当前位置:文档之家› 电磁兼容EMC测试

电磁兼容EMC测试

电磁兼容EMC测试
电磁兼容EMC测试

灯具做CE认证时的电磁兼容测试

灯具做CE认证时的电磁兼容测试

CE-EMC认证是CE认证关于电磁兼容方面的认证,灯具的EM C认证的测试包括以下方面:

1、静放电(ESD)

2、射频干扰(RI)

3、工频磁场(HI)

4、快速脉冲群(EFT)

5、电流注入(CI)

6、浪涌(Surge)

7、电压跌落(VD)

关于目前EMC测试项目说明:

EMI(CISPR 15):

1,骚扰电压(Disturbance voltage)

2,辐射电磁骚扰(Radiated electromagnetic disturbance)

3,插入损耗(电感镇流器)(Insertion loss)

EMS(IEC 61000-4-6):

1,传导抗扰度(Conducted immunity)

备注(Remark):电子变压器、电子镇流器需要做上述EMI中的1、2项即可,电感镇流器只需要做上述EMI中的第3项即可,电子感应器、电子调光器需要做上述EMI、EMS中的所有项目。

抗干扰标准简介

如果打算把电子产品销往国外,就不但要了解一些有关抗干扰方面的问题,还要知道用哪些测试方法和设备才能使产品符合欧盟(EU)的标准。

欧盟的EMC标准要求所有的电子产品都要进行抗干扰试验,包括认为干扰和自然干扰两种。标准还要求产品不能发射出有害的信号,因为这种信号会干扰其他产品的正常工作。

产品是否符合EMC要求,应根据欧洲标准(EN-European Norms)进行测试。欧洲标准由电子技术标准化委员会颁布,而EN的抗干扰标准则是由国际电工技术委员会(IEC-International Electrotechnical Commission)制定而成,并从1997年1月起,采用与EN同样的编号。如IEC1000-4-2变成IEC61000-4-2,这和EN61000-4-2的静电放电(ESD-Electrostatic Discharge)标准是相同的。

由IEC制定的抗干扰标准有一定的设备要求,并与放射标准有明显的差别,对于美国厂商销售产品会带来一些问题。因此,选择正确的设备和了解正确的测试方法具有同样的重要性,最终的目的是使产品符合要求。

本文介绍四种抗干扰标准:

1.IEC61000-4-2静电放电测试:这是一项对产品的一般性测试,目的是考察仪器在ESD条件下的

性能。放电在人与仪器附近的目标之间进行,或者使放电干扰直接传到仪器中去。

在IEC61000-4-2中,要求一个人手持一金属物(如改锥等)去接近仪器的某个部位。该标准规定了空气放电方式和直流放电方式。在空气放电方式下,从ESD信号发生器的测试探头发出的火花传向待测的设备(EUT)。测试探头必须能提供8kV的可调充电电压。直流放电方式要求用ESD

信号发生器的冲击脉冲,当信号发生器的探头尖部接触到EUT时,发生放电。在这种方式下,信号发生器应能提供4kV的可调电压。

2.IEC61000-4-3辐射电磁场测试:

这项测试是考察电子产品对辐射EMI场的敏感度。例如,考察一台计算机在非常靠近一个辐射能量的天线时的性能。该标准规定了产品在保持正常工作的情况下所能承受的辐射能量等级。例如,产品经受得住手提无线电收发信机、荧光、工业焊机或半地TV天线等产生的强电磁场的电磁干扰。

测试过程和测试等级由标准加以规定,并作为测试设备的共同标准。测试频率为80MHz-1000MHz,调制度为80%,到EUT的距离为3米。

3.IEC61000-4-4电快速瞬变测试:当一个感性负载(如电机等)关断时就会产生一个尖脉冲或突

发脉冲,这就是所谓的电快速瞬变(EFT-E lectrical Fast Transients)。当一个开关断开时在接点之间也会发生严重打火。起初,当接点合上时电火花在低电压和高频率上发生,当接点分开之则在高电压和低频率上发生。当电源线中有大电流流动,而且非常靠近电源、数据或I/O电缆时,EFT就会耦合进电子设备。

4.IEC61000-4-5浪涌敏感度测试:电网的开关操作和附近的雷电冲击都会在交流电源线上发生浪

涌现象。该项标准规定了设备对浪涌的敏感度测试方法及其测试等级,并且描述由于高能量对电源和互连线的干扰而引起的单方向浪涌现象。

开关式瞬时变化主要是由于电源系统的开关、短路或谐振电路引起的,如闸流管等。闪电感应的瞬时变化是由于直接冲击系统的电源线路并通过系统中的几条传导路径而产生高压大电流的结

果,见解地闪电冲击也会在设备中才产生瞬时变化。

新电磁兼容指令2004/108/EC

从2007年1月开始,欧共体国家将新的EMC指令作为其国家的规范,新的指令将在2007年7月开始实施。从2009年7月开始新指令将被强制实施,只有符合新指令的产品才能被允许在欧共体国家中销售.

文章对欧洲电磁兼容新指令2004/108/EC的部分内容作了简单介绍,包括某些定义、适用/不适用的设备、基本要求、协调标准、符合性评定程序、技术文件、符合性声明、标识和信息等。该指令将取代89/336/EMC。

新的欧洲电磁兼容指令《欧洲议会和理事会2004/12/15关于使成员国电磁兼容法律相似并废止89/336/EEC的2004/108/EC指令》(DIRECTIVE 2004/108/EC OF THE

EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15 December 2004 on the

approximation of the laws of the Member States relating to electromagnetic

compatibility and repealing Directive 89/336/EEC)已于2004年12月31日在“欧盟的官方期刊”(Official Journal of the European Union)上发布,并于2005年1月20日开始生效。被取代的89/336/EEC 指令将于2007年7月20日废止;不过符合89/336/EEC指令要求的设备可以销售到2009年7月20日。在2007年7月20日前,制造商可以根据自己的需要从两者中任选一个指令。

注:为便于描述,以下简称2004/108/EC 为“新指令”,“89/336/EEC”为“老指令”,“欧盟的官方期刊”(Official Journal of the European Union)为“OJ”。

新指令完全被重新编写,以便更符合新指令的格式。新指令有不少重大变化,有些要求更严格了,有些要求却放松了。同老指令相比,新指令为每条都增加了标题。

有关定义和说明

老指令针对的对象是“apparatus”,而新指令针对的则是“equipment”。两者的中文意思几乎相同,都可以译作“设备”,但在新指令中两者有一点区别:equipment包括apparatus(设备)和fixed installations(成套设备),涵盖的设备范围更宽。由于对apparatus、fixed installations的要求不同,故新指令将其分别列入第二章“apparatus”和第三章“fixed installation”。根据新指令的文本,equipment一词出现在第一章、附录1和附录6这些无须区分apparatus和fixed installations的章节内,apparatus一词用于第二章及与其相关的附录2~5中,而词组fixed installations仅在第三章和附录1中分别出现1~2次。考虑到fixed installations出现的次数少,且在描述它时都已明确用“成套设备”一词,尤其考虑到大家的习惯,本文在翻译apparatus和equipment时不加区别,均译作“设备”。

Equipment、fixed installation是新增的定义,apparatus的定义也被做了修改。

Fixed installation的定义为:几种类型设备、其它装置(devices)(适用时)经过装配、安装并在一个预先规定的地点永久使用的特定组合。其典型的例子为电力网、电话网。

新指令还增加了“safety purposes”术语,删除了老指令中的“Competent body”和“EC type-examination certificate”术语。

