当前位置:文档之家› 电动车无刷控制器电路图(高清)..

电动车无刷控制器电路图(高清)..

电动车无刷控制器电路图(高清)..
电动车无刷控制器电路图(高清)..

今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1:

(原文件名:1.gif)

图1:350W整机电路图

整机电路看起来很复杂,我们将其简化成框图再看看:

(原文件名:2.gif)

图2:电路框图

电路大体上可以分成五部分:

一、电源稳压,供应部分;

二、信号输入与预处理部分;

三、智能信号处理,控制部分;

四、驱动控制信号预处理部分;

五、功率驱动开关部分。

下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比

较容易明白。

(原文件名:3.gif)

图3:PIC16F72在控制器中的各引脚应用图

我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。

各引脚应用如下:

1:MCLR复位/烧写高压输入两用口

2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右

3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在3V以上

4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。

5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。

6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。

7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。

8:单片机电源地。

9:单片机外接振荡器输入脚。

10:单片机外接振荡器反馈输出脚。

11:数字输入口:功能开关1

12:数字输入口:功能开关2

13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。

14:数字输入口:功能开关3

15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信

号上面讲过有120°和60°之分,这个角度实际上是这三个信号的电相位之差,1 20°就是和三相电一样,每个相位和前面的相位角相差120°。60°就是相差60°。

18:数字输出口:该口控制一个LED指示灯,大部分厂商都将该指示灯用作故障情况显示,当控制器有重大故障时该指示灯闪烁不同的次数表示不同的故障类型以方便生产、维修。

19:单片机电源地。

20:单片机电源正。上限是5.5V。

21:数字输入口:外部中断输入,当电流由于意外原因突然增大而不在控制范围时,该口有低电平脉冲输入。单片机收到此信号时产生中断,关闭电机的输出,从而保护重要器件不致损坏或故障不再扩大。

22:数字输出口:同步续流控制端,当电流比较大时,该口输出低电平,控制其后逻辑电路,使同步续流功能开启。该功能在后面详细讲解。

23--28:数字输出口:是功率管的逻辑开关,单片机根据电机转子位置传感器的信号,由这里输出三相交流信号控制功率MOSFET开关的导通和关闭,使电机正常运转。

有了智能化的控制中心,就需要有其它电路来为其服务,我们在这里从头开始介绍。

一、电源部分

见图4:

(原文件名:4.gif)

控制器有三组电源,第一组当然是提供总能源的电池,板子上的电解电容C1:1 000μF,63V)C11:47μF,63V及C13,C33:0.1μF63V是退耦用的,用于消除由于电源线、电路板走线所带来的电阻、寄生电感等引起的杂波干扰,由于工作在大

电流、高频率、高温状态下,特别对电解电容有损耗角小、耐高温的要求,普通的电解电容容易发热爆裂。

第二组电源提供12-15V的电压,这组电压主要提供给MOSFET的开通电压,由于场效应管的驱动要求比较特殊,必须有10V以上20V以下的电压才能很好导通,所以必须有合适的电压供给,同时该组电压也为后面5V稳压块提供预稳压。这组电压由LM317提供,输出大约13.5V。由于LM317的输入输出压差不能超过40V,而输入电压可能高达60V,因此在前面加了一个330Ω,2W的电阻,既预先降压,又替317分担了一部分功耗。

第三组电源是5V,由LM78L05提供,由于78L05提供的最大电流只有100mA,所以另并联了两个1.5K的电阻以扩流,同时也分担一部分功耗。在整个系统中,对5V电源的要求比较高,不单单是因为逻辑电路,MCU等的电源电压都不能过高,而且由于MCU的所有AD转换都是以5V电压为基准,所以当5V不准时会出现电流,欠压值,手柄控制等均不能达到设计要求的情况,甚至不能动作,因此该电压的范围应被严格限制在4.90-5.10V之间。

二、信号输入与预处理部分

这部分电路包括电源电压输入、工作电流比较,放大输入、手柄电压输入、电机转子位置传感器的霍尔信号输入、刹车信号输入及各种其它功能开关信号输入等。

1.电源电压输入:由于MCU只接受0-5V的信号,所以电源电压必须经过分压才能输入MCU。

2.工作电流放大、输入:电路如图5

图5:略

U3A是一个放大电路,它将康铜丝R55采样过来的电流信号经过6.5倍放大送入单片机。最早的设计在R23上并联了一个0.1μF的电容组成低通放大器,后来为了更好地实时检测电流,将该电容去掉,这样放大后的电压和电流的实际变化基本一致以便MCU采样值更接近于实际值。

U3B是一个比较器接法,实际也是一个比较器,正常时的电流绝对不会让该比较器翻转,当电流由于某种原因突然增大到一定程度,该比较器翻转从而触发单片机的外部中断,单片机就会完全关闭电机的输出进入保护状态,避免故障进一步扩大。

这里有人会问,为什么放大器的放大倍数取得这么小,如果放大倍数再大一点的话,单片机经过AD转换后的数字相对比较大,分辨率可以做得比较高,何乐而不为呢?这种想法是有道理的,但是限于LM358的频率响应不够高,15KHZ(P WM的工作频率大约为15.6K)的方波经358放大之后变成梯形波了,我们目前对电流峰值的采样应当采取梯形波的上边,如果放大倍数过大,梯形波的上边就

会变得很窄而使单片机采样困难,甚至采样错误,比如采样到梯形波的斜边,因而不能正确反映电流的实际大小,这就会导致电流控制的紊乱。所以宁愿放大倍数取小点以保证采样位置的准确无误。

图6:略

3.手柄输入部分:手柄输出的电压范围在1.2-

4.2V的范围内,经过阻容滤波后输入到单片机处理。手柄需要一个5V的电源才能工作。

图7:略

4.电机转子位置传感器输入部分:由于该传感器安装在电机内部,采用开路输出的办法,所以除提供5V电源外,每个传感器都必须接上拉电阻,并对其输出的信号进行阻容滤波以抗干扰,同时在电源处接二极管、接地采用细铜膜做保险丝,防止电机相线与霍尔信号线短路后高电压反串近来损坏板子上别的零件。

图8:略

5.刹车信号输入:由于刹车信号开关往往和刹车灯共用一个开关,每个厂商的刹车电压也不统一,所以必须接入二极管防止高压串入。高电平输入部分,要做到8-50V输入时都能正常工作。

6.其它功能开关信号比较简单,功能实现均依靠内部程序实现,在硬件中就不一一介绍。

三、智能信号处理,控制部分,上面已经介绍过,不再重复。

四、驱动控制信号预处理部分;

驱动控制信号大致由两种信号合成:PWM信号和相位逻辑开关信号,这里不得不先介绍一下功率开关部分:功率开关部分是由三组半桥开关组成的三相开关,用以改变电机线圈的通电顺序和通电方向,我们一般把与电源正相接的功率管称为上桥,与电源地相接的功率管称为下桥,参考图一,上桥的相位逻辑开关信号由A+、B+、C+提供,这三个控制信号必须与PWM信号合成后控制对应的上桥,下桥的相位逻辑开关信号由A-、B-、C-提供,基本上直接被用来控制下桥的开关。单片机这六个脚上都接了一个2.2K-10K的电阻到地,是为了防止单片机处在复位时,由于这些脚均处于高阻状态,有可能会引入干扰信号而导致后面逻辑电路误动作,这个比较简单,但是我们现在看到控制部分的电路图并非上面所说的那么简单,实际电路中间弯弯绕绕经过了4个逻辑电路处理后才到达上下桥的

驱动电路,许多朋友会问:为什么要如此复杂呢?

