和谐波治理的成功案例 2007-4-27 天津市津开电气有限公司总经理盖福健高级工程师孙泽林 关键词:中频电炉、无功功率、无功补偿、谐波、间谐波、谐波治理、变流、变频、谐波电流、谐波电流 放大、博里叶级数 1.绪论: 随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶 闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面: ·谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。 ·谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。 ·谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。 ·谐波电流对临近的通讯设备产生干扰。 ·谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。·谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。 2.概述 2.1天津市某铸造公司(简称铸造公司)为生铁铸造企业,工厂主要设备为两台500HZ中频感应电炉以溶化生铁进行铸造,因采用中频电炉,故由于变流及变频等原因造成用电谐波超标,功率因数过低,为此进行设备改造以提高功率因数,治理谐波,节约能源,提高电网质量,降耗增容。 2.2中频电炉运行主要参数 ①电炉为长期间断运行,运行时间每炉出铁冷炉约为2.5小时,热炉约2小时。 ②在正常运行时高压侧工作电流为150~160A。整流变压器二次侧为六相十二脉波输出。 ③现场仪表指示数据 一次测电压10.2KV 二次测电压815V×2 一次测电流157A 二次测电流992A×2 一次测功率因数COS?=0.6~0.7最低COS?=0.23最高COS?=0.79予升温COS?=0.49 保温COS?=0.23~0.49 加温COS?=0.72~0.79 2.3中频炉一次系统图

无功补偿计算公式

1、无功补偿需求量计算公式: 补偿前:有功功率:P 1= S 1 *COS 1 ? 有功功率:Q 1= S 1 *SIN 1 ? 补偿后:有功功率不变,功率因数提升至COS 2 ?, 则补偿后视在功率为:S 2= P 1 /COS 2 ?= S 1 *COS 1 ?/COS 2 ? 补偿后的无功功率为:Q 2= S 2 *SIN 2 ? = S 1 *COS 1 ?*SIN 2 ?/COS 2 ? 补偿前后的无功差值即为补偿容量,则需求的补偿容量为: Q=Q 1- Q 2 = S 1*( SIN 1 ?-COS 1 ?*SIN 2 ?/COS 2 ?) = S 1*COS 1 ?*(1 1 1 2 - ? COS —1 1 2 2 - ? COS ) 其中:S 1-----补偿前视在功率;P 1 -----补偿前有功功率 Q 1-----补偿前无功功率;COS 1 ?-----补偿前功率因数 S 2-----补偿后视在功率;P 2 -----补偿后有功功率 Q 2-----补偿后无功功率;COS 2 ?-----补偿后功率因数

2、据此公式计算,如果需要将功率因数提升至0.9,在30%无功补偿情况下,起始功率因数为: Q=S*COS 1?*(1112-?COS —112 2-?COS ) 其中Q=S*30%,则: 0.3= COS 1?* (111 2-?COS —19.012-) COS 1?=0.749 即:当起始功率因数为0.749时,在补偿量为30%的情况下,可以将功率因数正好提升至0.9。 3、据此公式计算,如果需要将功率因数提升至0.9,在40%无功补偿情况下,起始功率因数为: Q=S*COS 1?*(1112-?COS —112 2-?COS ) 其中Q=S*40%,则: 0.4= COS 1?* (111 2-?COS —19.012-) COS 1?=0.683 即:当起始功率因数为0.683时,在补偿量为40%的情况下,可以将功率因数正好提升至0.9。

无功功率自动补偿控制器按装调试方法

JK系列无功功率自动补偿控制器,适用于电容器补偿装置的自动调节(以下简称控制器),使功率因数达到用户预定状态,提高电力变压器的利用效率,减少线损,改善供电的电压质量,从而提高经济效益。? 二、工作条件? 1.海拔高度不高于2500米 2.环境温度-25℃~+50℃ 3.空气湿度在40℃时不超过50%,20℃时不超过90%。 4.周围环境无腐蚀性气体,无导电尘埃,无易燃易爆的介质存在。 5.安装地点无剧烈震荡。? 三、技术数据? 1.基本技术参数 额定工作电压AC220/380V/50/60Hz 额定工作电流AC0-5A 50Hz 输出触点容量AC220 7A 50Hz 显示功率因数滞后0.01-超前0.01控制方式自动寻优/循环投切灵敏度100mA 防护等级外壳IP40? 2.控制参数可调范围及出厂整定值? 技术参数参数值出厂设定值?

产品型号JKL5C、JKG2B JKW5C、JKL5C、JKL5B、JKL5A? 过压预置230~300V可调步长1V 400~500V可调步长1V 245V/440V? 延时预置1~250s可调步长1s 30s? C/K比值0.01~1.00可调步长0.01 0.10? 投入门限0.80~0.99可调步长0.01 0.95? 切除门限滞后0.91超前0.90可调步长0.01 1.00? 控制组数1~12 硬件允许最大值? 四、开孔尺寸及型号说明? 产品型号取样电压开孔尺寸? JKW5C 线电压380V 113×113mm? JKL5C 线电压380V 113×113mm? JKL5C 线电压220V 113×113mm? JKL5B 线电压380V 140×102mm? JKL5A 线电压380V 162×102mm? JKG2B 线电压220V 162×102mm?