新指令适用的设备

新指令适用于第2条规定的设备,即equipment、apparatus和fixed installation。

新指令不适用的设备

1) 不会产生超过允许电磁骚扰电平的无线、电信设备和其它设备;按预期正常工作、虽然有电磁骚

扰出现但没有出现工作性能降低的设备;

2) 1995/5/EC指令《欧洲议会和理事会关于无线和电信终端设备及其符合性互认的1999/5/EC指令》(Directive 1999/5/EC of the European Parliament and of the Council of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual

recognition of their conformity )适用的设备;

3) 欧洲议会和理事会2002/7/15的法规(EC)No 1592/2002所指的航空设备、部件和设备;

4) 在“ITU宪章和公约”(the Constitution and Convention of the ITU)框架内采纳的“无线规则”(Radio Regulation)意义内无线电业余爱好者使用的无线设备,除非设备是可购商品。由无线电爱好者装配的套件和由无线爱好者修改并使用的商业设备不认为是可购商品。

对第一段所指的设备,针对附录I中的基本要求,如果其它委员会指令全部或部分地提出了比新指令更明确的要求,则从那些指令实施开始,新指令将不再适用。

基本要求(essential requirements)

设备产生的射频骚扰不会高于某个电平;超过此电平时,无线和通信设备或其它设备不能按预期工作。另外,设备对预期使用中将遇到的电磁骚扰有抗扰性。同老指令比较,新指令还增加了对固定成套设备的基本要求,即对零件的安装、安装过程的文件化和存档提出了要求。

协调标准(Harmonized standards)

“协调标准”指经过公认的欧洲标准化技术机构采用的技术详细说明。设备满足有关协调标准的要求后将被成员国认为符合新指令的基本要求。符合协调标准与否可以作为符合性评定的一个方法,但符合协调标准不是强制的,也即还有其它的符合性评定方法。在OJ内,列出了所有的协调标准。由于标准的换版,期刊会不时地更新协调标准的版本。通常,新版协调标准推出后,相应的旧版协调标准并不会马上作废,而是两者共存一段时间,通常有好几年。如果成员国或委员会认为某协调标准没有完全满足附录1所描述的基本要求,则对有关协调标准的引用可能是:

1) 不引用;

2) 有限制地引用;

3) 在OJ维持对其的引用;

4) 从OJ中撤消对其的引用。

设备符合性评定程序

老指令中提供了3条设备符合性评定途径:用得最广的自我申明途径(也称标准途径)、技术结构文件(TCF)途径和EC型号核准证书途径,见图1。

新指令规定了两种符合性评定途径,差别在于制造商是否请下述的Notified Bodies(被通知机构)(以下简称NB)进入了符合性评定过程,见图2。

因此,符合性评定的途径被简化了,详见指令附录2和指令附录3。不管哪条途径,新指令都要求制造商或其在欧盟的授权代表提供一份技术文件(其详细内容见附录4)以此作为符合基本要求的证据。技术文件可以由制造商自己拟订(见指令附录2),也可以委托给NB(见指令附录3)。

需要说明的是:老指令中的“能力机构(Competent Bodies)”已成为新指令中的NB,两者的职能是相同的(见老指令附录2和新指令附录4)。不要将新指令中的NB和老指令中的NB弄混,老指令中的NB在新指令中已没有对应的角色,因为无线发射设备已不属于新指令的范围了。在任何情况下,NB是否加入到符合性评定过程中完全由制造商决定,即使在协调标准没有完全应用于评定时也如此。

新指令第十二条为有关NB的内容:

1) 成员国应通知委员会本国内被指定为进行附录3所指任务的机构。成员国将依据附录4列出的判据来指定机构。

这样的通知应申明这些机构是否被指定成可以:为新指令中所包括的所有设备进行附录3所指的工作,和/或完成附录1中所指的基本要求或指定的范围被限制在一定的领域和/或设备种类上。

2) 符合相关协调标准规定的评定判据的机构应被认为:在这些协调标准所包括的范围内符合附录6中的判据。委员会将在OJ中公布这些标准。

3) 委员会将在OJ中列表公布NB。委员会将确保该表的内容都是经过更新的。

4) 如果一个成员国发现某NB不再满足附录4中列出的判据,它应通知委员会和其它成员国。委员会应从第三段中的表中撤消该机构的名称。

技术文件(Technical documentation)

对EMC指令而言,技术文件是新增内容,但技术文件的内容与老指令中的技术结构文件(Technical Construction File)非常相似,之所以这么修改,是考虑到技术文件是新近发布的一些新方法指令中的一个要求。

新指令附录4 1)对技术文件的内容进行了规定:

技术文件必须使设备满足基本要求的符合性可以得到评定。它必须包括设备的设计和制造,尤其是:

1) 设备的一般描述;

2) 如果全部或部分使用了协调标准,应提供符合协调标准的证据。

3) 如果没有使用协调标准或只使用了一部分,则提供为满足指令基本要求而采取的步骤描述和解释,包括附录2第一点提出的电磁兼容评定的描述、所作的设计计算结果、实施的检查、测试报告等;

4) 当按附录3程序实施时,NB的声明。

EC符合性声明(EC declaration of conformity)

新指令的EC符合性声明比老指令所要求的内容更多、更严格。新指令附录4 2)对技术文件进行了规定:

EC符合性声明必须至少包括以下内容:

1) 新指令的引用;

2) 按第九条(1)对设备的标识;

3) 制造商、它在欧盟内的授权代表(适用时)的名称和地址;

4) 声称的符合性根据注有时间的引用规范作出,保证设备的符合性符合新指令的规定;

5) 发布声明的时间;

6) 制造商或其授权代表的授权签字人的身份和签名。

新指令附录2规定的符合性评定程序

1) 制造商应根据相关的现象对设备进行电磁兼容评定,以便满足附录1第一点中的保护要求。如果所有相关协调标准都得到了正确应用,则认为完成了电磁兼容评定。

2) 电磁兼容评定应考虑所有预期的工作条件。如果设备有多种配置,则电磁兼容评定应在制造商规定的所有配置下进行以确保设备满足附录1第一条的保护要求。

3) 根据附录4的规定,制造商应编制技术文件用以作为设备符合新指令基本要求的证据。

4) 按管理机构的要求,从该设备最后生产的日子往后计算,制造商或其在欧盟内的授权代表应至少保存技术文件10年。

5) 制造商或其在欧盟内的代表应用EC符合性声明来证明设备符合所有相关基本要求。

6) 按管理机构的要求,从该设备最后生产的日子往后计算,制造商或其在欧盟内的授权代表应至少保持EC符合性声明10年。

7) 如果制造商或其在欧盟内的代表均未确定,则管理机构要求保持EC符合性声明和技术文件的义务由将设备投放到欧盟市场的人承担。

8) 制造商应采取所有必要的措施确保产品的制造是根据第三点所指的技术文件和新指令的规定进行的。

9) 应根据附录4中的规定编制技术文件和EC符合性声明。

如果制造商或其授权的代表愿意,还可以按附录3规定的程序进行评定。

新指令附录3规定的符合性评定程序

1) 本程序由附录2和以下内容组成;

2) 制造商或其在欧盟内的代表应将技术文件提交给NB,由它进行评定。制造商或其代表应向NB规定基本要求中的哪些方面必须由NB评定;

3) NB对技术文件进行审查,并评定技术文件是否恰当地证明了指令中需要评定的要求得到满足。如果符合性得到了确认,NB将为制造商或其代表颁发证书。证书内容应限于NB针对基本要求已评定的那些方面;