其实这些电路都是为了实现一个功能:同步续流。

为什么要同步续流

需要说明一下,这里的“同步续流”,被一些人称为“同步整流”,同步整流是用在电源上的名词,用在这里明显不太合适。

先参考图9

(原文件名:5.gif)

图9:同步续流示意图

假设此时A相上桥和C相下桥通电,当A相上桥PWM占空比没有达到100%时,通过电机线圈的电流是断续的,但上桥关闭的时候,由于电机线圈是一个电感,线圈上必定会出现一个自感反电动势,这个反电动势必须维持线圈电流的方

向不变,由于A相上桥已经关闭,这个电流就会通过原来已经开通的C相下桥,地,A相下桥的续流二极管继续流动,见图6。当总电流小时这个自感电流并不大,但总电流大时,线圈中储存的能量多起来,这个自感电流也会相当大,我们知道MOSFET的续流二极管本身的压降大约在0.7-1V,在通过的自感电流大时,功耗便会相当大,假设自感电流为10A,二极管压降为0.7V时,功耗为7W,显然这个发热量是相当大的,这时下桥便会变得很烫,假如我们此时把下桥打开,让自感电流直接从MOSFET的沟道里走掉(MOSFET导通时电流可以双向流通),再假设MOSFET导通电阻RDSON=10mΩ,10A的时候功耗就变为1W,理论上就可以大大降低下桥的功耗,从而降低温升。但在实际上,由于上下桥在交叉导通时需要一个死区以避免双管直通造成电源短路,这个作用会打一些折扣,不过效果还是很明显。这也是为什么很多产品的下桥会用好一点的管子的原因。

同步续流的实现

1.倒向,截波与死区控制,

电路见图10

图10:倒向,死区发生器.略

单片机产生的PWM占空比信号一路通过与门,经R53,R52,C71截波(缩小占空比)后输出,相位不变,截波量大约为1.5μS,形成PWM信号,此路输出至上桥驱动,与上桥逻辑开关信号相与后驱动上桥MOSFET。另一路经R57和C24,反相器U5A移相,相移量大约750nS,再经U5B反相,形成PWM-信号,最后合成至下桥驱动。此时两个信号输出时相位相同,但PWM-信号占空比比PWM 信号占空比大1.5μS,但由于PWM-信号已经偏移750nS,所以PWM信号刚好套在PWM-信号中间,两边空出750nS作为MOSFET开关的死区。

处理后波形示意图如图11

图11:死区发生器输出波形

(原文件名:6.gif)

2.同步续流的逻辑关系

图12为A相驱动电路的实际电路

(原文件名:7.gif)

图12

因为三相驱动相同,所以我们这里仅以A相为例说明同步续流功能的实现过程当A向的逻辑开关信号“A+”为高电平时,A相上桥被“PWM”信号驱动,在整机电流较小的情况下,PV信号为高电平,不管或非门U3C其它两个输入脚电平如何,其输出总是低,所以此时或非门U2B仅受“A-”信号控制,“A-”信号是下桥的

逻辑开关,它仅在下桥需要导通时置高,平时为低。当整机电流比较大,而PW M占空比小于100%时,由于A相上桥在PWM间隙关断导致电机线圈中出现较大感应电流,感应电流通过另一相的下桥和A相下桥的二极管泄放,为降低该二极管的功耗,此时应将A相下桥MOSFET打开以减小压降,这时单片机将“P V”信号端拉低,在PV信号和反向后的“A+”信号共同作用下,“PWM-”信号通过U 3C传递到U2B,而此时由于“A-”为低,所以U2B受“PWM-”信号控制,在PWM 信号关断的间隙使下桥MOSFET导通。当“A+”信号为低电平时,“PWM-”信号并不影响下桥,保证了下桥的正确逻辑而不会误导通。

五、功率驱动开关部分。

以单独一组A相上下桥驱动为例,见图12

见了这种电路,很多人首先会问:为何上桥的驱动电路如此复杂?

很显然,这么复杂的电路一定有其用途,如果要简单一点话,上桥的功率开关直接用P沟道的MOSFET来做就可以,这样驱动电路会简单很多,但P沟道的功率MOSFET又贵又难买,为了节省成本,只能用N沟道的代替,但N沟道的M OSFET导通时其栅极G的电压必须比源极S高出10V以上才能保证完全导通,这样在上桥导通时,假设电源电压为48V,那么上桥G极的电压就必须比电源电压高12V,也就是大于60V才行。但怎样获得比电源电压还高的驱动电压呢?一般情况可以通过变压器耦合驱动信号,电荷泵升压提供高压等方法,而在这里,则采用了一种叫做“高压浮栅型驱动电路”来驱动上桥。

顾名思义,浮栅驱动的栅极是浮动的,这是一个很形象的描述,我们根据线路图来分析一下栅极是怎样“浮动”起来的

我们先看一下C5的接法,这是整个驱动的关键所在,C5正极通过二极管接到1 3.5V电源(实际在13.5V左右),负极很奇怪地接到电机的相位线,与它所驱动的MOSFET V1的源极接在一起,在电机不动的情况下,所有的MOSFET关闭,此时C5通过二极管D1,电阻R40充电至接近13.5V,当A+和PWM的合成信号使U4A的3脚输出高电平时,q1导通带动t1导通,这样12V多的电压就会加到V1的栅极使V1导通,而V1导通使电源电压加至负载,也就是V1的源极电压会升高至48V,而此时由于C5充满电,C5上的电压仍然是12V,所以可以维持t1的导通并使V1栅极的电压始终保持高于VCC,这样V1的栅极就好像随着源极电压浮动而浮动,所以叫做“浮栅驱动”。这时如果U4A的3脚一直维持高电平的话,在电容k1和MOSFET本身GS间电容充饱电之后,C5上的储存的电荷主要通过t1的BE结,电阻a1到三极管q1放电(由于此时二

极管D7处于正偏状态,所以t2的BE结反偏而截止,因此t2并不参与放电),如果C5足够大,那么可以在相当长的一段时间内保证V1的驱动电压在合理的范围内。这里b1放在q1的射极上组成一个近似恒流的驱动电路,用以保证在C 5正极电压升得很高时,通过三极管q1的放电电流不致过大而导致电容很快放完。当U4A的3脚输出低电平时,q1,t1迅速关闭,t2开始导通,将k1和栅极本身积累的电荷迅速泄放,V1被关闭,而此时由于另两组中的一组之下桥维持在导通状态,电容C5就会通过电机绕组和该下桥迅速充电补充电能,为下一个周期做准备。

从上面的过程可以看出,电容C5的充电量应该是越大越好,但电容大了,可能二极管来不及给电容充电,电容小了,又不能保证导通时间,所以这种驱动不能使V1长时间维持在导通状态,这也是为什么PWM信号要耦合到上桥的一个原因。

其次对于这个驱动电路有人还会产生一个疑问:按理说用作功率开关的MOSFE T,为了减少开关损耗,应尽量避免MOSFET工作在放大状态,按照这个原则,驱动MOSFET的电平应该是快速上升、快速下降,而且这个速度是越快越好,但此电路中增加了电阻e1、e2,电容k1、k2,这四个元件在这里的作用显然有悖于快升快降的原则,实际上这四个零件在电路中的作用也确实是有意减慢MO SFET的开启速度,使驱动MOSFET的电压波形上升沿没那么陡峭,为什么要这样做呢?