供配电系统无功补偿及谐波抑制

供配电系统无功补偿及谐波抑制 1 前言 在海洋钻井平台的供电系统中,一般由3~4台主发电机组成独立的小型电站,容量在3000~5000kW之间。钻井机械均为电力拖动,其中绞车、转盘、泥浆泵为SCR调速方式,其用电负荷占电站容量70%以上,因此,能否向钻井机械提供足够的有功功率,关系到钻井的施工工期,尤其是在有一台发电机组出现故障时。 因此,功率因数低的原因是可控硅调速时控制角的后移使电流相位滞后于电压相位偏大而造成的滞后无功功率(即感性无功功率),同时SCR的斩波也产生高次谐波,以5、7、11、13次谐波含量最高,所以,要提高发电机组的有功输出,补偿掉无功功率是关键。 3 无功补偿方案 补偿滞后无功功率的基本方法是无功补偿装置提供相应的超前无功功率(即容性无功功率),使二者基本相抵消,基本组成环节如图(以A相为例,O为中性点): (1)无功功率测量装置:对电网的无功功率进行动态测量,检测频率与电网频率一致,测量结果一路经A/D转换送入单片机,一路送给显示仪表,监视无功功率的变化。 (2)单片机运算控制中心:接收来自检测装置信号,建立系统补偿的数学模型,计算出实时补偿量,控制触发电路的移相,使投入的容性功率与指令相适应。 (3)执行环节:钻井平台的电站容量是有限的,补偿无功功率必须实时、适量,且连续可调,故将补偿电容分为若干组,每组为3×30kvar,与电网星型连接,通过双向可控硅投入电网,双向可控硅的优点是快速、无触点、连续调节,可避免较大的欠补偿和过补偿。 (4)谐波抑制与限流电抗:由于井深及井下地质情况的变化,钻井机械的速度和负荷变化频繁,从开钻到完钻期间,变化幅度往往

无功补偿谐波治理方案

…..公司 低压动态无功补偿及谐波治理方案 北京XXXXXXX有限公司 2014年8月15日

目录 一、绪论 (3) 二、概述 (3) 三、采用标准 (4) 四、动态无功补偿滤波技术方案设计 (5) 4.1、设备总体概述 (5) 4.2、无功补偿消谐装置整体描述 (6) 4.3、系统设计 (7) 补偿系统补偿效果仿真图: (11) 4.4功能描述 (13) 4.5 控制策略 (14) 4.6后台数据管理系统及控制特性 (14) 4.7系统组成 (15) 五、供货清单 (15)

一、绪论 随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面: ?谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。 ?谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。 ?谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。 ?谐波电流对临近的通讯设备产生干扰。 ?谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。 ?谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。 二、概述 根据贵公司提供的相关资料分析、计算和仿真(附件5配合仿真图),结合我公司多年来对轧机进行动态无功功率补偿及谐波抑制技术的经验和对轧机电气系统、生产工艺的透彻掌握,综合提出本方案,确保补偿装置投运后接入点的功率因数在0.92(含0.92)以上,各次谐波含量达到国标要求。

无功功率补偿的作用和无功功率补偿的方式方法

无功功率补偿的作用 2.2.1由于无功功率的存在, 对电网也会带来不利的影响, 主要表现在以下方面: (1) 无功功率的增加, 导致电流的增大和视在功率的增加, 从而使发电机、变压器、起动及控制设备和导线等电气设备容量的增加。 (2) 供电设备及线路损耗增加。 (3) 电气设备变压器及线路的电压降增大, 使供电网电压产生波动。在电网中, 有功功率的波动一般对电网电压的影响较小, 电网电压的波动主要是无功功率的波动引起的。如果是冲击性无功功率负载, 还会使电网产生剧烈的波动, 甚至发生事故。 2.2.2无功功率补偿的作用就是要尽量减少无功功率对电网的影响。其作用主要有: (1) 提高供电系统及负载的功率因数, 降低输电线路及用电设备的容量和负荷, 减少功率消耗。 (2) 稳定用电端及电网的电压, 提高供电质量, 增加输电系统的稳定性, 提高输电能力。 (3) 平衡三相负荷, 减少无功功率对电网的冲击。 无功功率补偿的方法 随着电力电子控制技术和计算机应用技术的逐步成熟, 用于无功功率补偿的方法日益增多, 且补偿效果也越来越明显, 其带来的经济效益和社会效益也是巨大的。 2.3.1同步调相机

同步调相机是早期的无功功率补偿方法, 已实际应用数十年, 在电压和无功功率控制中发挥了非常重要的作用, 同步调相机不仅能补偿固定的无功功率, 对变化的无功功率也能进行动态的连续的补偿, 而且对于容性、感性无功功率均能起到补偿的作用。但由于其自身的诸多缺点, 使其应用越来越少, 目前已基本上遭淘汰, 被新的补偿方式所取代。 2.3.2并联电容器及其装置 在各种无功功率补偿方法中, 并联电容器由于其简单的结构, 方便、灵活的安装方法, 较低的运行费用和低廉的产品价格等方面的特点, 已使其成为当今无功功率补偿技术中使用的主导产品。尤其是随着电容器制造技术的日益成熟, 其质量水平、寿命等级、安全运行可靠性等指标得以大大提高;品种、规格也越来越齐全, 为补偿装置的设计和制作带来了极大的便利。故由其为主体制作的各种电容器补偿和滤波成套装置的应用领域也越来越广泛。已逐步取代了传统的同步调相机。 但是并联电容器也有其不足之处:例如, 只能分级补偿固定的无功功率(其补偿精度决定于电容器组中单台电容器的电容量), 而不能实现连续、线性的补偿。另外, 在系统中存在谐波时, 还可能与系统中的固有电抗产生并联谐振, 使谐波电流放大(可达额定电流的几倍甚至几十倍), 导致电容器及相关元器件和线路严重过载而烧毁。 无功功率补偿的方式 按补偿装置的工作方式可分为:(1)三相共同补偿;(2)三相分别补

相关主题
文本预览
相关文档 最新文档