4) 制造商把NB的证书加到技术文件里。

其它标识和信息

新指令第九条“其它标识和信息”为新增内容。考虑到简化产品的符合性评定程序时赋予了制造商更多

的权利,为了避免风险,通过以下标识和信息,可以极大地方便欧盟对产品的管理,降低各种管理费用。新增的内容为:

1) 应用型号、批次、串号或其它信息来标识每个设备;

2) 每个设备都应附有制造商或其在欧盟授权代表或负责将设备投入到欧盟市场的人的姓名和地址;

3) 制造商应提供任何有关装配、安装、维护或使用的专门防范信息;

4) 对于在居住区不能确保符合保护要求的设备,应附有限制使用的醒目指示。合适时该要求也适用于设备的包装上;

5) 在随设备提供的使用说明中,应包含使设备按预期目的使用的信息。

固定成套设备

新指令中的第十三条“固定成套设备”属新增内容:

1) 已销售的并且可以被并入一个固定成套设备的设备,应满足新指令为设备列出的所有相关规定。

2) 但对于预期并入一个特定固定成套设备的设备,如果该设备不能在其它处购得,则第5、7、8和9条的规定则不是强制性的。此时,随附的文件将对该固定成套设备及其电磁兼容特性加以确定,指出将设备组合成固定成套设备需要预防的问题,以便不损害成套设备的符合性。此外,它还应包括第九条(1)和(2)所指的信息。

3) 当有迹象表明固定成套设备不符合要求,尤其是有人抱怨它产生了骚扰时,有关成员国的管理机构可以要求得到固定成套设备的符合性证据,恰当时,开始评定。

4) 当不符合性得到了确定,管理机构可以采取强制措施以便使该固定成套设备满足附录1中第一点提出的保护要求。

5) 成员国应提出必需的规定以便确定负责固定成套设备符合相关基本要求的人员。

EMC测试指南

一、EMI(电磁骚扰)分射频和工频两类测试

l 射频类测试项目:

1.1 射频分传导和辐射两项测试

射频传导(屏蔽室测试)

1.1.1 传导分电压和功率两项测试

1.1.2 传导电压标准:CISPR11、14、15、22

1.1.3 传导功率标准:CISPR11、14

射频辐射(电波暗室测试)

1.1.4 射频辐射标准:CISPR11、22、IEC60571

l 工频类测试项目(实验室测试)

1.2 工频分谐波和闪烁两项测试

工频谐波1.2.1 IEC6100-3-2

工频闪烁1.2.2 IEC6100-3-3

二、EMS(电磁敏感度)分瞬变、射频、低频磁场、电源质量

l 瞬变类测试项目(实验室测试)

2.1 瞬变分静电、瞬变脉冲和浪涌三项测试

瞬变静电IEC6100-4-2

瞬变脉冲IEC6100-4-4

瞬变浪涌IEC6100-4-5

l 射频类项目

2.2 射频分传导和辐射两项测试

射频传导IEC61004-6(实验室测试)

射频辐射IEC6100-4-3(电波暗室测试)

l 低频磁场类测试项目(实验室测试)

2.3 低频磁场分脉冲磁场和工频磁场两项测试

脉冲磁场IEC6100-4-9

工频磁场IEC6100-4-8

电源质量类测试项目(实验室测试)

2.4分跌落、中断、电压变化三项测试

IEC6100-4-11

注:几点说明:

1. 传导功率测试面积 > 7x1M

2. 传导电压测试桌:推荐 2x1.5x0.8

要考虑柜式设备的测试面积。

3. 谐波及闪烁测试面积 >2x2

4. 静电放电测试桌:推荐 2x1.5x0.8

5. 瞬变及电源质量测试桌:推荐 2x1.5x0.8

4. 5. 可用同一张测试桌

6. 传导射频敏感度测试桌:推荐 2x1.5x0.8

5. 6. 可用同一张测试桌 7. 屏蔽室和实验室要有相应的温湿度要求 8. 敏感度测试时周围不能有

敏感设备

9. 在实验室做测试时,周围不能有发射或干扰设备

否则测试要在屏蔽室内进行。

10. 除功率放大器和谐波,闪烁系统为三相供电外,其他

设备均为单相供电。

11. 有标准,为现在手头的标准。

12. 以上为最低测试环境要求!!!!

13. 所有测试标准,如需要国标的请对照标准对照表!!!!

国内外电磁兼容标准概况与测试手段简介

随着技术的发展,特别是人们环境保护意识的增强,对产品的电磁兼容性越来越重视。我国已将产品的电磁兼容性要求纳入了国家强制性产品认证范围,国家规定从2003年5月1日起凡列入国家强制性产品认证目录的产品未经认证不得出厂、进口和销售。那么什么是产品的电磁兼容性?国内外电磁兼容标准发展情况又如何?产品的电磁兼容性测量又需要那些环境条件和测量设备。本文就上述内容作出简单介绍。

电磁兼容性(electromagnetic compatibility) 缩写EMC就是指某电子设备既不干扰其它设备,同时也不受其它设备的影响。电磁兼容性和我们所熟悉的安全性一样,是产品质量最重要的指标之一。安全性涉及人身和财产,而电磁兼容性则涉及人身和环境保护。在我们的日常生活中经常会遇到这样一些情况,在我们正常收听广播或收看电视节目的时候如果户外有汽车驶过,很容易造成收听或收看质量下降,还有当我们在家玩电子游戏机时,常常造成邻居家电视机的某些频道无法正常收看;同样邻居家在玩游戏机时也会影响自家电视机的接收效果。这样的例子足以说明,在我们日常生活的空间确实存在着另外一种环境污染——电磁污染。可以这样说,凡有电、有开关的设备均会产生电磁干扰。

早在一九三四年国际电工委员会就成立了无线电干扰特别委员会简称CISPR,专门研究无线电干扰问题,制定有关标准,旨在保护广播接收效果。当初只有少数国家参加该委员会,如比利时、法国、荷兰

和英国等。经过多年的发展人们对电磁兼容的认识发生了深刻的变化,1989年欧洲共同体委员会颁发了89/336/EEC指令,明确规定,自1996年1月1日起,所有电子、电器产品须经过EMC性能的认证,否则将禁止其在欧共体市埸销售。此举在世界范围内引起较大反响,EMC已成为影响国际贸易的一项重要指标。随着技术的发展CISPR工作范围也由当初保护广播接收业务扩展到涉及保护无线电接收的所有业务。国

际电工委员会IEC有两个专们从事电磁兼容标准化工作的技术委员会:一个就是CISPR成立于1934年;另一个是电磁兼容委员会TC77,成立于1981年。CISPR最初关心的主要是广播接收频段的无线电骚扰问题,之后在EMC标准化工作方面进行了不懈的努力,CISPR共有七个分技术委员会其中A分会涉及无线电骚扰和抗扰度测量设备及测量方法;B分会涉及工业、科学、医疗射频设备的EMC;C分会涉及架空电力线路和高压设备的EMC;D分会涉及车辆、机动船和火花点火发动机驱动装置的EMC;E分会涉及收音机

和电视接收机及有关设备的EMC;F分会涉及家用电器、电动工具及荧光灯和照明装置的EMC;G分会涉

及信息技术设备的EMC问题。CISPR已基本上将通常的工业和民用产品的EMC考虑在其标准中。CISPR还起草了通用射频骚扰限额值国际标准草案,这样,对那些新开发的以及暂时还不能与现有CISPR产品标准相对应的产品,可以用射频骚扰限额值来加以限制。几年前CISPR将其工作频率范围扩展为DC-400GHz,目前实际工作范围为9KHz—18GHz,以前的CISPR标准主要涉及无线电干扰限额值及其测量方法,近年来在抗扰度方面加强了研究,并已制定了一些标准。TC77最初主要关心低压电网系统的EMC间题(9KHz以下频段),后来将其工作范围扩大到整个EMC所涉及的频率范围及产品。目前CISPR已制定有CISPR22(1997)《信息技术设备的无线电骚扰特性的测量方法及限值》等14个标准;TC77也已制定了25个IEC 标准,其中IEC61000-4系列标准是目前国际上比较完整和系统的抗扰度基础标准。