这个要从MOSFET的结构来看,MOSFET本身各极之间存在极间电容,这个电容被称为密勒电容。而我们现在这种上下桥类似推挽结构的电路,上桥导通时,由于下桥漏极的电压急剧升高,这种电压变化会通过下桥的密勒电容传递给下桥的栅极,我们把上桥导通时下桥漏极电压升高的速度以Δv/Δt表示,当Δv/Δt足够大时,传递给下桥栅极的电荷便会积蓄到足以使下桥导通的地步,这样就会导致上下桥直接将电源短路,而解决这个问题最简单的办法,就是让上下桥开通的速度不要那么快,所以加上阻容延时,并且这里的k1,k2还有吸收部分冲击电压的功效,这里就不多做描述了。

电动车充电器电路图及维修方法

电动车充电器电路图及维修方法 充电器常见的故障有三大类:高压故障;低压故障;高压、低压均有故障。 1、高压故障的主要现象就是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿,R25开路。U1的7脚对地短路。R5开路,U1无启动电压,更换以上元件即可修复。 2、若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。应重点检测Q1与T1的引脚就是否有虚焊。若连续击穿Q1,且Q1不发烫,一般就是D2,C4失效,若就是Q1击穿且发烫,一般就是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1的开关损耗与发热量大增,导致Q1过热烧毁。高压故障的其她现象有指示灯闪烁,输出电压偏低且不稳定,一般就是T1的引脚有虚焊,或者D 3、R12开路,TL3842及其外围电路无工作电源。 3、另有一种罕见的高压故障就是输出电压偏高到120V以上,一般就是U2失效,R13开路所致或U3击穿使U1的2脚电压拉低,6脚送出超宽脉冲。此时不能长时间通电,否则将严重烧毁低压电路。低压故障大部分就是充电器与电池正负极接反,导致R27烧断、LM358击穿。其现象就是红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复。

4、另外W2因抖动,输出电压漂移,若输出电压偏高,电池会过充,严重失水,发烫,最终导致热失控,充爆电池。若输出电压偏低,会导致电池欠充。高低压电路均有故障时,通电前应首先全面检测所有的二极管、三极管、光耦合器4N3 5、场效应管、电解电容、集成电路、R25、R5、R12、R27,尤其就是D4(16A60V,快恢复二极管),C10(63V,470UF)。避免盲目通电使故障范围进一步扩大。有一部分充电器输出端具有防反接、防短路等特殊功能。其实就就是输出端多加一个继电器,在反接,短路的情况下继电器不工作,充电器无电压输出。还有一部分充电器也具有防反接、防短路的功能,其原理与前面介绍的不同,其低压电路的启动电压由被充电池提供,且接有一个二极管(防反接)。待电源正常启动后,就由充电器提供低压工作电源。 第二种充电器的控制芯片一般就是以TL494为核心,推动2只13007高压三极管。配合LM324(4运算放大器),实现三阶段充电。 5、220V交流电经D1-D4整流,C5滤波得到300V左右直流电。此电压给C4充电,经TF1高压绕组,TF2主绕组,V2等形成启动电流。TF2反馈绕组产生感应电压,使V1,V2轮流导通。因此在TF1低压供电绕组产生电压,经D9、D10整流、C8滤波,给TL494、LM324、V3、V4等供电。此时输出电压较低。TL494启动后其

电动车无刷控制器电路图高清

今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: (原文件名:1.gif) 图1:350W整机电路图 整机电路看起来很复杂,我们将其简化成框图再看看: (原文件名:2.gif) 图2:电路框图

电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比较容易明白。

(原文件名:3.gif) 图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制P WM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信号上面讲过有120°和60°之分,这个角度实际上是这三个信号的电相位之差,120°就是和三相电一样,每个相位和前面的相位角相差120°。60°就是相差60°。 18:数字输出口:该口控制一个LED指示灯,大部分厂商都将该指示灯用作故障情况显示,当控制器有重大故障时该指示灯闪烁不同的次数表示不同的故障类型以方便生产、维修。 19:单片机电源地。 20:单片机电源正。上限是5.5V。

通用电动自行车充电器电路分析及维修图文教程(3842芯片).

通用电动自行车充电器电路分析及其维修(3842芯片) 作者:MAX232 QQ:44473047 时间:2012年7月30日 一、电路分析 首先AC220电压经由保险丝,NTC和EMI滤波整流滤波变换的300V左右的直流电压,经启动电阻提供给3842(7脚)初始工作电压,驱动MOS管开关动作,开关变压器在MOS管的开关作用下,会不断的储存->释放,而使输出绕组感应到的电能经过整流滤波输出的直流电压,通过采样到431或运放控制光耦把信号反馈至3842的1脚或2脚,控制3842的输出(6脚)的占空比,以达到稳定的输出电压值。 (1)3842稳定工作的条件: 1. 起始的工作电压,由启动电阻从300V降压得到; 2. 8脚有输出稳定的5v基准电压,内部振荡电路才会工作。 3. 6脚输出驱动MOS管打开后,3脚检测到的电流反馈电压 没有超过1V。 4. 原边供电是否在下一个周期工作开始前提供到3842的7 脚,否则由启动电阻提供过来的电能已经不能维持3842工 作了。 (2)输出电压保持稳定的条件: 1. 副边绕组是否感应到电能。 2. 副边整理和滤波器件是不是都完好。

3. 采样电阻以及431,是否完好。 4. 光耦是否完好工作。 5. 3842是否接收到光耦的信号,确定信号没有在进入3842芯片前被阻断或过滤了。 充电器高压部分故障的修理流程 1、元件检测: 高压直流二极管(4007,5399,5408)或者全桥。 高压大电容,简称“一大电容”,450v68uf。 3842的7脚供电电容,简称“高压小电容”。35v100uf