我国的EMC测试及标准化工作始于六十年代,当时国内的一些院所建立了相对简陋的试验室,开展无线电干扰(骚扰)测试研究,同时参考前苏联和欧美国家标准制定我们国家自已的EMC标准和技术条件,自从1986年成立了全国无线电干扰标准化委员会后,我国才开始有组织有系统地对应CISPR/IEC开展国内EMC标准化工作。目前全国无线电干扰标准化委员会已成立了八个分技术委员会,其中七个分会与CISPR/A.B.C…F.G分会相对应,S分会是根据我国国情而成立的,它主要涉及无线电系统与非无线电系统之间的电磁兼容问题。目前我国已制定了六十多项EMC国家标准,其中基础标准为GB4365-1995电磁兼容术语;GB/T6113-1995无线电干扰和抗扰度测量设备规范。

电磁兼容性的测量手段主要由测试场地和测试仪器组成。EMC测试所需埸地主要包括开阔埸、电波暗室(anechoic chamber)、屏蔽室等。

开阔埸:根据标准要求通常测试埸成椭园形,长轴是焦距的两倍,短轴是焦距的√3倍,发射与接收天线分别置椭园的两个焦点上。两个焦点的距离即是我们所要求的测量距离,根据现有标准可分为3米、10米和30米。我国现有标准大多数规定3米法测量,美国的FCC标准、英国的VDE标准有10米法测量的要求。

开阔埸一般应选择远离市区、电磁环境较好的地方建造,但这给建造、试验、生活管理等带来了诸多不便,目前国内大都利用楼顶平台,因地制宜进行建造。试验埸地应设有转台和天线升降塔,便于全方位的辐射发射及天线升降测试,关于开阔埸还有一些具体要求,如要符合埸地衰减要求,埸地周围无金属反射物等等。

屏蔽室(screen room):在EMC测试中,屏蔽室能提供环境电平低而恒定的电磁环境,它为测量精度的提高,测量的可靠性和重复性的改善带来了较大的益处。但是由于被测设备在屏蔽室中产生的干扰信号通过屏蔽室的六个面产生无规则的漫反射,特别是在辐射发射测量和辐射敏感度测量中表现更严重,导致在屏蔽室内形成驻波而产生较大的测量误差。目前国内生产的屏蔽室的屏蔽效能在10Kz-10GHz频率范围内一般能大于100dB。

电波暗室(anechoic chamber): 通常所说的电波暗室在结构上大都由屏蔽室和吸波材料两部分组成。在工程应用中又分全电波暗室(fully anechoic chamber)( 六面装有吸波材料)和半电波暗室(semi anechoic chamber)( 地面为金属反射面)。全电波暗室可充当标准天线的校准埸地,半电波暗室可作为EMC试验场地。电波暗室的主要性能指标有“静区”、“工作频率范围”等六个指标(静区是指射频吸波室内受反射干扰最弱的区域)。但建造电波暗室的成本、难度均相当高,因为暗室的工作频率的下限取决于暗室的宽度和吸收材料的高度、上限取决于暗室的长度和所充许的静区的最小截面积,所以在建造上有较大的难度。且由于吸波材料的低频特性等原因,总的测试误差有时高达几十分贝,造价需几百万元。

由于开阔场、电波暗室的诸多缺点,1974年美国国家标准局(NBS)的专家首先系统地论述了横电磁波传输小室(简称TEM小室Transverse Electromagnetic Transmission Cell),其外形为上下两个对称梯形。横电磁波传输小室的优点是结构简单,主要缺点是可用频率上限与可用空间存在矛盾。标准TEM 小室的测量尺寸大约限定在设计的最小工作波长的四分之一范围。如果要进行1GHz(波长30cm)的测试,测试腔尺寸要限定在7.5cm。如果对PC机进行测试,测试腔高度起码要有半米,即使加入一些側壁吸收材料,可用频率上限也不会超过300MHz。我们所引进的德国RS公司生产的TEM小室腔高80cm,可用频率上限为250MHz。用TEM小室的方法测量已列入CISPR标准之中。为了克服TEM小室的缺点,1987年瑞士ABB公司发明了TEM小室家族中的新成员GTEM小室,其外形为四棱锥形。GTEM小室综合了开阔场、屏蔽室、TEM小室的优点,克服了各种方法的局限性,便于进行几乎全部辐射敏感度及发射试验。其频率范围可覆盖0-18GHz,模拟入射平面波,可以产生强的场强、对周围的人员和设备没有危害和干扰。

但GTEM小室的使用目前国际上尚有争论,还没有列入标准的测试方法之中,一般用于预测试。

在电磁辐射敏感度测量方面还有一种非对称横电波传输室简称ATEM小室(Asymmetric Transverse Electromagnetic Transmission Cell)。通常TEM小室呈对称形,ATEM小室为非对称形,其外形为中间是方形的两头为非对称的棱锥形。ATEM小室目前还处在研究阶段,主要用于预测试,尚未正式列入标准。

电磁兼容性测量所需的仪器设备的技术参数在标准中都有描述,电磁兼容性的测量分干扰(骚扰)和抗干扰:

电磁干扰(electromagnetic interference)简称EMI,测量一般为两个参数即辐射干扰(Radiated interference) 和传导干扰(Conducted interference) ,所谓辐射干扰是指通过空间传播的干扰,所谓传导干扰是指通过电源端而产生的干扰。测量所需的主要设备有:1.接收天线(根据测量频率不同可以选则偶极子天线、双锥天线、对数周期天线等)。2.测量接收机。3.人工电源网络(artificial mains network串接在被测设备电源进线处的网络。它在给定频率范围内,为骚扰电压的测量提供规定的负载阻抗,并使被试设备与电源相互隔离)。4.天线升降架、转台及部分适配器。5.吸收钳(absorbing clamp)。6.计算机、接口板、软件等。价格不算太高根据不同的频率范围,价格在二十——五十万马克之间。我们所使用的EMI接收机为德国RS公司最新研制的ESCS30,它的频率范围为9KHz-2.75GHz。

关于EMI测量仪器的生产厂,目前国内尚没有这方面的生产能力,国际上也只集中在少数几家公司如德国的罗德与施瓦茨公司(RS公司)是生产EMI仪器的著名公司,一直紧跟标准的变化,美国的惠普公司(HP公司,现为安捷伦公司)也以其自身的优势大量生产着EMI测量仪器,目前两家公司在技术、产品可靠性、售后服务、价格上各有千秋。还有美国的依顿公司、泰克公司、日本的目黑公司等也生产EMI测量仪器。有的可用于认证测试,有的可用于企业预测试。

对抗干扰(electromagnetic susceptibility)简称EMS,这方面的测量参数一般有10项:静电放电、无线电频率电磁辐射场、电快速瞬变脉冲、浪涌、由射频场引起的传导、电源频率磁场、脉冲磁场、阻尼振荡磁场、电压跌落短期中断和电压变化、振荡波抗扰度试验。其中无线电频率电磁辐射场和由射频场引起的传导两项试验所需的仪器多一些如需高频信号源、高频功率放大器、功率计、场监系统、计算机及相应的专用测试软件和接口等,价格较高,另外一些大都是专用仪器或几合一的专用仪器如浪涌仪、静电发生器、电快速瞬变模拟器等。如不考虑广播电视及相关产品的EMS测试,那么仪器价格一般在二百万人民币左右。EMS仪器国内也有生产,国际上较著名的有瑞士夏弗纳公司、哈弗莱公司,国内较著名的是日本与上海电科所合资的上海三基电子工业有限公司。我们实验室所使用的是瑞士哈弗莱公司生产的整套仪器。

广播电视及相关设备的抗扰度是EMS测量中最复杂的,他要求在有用信号上叠加干扰信号,目前国际上只承认德国RS公司生产的TS9980系统,该系统完全满足CISPR标准和EN标准要求,且价格也最贵约为六十万德国马克。目前国内检验机构中只有我们实验室拥有这套系统。

电磁相容性(EMC)测试

各式各样之3C整合系统设备带给人类生活无限方便利益, 却也造成复杂电磁杂讯环境。四十年前欧体IEC/CISPR等委员会之电磁相容性(ElectroMagnetic Compatibility, EMC)研究小组有鉴于此电磁杂讯环境趋势,发出 89/336/EEC EMC 指令(及后续修订版92/31/EEC,93/68/EEC),说明电子电机设备相关产品必须符合辐射干扰与传导干扰发射规格外,同时陆续增订辐射耐受性与传导耐受性规格,要求1996年元旦起强制实施,国内各类电子电机产品厂商为强化所生产产品符合内外销相关EMC指令,促使EMC

测试场地快速成长,较大规模之资讯厂都趋向自行筹建EMI (ElectroMagnetic Interference)除错场地,加速产品EMC设计达到外销各国相关EMC需求。然而为了验证电子电机设备电磁相容性设计是否良好,就必须在研发之整个过程中,对各种电磁干扰源之发射杂讯、传输特性及受干扰设备能否负荷耐受性测试,验证设备是否符合相关电磁相容性标准和规范;找出设备设计及生产过程中,在电磁相容性方面之盲点。在客户安装和使用设备时,提供了既真实又有效之数据,因此,电磁相容性测试是电磁相容性设计所不可或缺之重要环节。本文将针对EMC测试最新之军规、商规、车辆规范等作一比较分析测试方法差异及相关经验。

表一 .

常见美军军规, 欧美商规及车辆用电磁干扰(EMI)测试项目摘要比较

常见美军军规, 欧美商规及车辆用磁用耐受性(EMS)测试项目摘要比较

电磁相容性测试范围与所采用之标准和规范

依据相应之电磁相容性标准和规范,电磁干扰(EMI)及电磁耐受性测试(EMS)在不同频率范围内,采用不同之方式进行。基于任意电子电机设备既可能是一个干扰源,也可能是被干扰者。因而,电磁相容性测试包含电磁干扰测试(EMI)及电磁耐受性测试(EMS)。由于电磁相容性测试种类太多,实在无法逐一详细说明,本文就表1及表2摘要列举了几个典型EMC测试标准和规范(含常见美军军规、欧美商规及车辆用EMC标准),在不同频率范围中之测试项目,从军规EMC标准之演变,就可观察到欧美商规EMC标准之趋势。近年来,车辆工业界面对二十一世纪车辆设计新颖要求,纷纷成立车辆研发中心,由于国内主要汽车制造厂均需符合相关车辆用EMC标准和规范,因此更需了解比较车辆EMC设计与测试验证之方法。

此二表中CE表示可以传导发射(Conducted Emission),CS表示传导耐受性(Conducted usceptibility),RE表示辐射发射(Radiated Emission),RS表示辐射耐受性(Radiated Susceptibility)。一般电磁干扰(EMI,包括CE及RE)测试主要内容有:电子电机产品和设备在各种电磁杂讯环境中之传导干扰和辐射干扰发射量之测试(例如电子电机设备之交换式电源之脉冲干扰和连续干扰)及各种讯号传输时,干扰传递特性之测试(例如如各种传输线之传输特性和屏蔽效果)。

而电磁耐受性(EMS,包括CS及RS)测试主要内容则有:

1.对电场、磁场之辐射耐受性测试

2.对电源线、控制线、讯号线、地线等注入干扰之传导耐受性测试

3.对静电放电和各种暂态电磁波(突波或电性快速暂态)之耐受性测试

EMC测试场地之一般要求:

如何有效地量测出实际待测产品设备溢出之杂讯,与产生类似EMI之干扰源,用来验证待测产品设备之电磁耐受性,都是EMC工程人员所必须掌握。因此,为了模拟复杂电磁杂讯环境及保证EMC测试结果之重复性、准确性和可靠性,EMC测试对环境有较高之需求,测试场地可分为隔离室(包含 TEM/GTEM Cell 等积向电磁波EMC测试室)、电波暗室和室外开放测试区之场地(open Area Test Site,OATS)等。这些EMC测试场地之功能、建材和限制条件简述如下:

就隔离室而言,隔离室之作法一方面是对外来电子电机干扰加以屏蔽,从而保证室内电磁杂讯环境满足要求,另一方面是对内部如天线等发射源进行屏蔽而不对外界造成干扰。

MIL-STD-461及其它相关电磁相容性标准规定,许多测试项目必须在隔离室内进行,隔离室为一个由金属材料做成之六面体,其建材形式为镀锌钢板式、铜网式、多层复合金板式等等不胜枚举。影响隔离室性能之主要原因有:屏蔽门、屏蔽材料、电源滤波器、通风波导、安装及焊接接缝、接地等。从屏蔽效益来看,钢板式最好,在10kHz至18GHz频率范围,可满足屏蔽效益80~120dB之要求。在使用隔离室进行电磁相容性测试时,要注意隔离室之共振及反射。根据电磁理论,隔离室是一个很大之方形波导共振腔,具有一系列之电磁共振频率,当隔离室发生共振时,将会影响屏蔽效益及测试结果,隔离室基本共振频率公式为:

式中f为共振频率(MHz),a,b,c为隔离室之长、宽、高度(公尺);m,n,p为0及正整数,三者中最多只能一个为零,对于TE波m不能为零,举例来说,商规长、宽、高9*6*6立方公尺之隔离室基本TE101波之共振频率约为30MHz。由式(1)可见,隔离室有许多个共振频率,当隔离室共振时,其屏蔽效益大幅下降,并且会造成很大之测试误差,因此在进行EMC测试时应避免这些共振频率。天线等发射源将会在隔离室壁面上产生多重反射,从而影响测试结果,往往误差大到30~40dB,为此在条件许可之各种状况下,在体积较大之隔离室内进行测试,同时使待测件在保证入射为平面波之前提下,缩短待测件与接收天线之距离,对于最近之反射路径,针对反射点局部加贴吸波材料,可以减少反射波。