场效应管(mos管,比如6N60,7N80,10N90,K1358,,,,,,,,) 低压部分的主整流管1660,uf5408,FR307,,,,,,,,,,,,,,,,,,, 低压部分的主滤波电容,(63v470uf)简称“二大电容”。 低压部分的辅助电源滤波电容,(63v470uf) 输出电流取样电阻(3w0.1欧姆) 光耦(pc817,4n35,,)用ws-3可以快速准确检测。没有ws-3就 用二极管档测量光耦低压侧的参数,应该是一个发光二极管的参数。光耦高压侧的参数基本上查不到,但也不能短路 2、拆掉损坏的零件,(3842,7n80,以及3w0.5欧姆,10欧姆,1k,等等,具体位置请看原理图红色标注)焊上保险管。(或者串联 220v40w灯泡)。 3、安装“基础”零件 更换高压整流二极管,一律用5399代替。4只全部换新。高 压部分电流取样电阻R1(用3w1欧姆或者3w0.5欧姆),驱动电阻 R2 (1/4W,10欧姆),R3(1/4W 1k),下拉电阻R4(1/4W 10k),下偏电 阻R5(1/4W 1k)。若原装各电阻与本图有出入的,一律以本图为准(以不变应万变) 4、接通保护电,(串联灯泡,后文字相同处理)

电动自行车控制器电路及原理大全

电动自行车控制器电路及原理大全 目前流行的电动自行车、电动摩托车大都使用直流电机,对直流电机调速的控制器有很多种类。电动车控制器核心是脉宽调制(PWM)器,而一款完善的控制器,还应具有电瓶欠压保护、电机过流保护、刹车断电、电量显示等功能。 电动车控制器以功率大小可分为大功率、中功率、小功率三类。电动自行车使用小功率的,货运三轮车和电摩托要使用中功率和大功率的。从配合电机分,可分为有刷、无刷两大类。关于无刷控制器,受目前的技术和成本制约,损坏率较高。笔者认为,无刷控制器维修应以生产厂商为主。而应用较多的有刷控制器,是完全可以用同类控制器进行直接代换或维修的。 本文分别介绍国内部分具有代表性的电动自行车控制器整机电路,并指出与其他产品的不同之处及其特点。所列电路均是根据实物进行测绘所得,图中元件号为笔者所标。通过介绍具体实例,达到举一反三的目的。 1.有刷控制器实例 (1)山东某牌带电量显示有刷控制器 电路方框图见图1。 1)电路原理 电路原理图见图2所示,该控制器由稳压电源电路、PWM产生电路、电机驱动电路、蓄电池放电指示

电路、电机过流及蓄电池过放电保护电路等组成。 稳压电源由V3(TL431),Q3等元件组成,从36V蓄电池经过串联稳压后得到+12V电压,给控制电路供电,调节VR6可校准+12V电源。 PWM电路以脉宽调制器TL494为核心组成。R3、C4与内部电路产生振荡,频率大约为12kHz。 H是高变低型霍尔速度控制转把,由松开到旋紧时,其输出端可得到4V—1V的电压。该电压加到TL494的②脚,与①脚电压进行比较,在⑧脚得到调宽脉冲。②脚电压越低,⑧脚输出的调宽脉冲的低电平部分越宽,电机转速越高,电位器VR2用于零速调节,调节VR2使转把松开时电机停转再过一点。 电机驱动电路由Q1、Q2、Q4等元件组成。电机MOTOR为永磁直流有刷电机。TL494的⑧脚输出的调宽脉冲,经Q1反相放大驱动VDMOS管Q2。TL494的⑧脚输出的调宽脉冲低电平部分越宽,则Q2导通时间越长,电机转速越高。D1是电机续流二极管,防止Q2击穿。TL494的⑧脚输出低电平时,Q1、D2导通,Q4截止,Q2导通;TL494的⑧脚输出高电平时,Q1、D2截止,Q4导通,迅速将Q2栅极电荷泄放,加速Q2的截止过程,对降低Q2温度有十分重要的作用。 蓄电池放电指示电路由LM324组成四个比较器,12V由R24、VR1、VR4、VR3、VR5、R21分压形成四个不同基准电压分别加到四个比较器的反相端。蓄电池电压经R23和R22分压加到每个比较器的同相端,该电压和蓄电池电压成比例。V A=VB*R22/(R22+R23)。当蓄电池电压不低于38V时,LED1、LED2、LED3均点亮;当电池电压低于38V时,LED3熄灭;当电池电压低于35V时,LED2熄灭;当电池电压低于33V时,LED1熄灭,此时应给电池充电。调节VR1、VR4、VR3可分别设定LED3、LED2、LED1熄灭时的电压。LED4用作电源指示,LED5用作欠压切断控制器输出指示。 蓄电池过放电保护当蓄电池放电到31.5V时.LM324的①脚输出低电平,三极管Q5导通,约5V电压加到TL494的死区控制端④脚.该脚电位≥3.5V,就会迫使TL494内部调宽脉冲输出管截止,从而使三极管Q1、Q2截止,电机停止运转,蓄电池放电停止,进入电池保护状态。此时LED5点亮,指示出该状态。VR5用于设定电池保护点电压。 电机过流保护R30为电机电流取样电阻,当过流时,取样电压经R14加到TL494的⑩脚。当⑩脚电位高于⑩脚电位时,TL494内部运放2输出高电平,迫使TL494内部调宽脉冲输出管截止,从而使Q1、Q2截止,电机停止运转,从而保护了电机。 制动保护当刹车制动时,KEY2接通.5V电压加到TL494的死区控制端④脚,迫使TL494内部调宽脉

电动车控制器接线说明

电动车控制器接线说明 高标智能无刷电动车控制器接线说明如下: 1.电源输入 粗红色线为电源正端,黑色线为电源负端,细橙色线为电门锁2.电机相位(A、B、C输出) 粗黄色线为A ,粗绿色线为B ,粗蓝色线为C 3.转把信号输入 细红色线为+5V电源细绿色为手柄信号输入细黑色线为接地线 4.电机霍耳(A、B、C输入)

细红色线为+5V电源细黑色线为接地线。细黄色线为 A ,细绿色线为 B,细蓝色线为 C 5.刹车 细黄色线为机械刹(高电平刹车:+12V),细棕色线为接地线(低电平刹车) 6.转把线 细红色线为转把+5V电源,细黑色线为转把接地线,细绿色线为转把信号输入 7.仪表:细绿色线 8.三档开关: 细白色线高速转换,细黑色线地线,细黄色线高速转换/轻触按钮 9.限速:细灰色线 10.自学习开关线:细灰 高标智能型无刷电动车控制器使用方法和注意事项: 1、在接线前先切断电源,按接线图所示连接各根导线; 2、高标控制器虽然防水、抗震,但控制器做好还是安装在通风、防水、防震部位。 3、控制器限速控制插头应放置容易操作的地方。 4、控制器接插件应接插到位,禁止将控制器电源正负极反接(即严禁粗红、细橙和粗黑;细红和细黑接反)。 5、电机模式自动识别:正确接好电动车控制器的电源、转把、刹把等线束,,将电机识别模式开关线(细灰)短接,打开电门锁,使电机进入自动识别状态,若电机反转则按一下刹车即可使电机正向转动,在控制器识别电机模式10秒后将电机识别模式开关线(细灰)直接断开即可完成电机模式自动识别。 6、1+1助力方向调整:在通电状态,将调速电阻从最大值调到最小值,再回到原始状态后,可将1+1助力的方向从正向模式切换到反向模式,再调整一次可从反向模式切换到正向模式,并将最终的模式存入单片机。