就电波暗室(全电波暗室或半电波暗室)而言,全电波暗室是针对一般隔离室各内壁面反射,将会影响测试结果,因而在六个壁面上,加装吸波材料而形成之隔离室(为了模拟室外开放测试区之场地测试,接地地板上不贴吸波材料之电波暗室称为半电波暗室)。吸波材料一般采用介质损耗型(如聚氨脂类之泡沫塑料,亚铁磁砖等),为了确保其耐燃烧特性需在碳酸溶液中渗透,吸波材料通常作成圆锥状、棱角锥状及方楔形状,以保持连续渐变之焦耳阻抗。军规MIL-STD-462D对吸波材料之最小吸收量有所规定,即频率80MHz~250MHz至少6dB,频率大于250MHz则至少10dB以上。而为了保证内部测试场之均匀,吸波体之长度相对于隔离室工作频率下限,所对应之波长要足够长(1/4波长效果较好),吸波体之体积也会限制吸波材料之有效工作频率(一般在30MHz以上)减小了隔离室之有效空间,电波暗室之屏蔽效益要求与隔离室相同。此外,商规EMC测试对电波暗室之场地衰减 (Site Attenuation,SA) 规定NSA (Normalized SA)要在理论值±4dB之范围;对电波暗室内部测试场强之均匀度,则要求执行16点场强之均匀度校正试验,此试验之测试方法详加说明如图,发射天线与待测场强之均匀面(1.5m×1.5m)相距3公尺,16点均匀面正方形(4点×4点,点距0.5m)场强之均匀度,至少要求其中12点 (75%) 要符合规格需求,这种测试方法与1993年版之军规MIL-STD-462D要求相当就室外开放测试区之场地(OATS)而言,开放测试区之

场地通常用于精确测量待测件之发射极限值,OATS要求平坦开阔,远离建筑标地、塔台、电线、树林、地下电缆和金属管道,环境电磁干扰背景要很小(如一般电磁相容性标准和规范要求至少低于允许之极限值6dB),接地地板可为钢板或其他低阻金属结构,场地尺寸在不同之EMC标准和规范要求不尽相同。EMC测试所需基本仪器之要求及其配备

在前节所述EMC测试场地执行EMI/EMS测试时,所需基本仪器之要求及其配备,随着不同频率范围中之测试项目而有所差异,图划出典型EMI/EMS测试组合示意架构,其中测试所需不同仪器之基本配备则如下列说明。

1.隔离室屏蔽效益(Shielding Effectiveness,SE)测试所需仪器之基本配备参考IEEE-299-1997

和MIL-STD-285等测试隔离室屏蔽效益之标准,在不同频率范围内将隔离室屏蔽效益分为磁场屏蔽(低阻抗场),电场屏蔽(高阻抗场)平面波电磁场屏蔽和微波屏蔽,其测试仪器之基本配备为:频谱分析仪或EMI测试接收机、场强监视系统、各类讯号产生器、功率放大器、各类衰减器、定向耦合器及各类发射、接收天线(棒状天线、环路天线、对数螺旋天线、喇叭天线等)及输出变压器。

2.电磁干扰EMI测试所需仪器之基本配备需求

由于使用测试仪器时也会产生一定电磁干扰,为了保证测试之准确性,CISPR16要求测试仪器之干扰量至少比待测装置干扰电压或电流小20dB,且比允许之干扰量小40dB。测试仪器精确度要求为:电压测

试时误差不超过正负2dB,场强测试时误差不超过正负3dB。测试仪器之屏蔽效益至少要有60dB,测试仪器接入测试系统后,既不应改变被测电子电机设备之工作状态,也不应对被测干援源有分压分流效应,测试仪器本身之干扰耐受性应远低于可能受到之干扰量。常用之电磁干扰EMI(含RE及CE)测试仪器配备有:

?EMI自动测试控制系统(电脑及其介面单元)

?EMI测试接收机(或频谱分析仪)

?各式天线(主动、被动棒状天线、大小形状环路天线、功率双锥天线、对数螺旋天线、喇叭天线)及天线控制单元等

?电流注入感应器(Current Probe)、电压感应器、隔离变压器

?电源阻抗模拟网路(Line Impedance Stabilization Network,LISN)贯穿电容,储存式示波器,各型滤波器、定向耦合器等

3.电磁耐受性(EMS)测试仪器之基本配备需求常用之电磁耐受性EMS(含RS及CS)测试仪器之基本配备需求有:

?EMS自动测试控制系统(电脑及其介面单元)

?EMI测试接收机(或频谱分析仪)

?各式发射、接收天线

?讯号产生器2功率放大器、场强监视系统

?储存式示波器,注入隔离变压器,各型滤波器、定向耦合器

?电源阻抗模拟网路,射频抑制滤波器,光纤数据传输系统

4.简介常用之EMC测试重点仪器和设备电磁相容性测试除了通用测试仪器外,还需许多特殊仪器和设备,下面将简介一些电流感应器、电源阻抗模拟网路、EMI测试接收机、频谱分析仪、各式发射接收天线、平行板线、及TEM/GTEM Cell等横向电磁波测试室等主要仪器设备之工作原理和使用特点。

电流感应器

电流感应器是引用荷尔效应(Hall effect),从流动导线之电流穿过电流感应器产生磁场,执行

CE101/CE102等传导干扰测试时,利用电流感应器来感应侦测导线所溢放射出之杂讯。

电源阻抗模拟网路(LISN)

电源阻抗模拟网路是一种耦合电路,主要用来提供乾净之DC/AC电源品质,阻挡待测件杂讯回馈至电源及RF耦合,内部电路架构与阻抗特性曲线详如图。早期军规传导干扰测试是以10厉贯穿电容为主,电源阻抗模拟网路(LISN) 为辅,1993年以来,军规MIL-STD-462D要求改以LISN为主,所用导电桌或木桌上接地平面(Ground Plane)皆配备LISN作测试,而CISPR商规要求所用木桌上也配备LISN作测试。EMI测试接收机

EMI测试接收机是EMC试验中最常用之基本测试仪器,EMI测试接收机实际上是含高频选频放大之超外差接收机,其灵敏度可通过输入回路之可调衰减器来调变,由于测试讯号输入常常是极宽之频谱讯号,运用可调谐高频选择器对输入讯号进行预选,可以改善混频器之工作

状况,中频放大器和中频选择器用来确定仪器之通行频带,并对讯号进行功率放大。基于测试接收机之频率响应特性要求,按CISPR16规定,测试接收机应有四种基本检波方式:准峰值检波、均方根值检波、峰值检波及平均值检波。然而,大多数电磁干扰都是脉冲干扰,它们对音频影响之客观效果是随着重复频率之增高而增大,具有特定时间常数之准峰值检波器之输出特性,可以近似反应这种影响。因此在无线广播频率领域,CISPR所推荐之电磁相容性规范采用准峰值检波。由于准峰值检波既要利用干扰讯号之幅度,又要反映它之时间分布,因此其充电时间常数比峰值检波器大,而放电时间常数比峰值检波器小,对不同频谱段应有不同之充放电时间常数,这两种检波方式主要用于脉冲干扰测试。瞬间变化及重复频率很低之脉冲干扰源已成为主流,使用准峰值检波器已不能客观评估此类干扰之特性,军规测试EMC对于单一脉冲或重复频率很低之脉冲进行检测,常用峰值检波,由于峰值检波是要测试出干扰讯号振幅之最大值,故它只取决于讯号之幅度而与时间无关,其充电放电时间常数比值 TC/TD 要足够小,通常TC/TD 为几百分之一。平均值检波主要用来测试窄频之连续波、调谐波干扰,其充放电时间常数比值TC/TD为1。若是干扰经常由许多独立之脉冲源产生,而往往是随机的,则最好使用均方根检波器。选用检波器取决于被测受干扰源之性质以及所受保护之对象,对于同一干扰杂讯用不同检波器测得之值是不同,而各种检波器对脉冲干扰之相对响应也是不同。但将测试数据通过转换后,仍可得出一致之结果,有些接收机只有峰值或准峰值检波器,此时只需通过准峰值或峰值转换器转换,就能满足不同之测试要求。

频谱分析仪

频谱分析仪之检波器为峰值检波,因而满足军规EMC测试要求,但不符合欧美EMC商规及我国电磁相容性国家标准(CNS13430系列)规定之极限值测试。为此必须在输入端配备预选器(Preselector)以防止混频器饱和,改善频谱分析仪之S/N比,提高灵敏度,并且在中频输出端配备准峰值转换器或检波器。则系统灵敏度、动态范围也提高,就可以满足军规EMC测试及CISPR标准测试。