电动车快速充电器电路图

电动车快速充电器电路图 笔者经反复试验,制作了一款可靠的电动自行车充电器,电路如附图所示。 电动车快速充电器电路 一、电路特点: 1.输出电压设定好后(例如36V),若被充电瓶极板脱落断开,造成某组电池不通,或出现短路,则电瓶端电压即降低或为零,这时充电器将无输出电流。 2.若被充电瓶电压偏离设定电压,如设定电压为36V,误接24V、12V、6V电瓶等,充电器也无输出电流,若设定为24V误接为36V电瓶,由于充电器输出电压低于电瓶电压,因而也不能向电瓶充电。 3.充电器两输出端若短路时,由于充电器中可控硅SCR的触发电路不能工作,因而可控硅不导通,输出电流为零。 4.若使用时误将电瓶正负极接反,则可控硅触发电路反向截止,无触发信号,可控硅不导通,输出电流为零。 5.采用脉冲充电,有利于延长电瓶寿命。由于低压交流电经全波整流后是脉动直流,只有当其波峰电压大于电瓶电压时,可控硅才会导通,而当脉动直流电压处于波谷区时,可控硅反偏截止,停止向电瓶充电,因而流过电瓶的是脉动直流电。 6.快速充电,充满自停。由于刚开始充电时电瓶两端电压较低,因而充电电流较大。当电瓶即将充足时(36V电瓶端电压可达44V),由于充电电压越来越接近脉动直流输出电压的

波峰值,则充电电流也会越来越小,自动变为涓流充电。当电瓶两端电压被充到整流输出的波峰最大值时,充电过程停止。经试验,三节电动车蓄电池36V(12V/12Ah三节串联),用该充电器只需几个小时即可充满。 7.电路简单、易于制作,几乎不用维护及维修。 二、电路原理: AC220V市电经变压器T1降压,经D1-D4全波整流后,供给充电电路工作。当输出端按正确极性接入设定的被充电瓶后,若整流输出脉动电压的每个半波峰值超过电瓶的输出电压,则可控硅SCR经Q的集电极电流触发导通,电流经可控硅给电瓶充电。脉动电压接近电瓶电压时,可控硅关断,停止充电。调节R4,可调节晶体管Q的导通电压,一般可将 R4由大到小调整到Q导通能触发可控硅(导通)即可。图中发光管D5用作电源指示,而D6用作充电指示。 三、元件选择: 电源变压器可用BK200型控制变压器,输出电压用36V挡,亦可用4090型200V环形变压器,选次级电压为22Vx2或20V×2挡串联使用。笔者使用的4090型环变,其次级电压为24Vx2、12Vx2、0-6-23V三组,若将其24Vx2挡串联(48V),则输出电压太高,充电电流过大(给36V电动车蓄电池充电时,串上电流表测量平均充电电流约为1.5-1.8A,此为平均值,这时的峰值电流可达5-7A以上),为降低变压器输出电压,将其余的12V×2和O-6V两组线圈顺向串接于初级线圈中,使次级输出电压降低为空载40V,满载(平均充电电流为1.2A时)为36V,可满足使用。由于4090型环形变压器市售价格仅为23元左右.可以降低制作成本。爱好者也可自行绕制变压器。 另外,电路中整流全桥D1-D4可选用8-10A方形全桥,中间有一圆形安装孔,可安装在铝板上以便散热。可控硅可用1OA/100V金封单向可控硅,将其同整流桥用螺母固定在同一散热铝板上。触发三极管Q的参数为Vceo≥60V,IM=1A,可选用2SB536、B564、B1008、B1015或2SA*、A720等管子。R6用作限流保护作用,若变压器次级输出电压合适,充电电流(平均值)不超过1.5A,该电阻亦可省去不用。 该充电器若用于其他电压的蓄电池充电(如24V、12V等),则可选取变压器的次级输出

超静音智能型无刷电动车控制器接线说明

、超静音智能型无刷电动车控制器接线说明: 1、电源线为6.3-3AY三根线,红,红,黑。接48v电压。 2、电机线为黄,绿,蓝三根线,一般情况是相应的颜色接相应的线,如果转的声音很大,可以把这三根线调换位置接一下。 3、霍尔信号线为2.8-6AY五根线,一般情况是相应的颜色接相应的线。红,黑,黄,绿,蓝。 4、反相充电为2.8-2AY二根线,红,黑。 5、调速线为sm-3AY三根线,红,黑,灰。 6、1:1助力线为sm-3AY三根线,红,黑,绿。 8、刹车线为sm-2AY二根线,黑,紫。 7、巡航线相当于转把线sm-2AY二根线,红,黑。 9、限速线为二根单独的白色线,当把这二根线接上时,无论转把转的位置多大,速度也不会变快,保持一定速度。 10、 ABS为二根单独的绿色线,当把这二根线接上时,按下刹车,电动自行车的电机马上停转,如果不接,滑行时按下刹车,由于惯性,会向前滑行一段距离。 首先电动车要转起来,基本的连线就是电机相线(三根线:黄、绿、蓝)接上控制相线(三根线:黄、绿、蓝)、电机霍尔线(五根线:红、黑、黄、绿、蓝)接上控制器霍尔线(五根线:红、黑、黄、绿、蓝),电池(两根线加AAC线:红、红、黑)接上控制器的电源端子(两根线加AAC线:红、红、黑),调速把接控制器的调速端子,接好这四个基本连线(还要考虑相序问题),就可以转起来了。 另外还有助力线(三根:红、黑、白),限速端子等。其他的功能线可以通过合端子分辩出来。深圳市士金技术的电动车检修匹配仪可以用来检修和帮助接线。1分20秒可以从36种接法中选出最佳接线方式。 中国惯用(通用)的颜色:主电源线黑色-负极,红色+正极(最粗的那两根根)比这两根稍稍细点的一般是充电线路,注意红黑不能接错,不然严重的烧毁车子,运气好的话烧毁线路。粗点,硬的三根线(一般为黄蓝绿三色)是电机线,作用是相位线,可以随便接,主要是转的方向要注意,不然就有了倒车功能了呵呵,和这三根线在一起的是五根小线,红黑在上面两个是电源线不能接反颜色要一致,下面三根黄蓝绿是信号线(也叫:霍尔线)可以随便接,原理与三根电机线一样。其他的线路要通过万用表测量,分别是:喇叭,大灯,转向灯,尾灯,刹车灯,有些带助力的还有助力线。颜色各个厂家采用的不一样,只有通过万用表测。 无刷电动车控制器接线说明 1.电源输入 粗红色线为电源正端黑色线为电源负端细橙色线为电门锁

电动车控制器接线图详解

电动车控制器接线图详解 首先确定电源正负极,和电门锁线:方法是先把万用表打直流档上,再把万用表的负极[黑线]接在电池的负极上[地线] 然后用万用表的正极[红线]一个 一个量,有电压的是正极[稍微比电源电压高点]、无电压的是负极,这里说明一下,有电源是三根线,其中那跟是电门锁线,这根线的特点是,打开钥匙和电源电压一样,关上钥匙没电压。 其次关上钥匙连接电源线和电门锁线这三根线:控制器电源线粗红色的是正极,粗黑色的是负极。接好后打开钥匙,再量量电源电压和电门锁线的电压是不是正常,然后在分别量转把线的电源电压5V左右[红黑线],霍尔线的电源电压5V左右[红黑线][别忘了万用表打到直流档上]。 第三各个电压正常对接白色学习线:若反转拔开在对接一次,电机正转后拔开学习线。接转把线,一般按颜色接就可能了,若还不可以有可能转把坏掉了,那么拔掉转把线,直接连接控制器转把线的红线和绿线。电机正常转,证明转把有问,换个转把。 第四电机正常转后,刹车断电线,霍尔线,仪表线等等。 第五控制器的每根线是什么意思可以看产介绍里面图示说明。(下图为高标电动车控制器的线路图)

第六电车上各个线什么意思的确定方法:顺着电机找到电机3根相位线5 根霍尔线,拆下转把找到3根转把线,拆掉刹把可以找到2根刹车线。拆开电瓶可以看到“+”电源正极“-”电源负极。总的来说按大件找,按大件安装,最容易理解最准确。 第七若电机还不正常转有可能霍尔坏了,测试霍尔好坏的方法:整车上带电检测,先把各线路及接插件都接好,把万用表拔到直流电压20V档位,先确认控制器有5V电源输出,再用黑表笔接在霍尔的地线,红表笔分别接三根信号线,在量的同时,用手轻轻转动电机,霍尔正常时,万用表会0V--5V的脉冲电压的数据显示,如果测某只霍尔时没有脉冲电压,则这只霍尔就坏了,[这种情况也可以用指针式万用表检测,指针在0V--5V之间摆动,霍尔是好的;如果指针不摆动,霍尔是坏的]用这种方法是最为可靠的方法,前提是带电操作。

电动车充电器原理(图少)

电动车充电器原理及维修 常用电动车充电器根据电路结构可大致分为两种。 第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见图表1 工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第

无刷电动车控制器接线方法

无刷电动车控制器接线方法

无刷电动车控制器接线说明 1.电源输入 粗红色线为电源正端黑色线为电源负端细橙色线为电门锁 2.电机相位(u、v、w输出)

粗黄色线为U 粗绿色线为V 粗蓝色线为W 3.转把信号输入 细红色线为+5V电源细绿色为手柄信号输入细黑色线为接地线 4.电机霍耳(A、B、C输入) 细红色线为+5V电源细黑色线为接地线 细黄色线为 A 细绿色线为 B 细蓝色线为 C 5.刹车(柔性EABS+机械刹) 细黄色线为柔性EABS;细蓝色线为机械刹(高电平刹车:+12V)细黑色线为接地线(低电平刹车) 6.传感器 细红色线为+5V电源细黑色线为接地线细绿色线为传感器信号输入7.仪表(转速):细紫色线 8.巡航:细棕色线 9.限速:细灰色线 10.自动识别开关线:细黄色线 PIC16F72智能型无刷电动车控制器使用方法和注意事项 1、在接线前先切断电源,按接线图所示连接各根导线; 2、该控制器应安装在通风、防水、防震部位。 3、控制器限速控制插头应放置容易操作的地方。 4、控制器接插件应接插到位,禁止将控制器电源正负极反接(即严禁粗红、细橙和粗黑;细红和细黑接反)。 5、电机模式自动识别:正确接好电动车控制器的电源、转把、刹把等线束,,将电机识别模式开关线(细黄)短接,打开电门锁,使电机进入自动识别状态,若电机反转则按一下刹车即可使电机正向转动,在控制器识别电机模式10秒后将电机识别模式开关线(细黄)直接断开即可完成电机模式自动识别。 6、1+1助力方向调整:在通电状态,将调速电阻从最大值调到最小值,再回到原始状态后,可将1+1助力的方向从正向模式切换到反向模式,再调整一次可从反向模式切换到正向模式,并将最终的模式存入单片机。 更多关于电动车维修请点击下面的链接 电动车整车电气原理图 电动机车故障维修手册 电动车检测仪制作 电动车综合检测仪制作 电动车故障维修资料 电动车三合一喇叭接线图 电动车电机霍尔更换图解 电动车维修 电动车维修技术 电动车故障维修 无刷电机相角的判断 无刷电机的接线方法 电动车报警器(防盗器)的接法

电动车控制器怎么判断好坏电动车控制器接线图介绍

电动车控制器怎么判断好坏电动车控制器接线图介绍 时间:2017/1/3 16:48:00 人气:4737 编辑:腾牛小编 分享到: 标签:电动车 导读:在日常生活中,很多人喜欢骑电动车出行。电动车的使用寿命与电动车的控制器有关,那么电动车控制器怎么判断好坏下面小编将为大家介绍电动车控制器接线图,希望对大家有帮助! 电动车是常用的交通工具,方便快捷。很多人喜欢使用,电动车的使用寿命与电动车的控制器有关。那么电动车控制器怎么判断好坏电动车控制器多少钱一只下面小编为大家介绍电动车控制器接线图,希望对大家有用!

仔细观察做工 一个控制器的做工体现一个公司实力,同等条件下,作坊控制器肯定不如大公司的产品;手工焊接的产品肯定不如波峰焊下来的产品;外观精致的控制器好过不注重外观的产品;导线用得粗的控制器好过导线偷工减料的控制器;散热器重的控制器好过散热器轻的控制器等等,在用料和工艺上有所追求的公司相对可信度高,对比就能看得出来。 对比温升 用新送来的控制器和原来使用的控制器进行同等条件下堵转发热试验,两个控制器都拆掉散热器,用一辆车,撑起脚,先转动转把达到最高速,立即刹车,不要刹死,免得控制器进入堵转保护,在极低速度下维持5秒钟,松开刹车,迅速达到最高速,再刹车,反复同样的操作,比如30次,检测散热器最高温度点。 拿两个控制器的数据对比,温度越低越好。试验条件应该保证相同的限流,相同的电池容量,同一辆车,同样从冷车开始测试,保持相同的刹车力度和时间。试验结束时应检查固定MOS的螺丝松紧程度,松得越多表明使用的绝缘塑料粒子耐温性越差,在长期使用中,这将导致MOS提前因发热而损坏。再装上散热器,重复上述试验,对比散热器温度,这可以考察控制器的散热设计。 观察反压控制能力 选取一辆车,功率可以大一点,拔掉电池,选用充电器为电动车供电,接上E-ABS使能端子,确保刹把开关接触良好。慢慢转动转把,太快了充电器无法输出很大的电流,会引起欠压,让电机达到最高速,快速刹车,反复多次,不应出现MOS损坏现象。在刹车时,充电器输出端的电压会快速上升,考验控制器的瞬间限压能力,此试验如果用电池测试基本没有效果。