EMI测试接收机与频谱分析仪两类设备各有优缺点:测试接收机之优点有测试准确度高、动态范围大、频率分辨率高、灵敏度高、互调干扰小及有四种基本检波方式;缺点就是不能像频谱仪分析仪在很宽之频率范围内展开观察,而对被测讯号无法快速进行频谱分析和振幅测试。频谱分析仪之优点是能在很宽广之频率范围内观察而迅速地对被测讯号进行频谱分析和振幅测试、测试设备相对简单及测试比较方便;缺点就是测试准确度相对差一些、频率分辨率较低、互调干扰大、选择性较差及只有单一峰值检波方式。

EMC测试用天线

电磁相容性测试频率范围从几10Hz到几10GHz,在这么宽之频率范围内作电磁干扰及电磁耐受性测试,所用天线种类繁多,且必须借助各种探测天线把被测场强转换成电压。电磁相容性试验中各频段优先使用之天线,包括在150Hz~30MHz采用棒状与环路天线,30MHz~300MHz采用偶极与双锥天线,300MHz~1GHz采用偶极、对数周期及对数螺旋天线,1GHz~40GHz采用喇叭天线,这些天线之相关参数与理论可参考制造厂商提供天线出厂之资料。电磁相容性测试用天线具有下列特点:广泛的应用到宽频带天线,为了提高测试速度,不得不采用宽频带天线,除非只对少数已知之干扰频率点进行测试。宽频频带天线在出厂前提供校正曲线,使用时需输入此天线因素。天线增益不高,方向性不甚明显。不少试验用天线都工作在近场区,测试结果对测试距离很敏感,为此试验中必须严格按试验规定进行。其次,在近场区电场、磁场之比(波阻抗)不再是个常数,所以有些天线虽然给了电场、磁场之校正系数,但只有当这些天线作远场测试时才有效,测试近场干扰时,电场与磁场测试结果不能再按此换算,这是在试验中容易忽略之问题。天线之场强测试动态范围较宽,应根据测试对象正确选用,电磁相容性试验之场强相差很

大,对强大场强虽然可用衰减器扩大天线量测范围,但应以不损坏天线转换器为前提。收、发天线有时是不能互易,如同为双锥天线,收、发用天线有区别,收、发环路天线也不同,使用时不能互换。

平行板天线

车辆零组件执行电磁场辐射耐受性试验(ISO 11452-6)时,需要均匀横电磁波之测量环境。利用平行板线,在其一端接相应之讯号产生器与功率放大器,另一端接匹配负载,可在两平行板间产生横电磁波之行波状态(详见图)。当两板间距为d,所加电压为V时,平行板之电场强度E为 E = V / d (2)

平行板线之工作频率与终端负载之匹配情况有关,而且与平行板之间之距离d成反比,距离越大,上限工作频率越低。随频率上升,传输讯号之?/4送到平皮间距d时,平行板在其开放之侧面将产生强烈辐射,以致于影响周围其它测试设备之工作,甚至危害试验人员之健康。

因此,当其内部电场较强时,应将其放在电磁隔离室内,或在其开放之侧面布置适当之可移动吸波材料墙。当频率进一步提高时,板间将出现高次模,使板间电磁场发生畸变,一般把出现高次模之频率定为平行板线之上限频率。当待测件置于平行板时,原来之均匀电场将发生畸变,为此通常规定待测件之体积应小于两板中间体积之1/3。与一般采用辐射天线对待测件进行电场辐射耐受性试验相比,平行板线有下列优点:可在宽频段范围内产生平面波场;所有能量集中在平行板间,因而电磁能量利用率高,不需很大瓦特数之功率讯号放大器就可在板间产生高于25V/m之场强(车辆零组件规格);平行板线之造价与其它产生场强,用以进行电磁耐受性试验之方法和装置相比,成本较低。其主要缺点是:仅适用于如车辆零组件等小型设备之试验,对周围之辐射较为严重,影响监测仪器之功能及操作人员之健康。这些缺点限制了应用,从1980年以来,平行板线已逐渐被横电磁波室所取代,但在电磁脉冲(EMP)研究中,仍将其作为场强模拟装置。

横电磁波室 (TEM/GTWM CELL)

横电磁波(Transverse Electro Magnetic,TEM)室是利用传输线原理,由同轴线演变而来,一种内部能传输均匀横电磁波之长方形测试室。它是电子电机设备电场辐射耐受性试验之理想装置,除了可进行射频连续波耐受性,脉冲波耐受性试验外,还可用于测试电子电机设备所产生之辐射干扰,及作为对各种近场测试探夹(如电流注入感应器、电压感应器、场强感应器等)进行校正用之标准场源装置。图为横电磁波室之示意图,如图所示,横电磁波室由矩形外导体和平板中心接地导电板所构成,两端通过四面尖锥过渡区与精密50咫冷型同轴连接器连接,接地导电板用绝缘支架固定,将横电磁波室分成两部分。待测件之供电系统通过电源滤波器进入,长方形横电磁波室之优点是腔体内之场强比较均匀,而正方形横电磁波室之优点是在相同可用空间条件下,工作频率范围较宽,所需用料省,体积较小。与平行板线相类似,待测件在横电磁波室占有之空间一般不超过接地导电板到底板间距的三分之一和前后壁板间距的三分之一,横电磁波室之工作频率与终端负载之匹配情况有关,上限频率依赖于接地导电板到上下底板间距之尺寸,而且与接地导电板到底板间距d成反比,距离越大,上限工作频率越低。为了使横电磁波室之工作频率提高到1GHz范围,于是GTEM(Gigahertz TEM)横电磁波室因应而生,它之外型是斜面角锥状,详加说明如图,待测件放置方式与TEM横电磁波室类似,如图所示,有各种不同之终端负载,因为工作频率与终端负载之匹配情况有关,目前欧美EMC商规已经广泛应用GTEM横电磁波室来执行辐射发射与辐射耐受性测试。

典型军规、商规之电磁相容性测试

无论是美军军规、欧美商规或车辆用电磁相容性测试标准与规范,都对EMI/EMS各类试验,就仪器之配备、场地布置、试验步骤、连接方式等都有严格之规定,试验时应严格按照规格要求执行。由表及表摘要得知电磁相容性测试种类太多,实在无法逐一详细说明,因此下面列举了几个典型CE、RE、CS

及RS等EMC测试之试验方法。

电源线传导干扰发射测试(Conducted Emission,CE)

参考规格:MIL-STD-461D/462D,CE102(10kHz~10MHz),规格极限如图7

FCC Part 15 (450kHz~30MHz)

CISPR Pub 22(150kHz~30MHz)

从规格极限图就可知道以上各种CE规格之差异,实际摆设、电缆、引线和接地平板间之最小间隔亦有些差异,其中细节相关规格皆有阐述。

电源线传导干扰测试目的:待测件所有适用于上列参考规格之频率范围内交直流电源输入和输出线(包括设备内部不接地之中线)之传导干扰测试。

电源线传导干扰测试所需配备:如图8所示,以CE102为例,电缆、引线和接地平板间之最间隔为5cm,从待测件LISN或到贯穿电容之电源线长度不超过2cm,待测设备之每条电源线,从导线分界处到LISN或贯穿电容器之长度是2m,根据测试系统之灵敏度及宽频带测试要求选用阻抗匹配变换器和滤波器。