电动车智能无刷控制器接线图

电动车智能无刷控制器接线图 下图所示为高标科技动控制器接线图: 一、高标科技电动车控制器接线说明: 1.电源输入: 2.粗红色线为电源正端,黑色线为电源负端,细橙色线为电门锁。 3.2.电机相位(u、v、w输出): 4.粗黄色线为U,粗绿色线为V ,粗蓝色线为W。 5.3.转把信号输入: 6.细红色线为+5V电源,细绿色为手柄信号输入,细黑色线为接地线。 7.4.电机霍耳(A、B、C输入): 8.细红色线为+5V电源,细黑色线为接地线。细黄色线为 A,细绿色线为 B,细蓝色线为 C。 9.5.刹车(柔性EABS+机械刹): 10.细黄色线为柔性EABS,细蓝色线为机械刹(高电平刹车:+12V),细黑色线为接地线(低电平刹车)。 11.6.传感器 : 细红色线为+5V电源,细黑色线为接地线, 细绿色线为传感器信号输入。 12.7.仪表(转速):细紫色线 13.8.巡航:细棕色线 14.9.限速:细灰色线?? 15.10.自动识别开关线:细黄色线?? 二、高标科技电动车控制器如何接线: 分清楚每根线的作用,给控制供电的电源线(一般三根线用一个朔料插销弄在一起,其中最粗的两根是给控制器供电的、红+级、黑的-级,还一根细的红色的是电源锁线) 2.转把(控制速度的),一般是三根细线、红、蓝、黑。也是用朔料插销弄在一起的。

3.仪表线、速度线、刹车断电线。一般仪表线和刹车断电线也是在一起的。 4.还有两个线,它们可以互相连接在一起的,那可以调节角度。(60度和120度) 5.三跟主相线,5跟细的(和电机里面霍尔连接的) 一、高标科技电动车控制器接线说明: 16.电源输入: 17.粗红色线为电源正端,黑色线为电源负端,细橙色线为电门锁。 18.2.电机相位(u、v、w输出): 19.粗黄色线为U,粗绿色线为V ,粗蓝色线为W。 20.3.转把信号输入: 21.细红色线为+5V电源,细绿色为手柄信号输入,细黑色线为接地线。 22.4.电机霍耳(A、B、C输入): 23.细红色线为+5V电源,细黑色线为接地线。细黄色线为 A,细绿色线为 B,细蓝色线为 C。 24.5.刹车(柔性EABS+机械刹): 25.细黄色线为柔性EABS,细蓝色线为机械刹(高电平刹车:+12V),细黑色线为接地线(低电平刹车)。 26.6.传感器 : 细红色线为+5V电源,细黑色线为接地线, 细绿色线为传感器信号输入。 27.7.仪表(转速):细紫色线 28.8.巡航:细棕色线 29.9.限速:细灰色线?? 30.10.自动识别开关线:细黄色线?? 二、高标科技电动车控制器如何接线: 1.分清楚每根线的作用,给控制供电的电源线(一般三根线用一个朔料插销弄在一起,其中最粗的两根是给控制器供电的、红+级、黑的-级,还一根细的红色的是电源锁线)

电动车充电器原理及维修36

赵海MJE13001 1A VCEO≥400V VCBO≥600V 10~40 (Ic=0.1A,VCE=10V) TO-126 MJE13002 1.2A VCEO≥400V VCBO≥600V 10~40 (Ic=0.1A,VCE=10V) TO-126 MJE13003 1.5A VCEO≥400V VCBO≥600V 10~40 13005 8A 13007 4A 13009 12A 电动车充电器原理及维修 常用电动车充电器根据电路结构可大致分为两种。 第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见图表1

图表1 工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤

电动车无刷控制器电机线和霍尔线常规接法

针对目前控制器普通版本和标准版本需要对相序给出常规接法(本公司智能自学习版本无需对相序),无刷电机为3相6拍控制,因此3根霍尔状态对应3根电机线6种输出状态,不同组合有36种接法,其中有6种接法能让电机运转正常,且这6种接法里有3种接法是正转另3种接法是反转。所以我们有必要掌握接线规则。 一:首先我们得让电机正常转起来,通常是霍尔插头直接插上,调整电机线。以下给出6种规律接法,必定有1种能让电机运转正常 1》电机线蓝色对控制器蓝色电机线绿色对控制器绿色电机线黄色对控制器黄色 2》电机线蓝色对控制器蓝色电机线绿色对控制器黄色电机线黄色对控制器绿色 3》电机线黄色对控制器黄色电机线蓝色对控制器绿色电机线绿色对控制器蓝色 4》电机线绿色对控制器绿色电机线蓝色对控制器黄色电机线黄色对控制器蓝色 5》电机线蓝色对控制器黄色电机线黄色对控制器绿色电机线绿色对控制器蓝色 6》电机线黄色对控制器蓝色电机线蓝色对控制器绿色电机线绿色对控制器黄色 总结以上规律我们可以编出一套顺口溜方便记忆 一般控制器是放在上方的,电机是放在下方的,我们可以这么记忆 1》颜色对颜色 2》蓝对蓝,其它2色对调 3》黄对黄,其它2色对调 4》绿对绿,其它2色对调 5》上蓝对下蓝,其它2色对调 6》上黄对下蓝,其它2色对调 霍尔有正有反,说明该电机是60°相位角,没有正反就是120°相位角。你可按原样放入(可稍稍用502瞬间胶固定)将三个霍尔的正极和负极分别并联后与电机引出线中细的红、黑线相连焊接(注意绝缘)将三个霍尔的信号线分别与电机引出线中细的黄、绿,蓝线相连焊接(注意绝缘)。 二:以上接法能让电机运转正常,但不一定是正转,如果你要调成正转可将电机线A相C相对调,霍尔线A相B相对调。 无刷电机相角的判断 无刷电机的相角是无刷电机的相位代数角的简称,指无刷电机各线圈在一个通电周期里面线圈内部电流方向改变的角度。电动车用无刷电机常见的相位代数角有120°与60°两种。 □观察霍耳元件安装空间位置判断无刷电机的相角 120°和60°两种相角电机的霍耳元件安装空间位置不一样。 □测量霍耳真值信号判断无刷电机的相角 在此需要先说明一下的是什么叫无刷电机的磁拉力角.无刷电机的磁钢数量

电瓶车充电器电路图及原理

电瓶车充电器电路图及原理(上) 根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。也就是说,充电器输出最大达到43V/3A/129W,已经可满足。在充电过程中,充电电流还将逐渐降低。以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼。 目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为MC3842。MC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。尤其是MC3842可直接驱动MOS FET管的特点,可以使充电器的可靠性大幅提高。由于MC3842的应用极广,本文只介绍其特点。 MC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。MC3842的同类产品较多,其中可互换的有UC3842、IR3842N、SG3842、

CM3842(国产)、LM3842等。MC3842内部方框图见图1。其特点如下:单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。 启动电压大于16V,启动电流仅1mA即可进入工作状态。进入工作状态后,工作电压在10~34V之间,负载电流为15mA。超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。 内设5V/50mA基准电压源,经2:1分压作为取样基准电压。 输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。若驱动双极型晶体管,宜在开关管的基极接入RC截止加速电路,同时将振荡器的频率限制在40kHz以下。若驱动MOS场效应管,振荡频率由外接RC电路设定,工作频率最高可达500kHz。 内设过流保护输入(第3脚)和误差放大输入(第1脚)两个脉冲调制(PWM)控制端。误差放大器输入端构成主脉宽调制(PWM)控制系统,过流检测输入可对脉冲进行逐个控制,直接控制每个周期的脉宽,使输出电压调整率达到0.01%/V。如果第3脚电压大于1V或第1脚电压小于1V,脉宽调制比较器输出高电平使锁存器复位,直到下一个脉冲到来时才重新置位。如果利用第1、3脚的电平关系,在外电路控制锁存器的开/闭,使锁存器每个周期只输出一次触发脉冲,无疑使电路的抗干扰性增强,开关管不会误触发,可靠性将得以提高。 内部振荡器的频率由第4、8脚外接电阻和电容器设定。同时,内部基准电压通过第4脚引入外同步。第4、8脚外接电阻、电容器构成定时电路,电容器的充/放电过程构成一个振荡周期。当电阻的设定值大于5kΩ时,电容器的充电时间远大于放电时间,其振荡频率可根据公式近似得出:f=1/Tc=1/0.55RC=1.8/RC。 由MC3842组成的输出功率可达120W的铅酸蓄电池充电器如图2所示。该充电器中只有开关频率部分为热地,MC3842组成的驱动控制系统和开关电源输出充电部分均为冷地,两种接地电路由输入、输出变压器进行隔离,变压器不仅结构简单,而且很容易实现初次级交流2000V的抗电强度。该充电器输出端电压设定为43V/1.8A,如有需要可将电流调定为3A,用于对容量较大的铅酸蓄电池充电(如用于对容量为30AH的蓄电池充电)。 市电输入经桥式整流后,形成约300V直流电压,因而对此整流滤波电路的要求与通常有所不同。对蓄电池充电器来说,桥式整流的100Hz脉动电流没必要滤除干净,严格说

电动车无刷电机控制器软件设计详解

电动车无刷电机控制器软件设计详解作者:谢渊斌原作发表在《电子报2007年合订本》下册版权保留,转帖请注明出处本文以MICROCHIP公司所生产的PIC16F72为基础说明软件编程方面所涉及的要点,此文所涉及的源程序均以PIC的汇编语言为例。由于软件不可避免需与硬件相结合,所以此文可能出现硬件电路图或示意图。本文适合在单片机编程方面有一定经验的读者,有些基础知识恕不一一介绍。我们先列一下电动车无刷马达控制器的基本要求:功能性要求:1.电子换相2.无级调速3.刹车断电4.附加功能a.限速b.1+1助力c.EBS柔性电磁刹车d.定速巡航e.其它功能(消除换相噪

音,倒车等)安全性要求:1.限流驱动2.过流保护3.堵转保护3.电池欠压保护4.节能和降低温升5.附加功能(防盗锁死,温升限制等)6.附加故障检测功能从上面的要求来看,功能性要求和安全性要求的前三项用专用的无刷马达驱动芯片加上适当的外围电路均不难解决,代表芯片是摩托罗拉的MC33035,早期的控制器方案均用该集成块解决。但后来随着竞争加剧,很多厂商都增加了不少附加功能,一些附加功能用硬件来实现就比较困难,所以使用单片机来做控制的控制器迅速取代了硬件电路芯片。但是硬件控制和软件控制有很大的区别,硬件控制的反应速度仅仅受限于逻辑门的开关速度,而软件的运

行则需要时间。要使软件跟得上电机控制的需求,就必须要求软件在最短的时间内能够正确处理换相,电流限制等各种复杂动作,这就涉及到一个对外部信号的采样频率,采样时机,信号的内部处理判断及处理结果的输出,还有一些抗干扰措施等,这些都是软件设计中需要再三仔细考虑的东西。PIC16F72是一款哈佛结构,精简指令集的MCU,由于其数据总线和指令总线分开,总共35条单字指令,0-20M的时钟速度,所以其运算速度和抗干扰性能都非常出色,2K 字长的FLASH程序空间,22个可用的IO 口,同时又附加了3个定时/计数器,5个8位AD口,1个比较/捕捉/脉宽调制器,8个

高标电动车控制器接线图详解

高标电动车控制器接线 图详解 The document was finally revised on 2021

高标电动车控制器接线图详解 很多消费者在更换新的控制器后,不知道如何把控制器完美的装上去,今天高标科技教你你控制器路线图如何组接。 安装前一定要注意三点:

1、电源正负极一定不可以接反; 2、先接电源线、电门锁线、转把线、电机线四组线; 3、线接好打开电门锁,转转把、若倒转,对接一下学习线,就正转了,然后拔掉学习线,接好其它线就可以了。 第一步: 确定电源正负极,和电门锁线:方法是先把万用表打直流档上,再把万用表的负极[黑线]接在电池的负极上[地线]然后用万用表的正极[红线]一个一个量,有电压的是正极[稍微比电源电压高点]、无电压的是负极,这里说明一下,有电源是三根线,其中那跟是电门锁线,这根线的特点是,打开钥匙和电源电压一样,关上钥匙没电压。 第二步: 关上钥匙连接电源线和电门锁线这三根线:控制器电源线粗红色的是正极,粗黑色的是负极。接好后打开钥匙,再量量电源电压和电门锁线的电压是不是正常,然后在分别量转把线的电源电压5V左右[红黑线],霍尔线的电源电压5V 左右[红黑线][别忘了万用表打到直流档上]。 第三步: 各个电压正常对接白色学习线:若反转拔开在对接一次,电机正转后拔开学习线。接转把线,一般按颜色接就可能了,若还不可以有可能转把坏掉了,那么拔掉转把线,直接连接控制器转把线的红线和绿线。电机正常转,证明转把有问,换个转把。

第四步: 电机正常转后,刹车断电线,霍尔线,仪表线等等。 第五步: 控制器的每根线是什么意思可以看产介绍里面图示说明。 第六步: 电车上各个线什么意思的确定方法:顺着电机找到电机3根相位线5根霍尔线,拆下转把找到3根转把线,拆掉刹把可以找到2根刹车线。拆开电瓶可以看到“+”电源正极“-”电源负极。总的来说按大件找,按大件安装,最容易理解最准确。 第七步: 若电机还不正常转有可能霍尔坏了,测试霍尔好坏的方法:整车上带电检测,先把各线路及接插件都接好,把万用表拔到直流电压20V档位,先确认控制器有5V电源输出,再用黑表笔接在霍尔的地线,红表笔分别接三根信号线,在量的同时,用手轻轻转动电机,霍尔正常时,万用表会0V--5V的脉冲电压的数据显示,如果测某只霍尔时没有脉冲电压,则这只霍尔就坏了,[这种情况也可以用指针式万用表检测,指针在0V--5V之间摆动,霍尔是好的;如果指针不摆动,霍尔是坏的]用这种方法是最为可靠的方法,前提是带电操作。 第八步: 接仪表线:拆开仪表会发现仪表有2根线,一根接在防盗接口上一根在控制器的仪表线上。

相关主题
文本预览
相关文档 最新文档