电源线传导干扰测试步骤:将电流探夹沿每根电源线之导线分界处到LISN或贯穿电容器之线段上移动,以使频谱分析仪或测试接收机之读数最大,并记录读数,所得结果与规格极限图比较即可知道是否合格。

电场辐射干扰发射测试(Radiated Emission,RE)

参考规格:MIL-STD-461D/462D,RE102(10kHz~18GHz)

FCC Part 15(30MHz~1GHz)

CISPR Pub 22(30MHz~1GHz)

电场辐射干扰测试目的:测试电子电机、电气和机电设备及其组件所辐射之电磁发射,包括来自所有组件、电缆及连接线上之杂讯发射。它适用于发射机之基本波发射、假电讯发射、振荡器发射及宽频带发射,但不包括天线之辐射发射与交连导线上之电场辐射。

电场辐射干扰测试所需配备:如图9所示,按照待测件之性质,可分为桌上型配备及落地型配备。以CISPR Pub 22之开放空间测试为例,旋转台上木桌高度80公分,天线与待测件距离10m,在1m至4m 间升降天线,同时待测件应在转台上旋转,找出最大辐射点。对不同频率,选择相应之测试天线,以上电场辐射试验亦可在隔离室内进行之。

传导耐受性测试(Conducted Susceptibility,CS)

参考规格:MIL-STD-461D/462D,CS102(10kGHz~10MHz)IEC 1000-4-6(150kHZ~30MHz)

传导耐受性测试:如图10示,以IEC1000-4-6为例,RF电压直接注入电源线或讯号线,试验水准有三种1、3及10V;频率范围是150kHz~80MHz,使用耦合/去耦合网路,可加振幅调变。

电场辐射耐受性测试(Radiated Susceptibility,RS)

参考规格:MIL-STD-461D/462D,RS103(10kHz~18GHz),IEC 1000-4-3(80MHz~1GHz)

电场辐射耐受性测试:如图11 所示,以IEC1000-4-3为例,测试设备对于规定频谱成分和规定强度之电场辐射场之耐受性。RF讯号经由天线辐射RF功率,对试件产生干扰,干扰频率范围在80MHz~1GHz,试验水准分1V/m,3V/m,10V/m;试验方向包括前、后、左、右(上、下),使用无电波反射室(需符合16点均匀场之规定),试件至天线距离3米,可加振幅调变。

电场辐射耐受性测试(横电磁波室法,10kHz~200MHz)

参考规格:ISO 11452-3(10kHz~200MHz)

横电磁波室法电场辐射耐受性测试:以ISO 11452-3为例,如图12所示,使设备尽可能置于接近地电位处,待测件尺寸最好符合三分之一原则,连接线和电源线保持在底板上面4~6cm处。待测件应在它直立位置之两个方向上进行测试,一个方向使设备前面板,沿着横电磁波室长度方向。另一个方向使设备之前面板,对着锥形过渡段方向。设定对待测件耐受性之频率和最小场强或按规定之极限值作耐受性试验,试验频率不应超出正常之工作频率范围。

其他较常用之电磁耐受性测试

静电放电耐受性测试(ESD):参考规格IEC 1000-4-2 (如图13所示静电放电波形),模拟人体所带静电对产品之影响。试验点包括所有接触面(如图14所示),空气放电加至15kV,接触放电加至8kV(含垂直与水平耦合),试验次数分正负极性,至少各放电10次,试验间隔一般约1秒钟,静电放电测试前后要同时监测待测件功能是否正常,以判定是否合格。电性快速暂态耐受性测试(EFT/Burst):参考规格IEC 1000-4-4(如图15所示快速暂态波形),干扰频率为5kHz,试验水准分0·25kV~4kV,杂讯脉冲型式在

5/50ns,试验模式用来干扰电源线与讯号线,杂讯耦合模式可分直接入与电容性线夹,试验方法分正负极性,不同两线接法均可测试测试前后要同时监测待测件功能是否正常,以判定是否合格。

雷击突波耐受性测试(Surge):参考规格IEC 1000-4-5 (如图16所示雷击突波波形),模拟雷击诱导与电感性负载切换,试验水准为 0.5kV~4kV,脉冲型式在 1.2/50us(8/20us),10×700us;试验模式可分电源线与讯号(通讯)线,试验方法包括正负极性、相位,不同两线接法均可测试,测试前后要同时监测待测件功能是否正常,以判定是否合格。

电源频率磁场耐受性测试:参考规格IEC 1000-4-8(如图17之测试架构),模拟电流流经电力线所产生之电源频率磁场,模拟器须提供连续120A与暂态1200A之电流,经诱导线圈注入电流(sinusoid)产生干扰源,试验水准包括1,3,10,30,100A/m;试验方向可分前后、左右、上下;试验环境电磁场至少需低于试验条件20dB以上,试件至诱导线圈距离约为试件直径之1/3,测试前后要同时监测待测件功能是否正常,以判定是否合格。电压瞬降瞬断耐受性测试:参考规格IEC 1000-4-11(如图18之测试架构),模拟电源暂态快速变动与缓慢连续变动,试验模式只有电源线,试验水准包括0%,40%,70%;持续周期可分 0.5,1.5,10,25,50 cycles:侵入电流为100-120V/250A,220-240V/500A等;试验方法包括变动相位范围0~360度,间隔范围3dips/s;电压上升、下降速率范围1~5us等等,测试前后要同时监测待测件功能是否正常,以判定是否合格。电磁相容性测试可以采用人工操作及自动控制操作之方法,由于人工操作在电磁干扰发射(EMI)测试中要手动调谐,随不同频率点校准及鉴别宽、窄频带;在电磁耐受性(EMS)测试中随不同频率点调谐,确定施加讯号强度,人为观察动态,以判定是否合格。因而使得人工操作测试速度慢,重复性差,难以进行实际测量。采用电脑控制之EMI、EMS自动测试系统有测试灵活、误差小与重复性好等优点,而且可以进行即时测试,目前国内业者已经普遍使用。

结语

电磁相容性测试基本上已经在验证产品量产前是否符合电磁相容规范,但是,就笔者之经验,显示顾客层中(包括军规与商规业者)百分之八十五之设计者都在产品研发后期,才来考虑电磁相容设计,这时要作EMI问题的修改,往往捉襟见肘,无法克尽全功。因此,只有在研究新型产品之初期,拟订产品电磁相容设计整体规划书及电磁相容设计指南,才能有系统地整合接地、布线、搭接、滤波、包装与隔离等根本因素,完成符合电磁相容设计之布局。

发展史

电磁兼容最早是在1934年由国际电工委员会(IEC)提出的(当时针对音频广播)。20世60年代,一些技术先进的国家全面展开对电磁兼容的研究,其在世界范围内开始发展。我国的电磁兼容问题在90年代初才被提出,到96年欧共体电磁兼容指令89/336/EEC执行,我国正式对部分行业提出相应EMC标准,电磁兼容迅速升温。1999年12月1日,我国绝大部分行业开始强制执行各自的EMC标准。

电磁兼容三要素

电磁兼容指设备或系统在其电磁环境中能正常工作且不对环境中任何事物构成不能承受的电磁骚扰。简单讲就是设备在同一电磁环境中的干扰与被干扰问题。干扰一般有传导干扰和辐射干扰两种形式。其是与信号频率直接相关的。解决设备的电磁兼容问题应了解电磁兼容的三个要素。即:

1、电磁干扰源

2、传输途径

3、接收机(设备)

针对以上三个要素进行设计都可以有效解决EMC问题,但实际中最可行、有效的方法是切断传输途径和提高接收机性能。

基础性电磁兼容标准

相关主题
文本预览
相关文档 最新文档