ImageJ软件功能全介绍ImageJ for microscopy
- 格式:pdf
- 大小:413.05 KB
- 文档页数:6
imagej使用手册
ImageJ是一款功能强大的图像处理和分析软件,使用手册如下:
1. 安装与运行:ImageJ可以在线或下载后运行,只要安装了Java 或更高
版本虚拟机的计算机即可。
支持Windows、Mac OS X以及Linux系统。
2. 显示、编辑、分析、处理、保存和打印图像:ImageJ可以显示、编辑、
分析、处理、保存和打印8位、16位和32位图像。
可读取的图片格式包括TIFF、GIF、JPEG、BMP、DICOM、FITS以及“原始图件”。
支持“堆栈”(以及多维的堆栈),一系列的图片共用一个窗口。
3. 图像处理和测量计算:可以计算用户自定义选择的面积和像素值统计,可以测量距离和角度,可以创建密度直方图和线图。
所有功能在任意倍数下均可使用。
此外,ImageJ是多线程的程序,因此,像图片读取这种较耗时的操作可与
其他操作同时进行。
希望以上信息对您有帮助。
imagej用户使用手册第三部分摘要:一、ImageJ软件简介二、ImageJ 3D可视化技巧1.三维重建2.体积测量3.表面可视化4.透明度调整三、ImageJ实用技巧——常见问题汇总1.图像处理与分析2.插件安装与使用3.系统优化与调整四、结论与展望正文:imageJ用户使用手册第三部分一、ImageJ软件简介ImageJ是一款广泛应用于生物医学图像分析的开放源软件。
它具有强大的图像处理和分析功能,可以满足科研人员在实验研究中的需求。
本部分将为您介绍ImageJ的基本操作和实用技巧,帮助您更好地应用这款软件。
二、ImageJ 3D可视化技巧1.三维重建在ImageJ中,可以使用三维重建功能对扫描获得的立体图像进行可视化。
通过调整视角和光照,可以获得更为直观的三维效果。
此外,还可以对重建结果进行定量分析,为科研工作提供有力支持。
2.体积测量借助ImageJ的体积测量功能,用户可以对三维图像中的物体进行精确测量。
例如,在细胞成像研究中,可以测量细胞的大小、形状以及细胞内结构的体积变化等。
3.表面可视化表面可视化是另一种三维可视化技术,可以直观地展示物体表面的形态特征。
在ImageJ中,通过对图像进行表面重建,可以实现物体表面的可视化。
4.透明度调整在三维可视化过程中,可以通过调整图像的透明度来实现不同组织或结构之间的区分。
这对于观察透明或半透明的样品(如细胞和细胞器)非常有用。
三、ImageJ实用技巧——常见问题汇总1.图像处理与分析在ImageJ中,可以利用各种图像处理工具对图像进行预处理,如平滑、锐化、滤波等。
此外,还可以使用测量工具、ROI(感兴趣区域)工具等进行图像分析。
2.插件安装与使用ImageJ具有丰富的插件资源,用户可以根据需要安装和使用这些插件。
安装完成后,插件会自动集成到ImageJ软件中,方便用户进行相关操作。
3.系统优化与调整为了获得更好的图像处理和分析效果,可以对ImageJ系统进行优化和调整。
imagej用法ImageJ是一款强大的图像处理软件,广泛应用于生命科学、医学和材料科学等领域。
它具有开源、跨平台、丰富的插件支持等特点,使其成为科研人员和工程师们常用的图像分析工具。
本文将介绍ImageJ的基本用法,帮助用户更好地利用这一工具进行图像处理和分析。
1. ImageJ简介1.1 ImageJ的特点•开源:ImageJ是一款免费、开源的软件,用户可以自由获取、使用和修改源代码。
•跨平台:ImageJ支持多种操作系统,包括Windows、macOS和Linux,保证用户在不同平台上都能方便地使用。
•插件支持:ImageJ具有强大的插件体系,用户可以通过安装插件扩展功能,满足不同领域的需求。
1.2 安装与启动1.下载:在ImageJ官方网站上下载适用于您操作系统的版本。
2.安装:解压下载的压缩包,将文件夹移动到合适的位置即可。
3.启动:进入ImageJ文件夹,找到并运行可执行文件(如ImageJ.exe),即可启动ImageJ。
2. 基本操作2.1 打开图像在ImageJ中,可以通过以下方式打开图像:•文件-> 打开:选择要打开的图像文件。
•拖放:将图像文件直接拖放到ImageJ窗口中。
2.2 图像显示与导航•放大与缩小:利用工具栏上的放大和缩小工具,或者使用鼠标滚轮进行图像的放大和缩小。
•导航:在ImageJ窗口中,可以使用滚动条或者拖动图像来导航图像。
2.3 测量与标注•测量工具:通过工具栏上的测量工具,可以测量图像中的长度、面积等。
•标注:利用文本工具在图像上添加文字标注,方便说明和标记。
3. 图像处理3.1 图像滤波与增强•滤波器:ImageJ提供了多种滤波器,包括平滑、锐化、边缘检测等,可通过“处理-> 滤波器”进行选择。
•对比度与亮度:可以通过“图像-> 对比度/亮度”调整图像的对比度和亮度。
3.2 阈值处理与分割•阈值处理:可以通过“图像-> 调整-> 阈值”设置阈值,将图像转换为二值图像。
imagej的使用方法
ImageJ是一款功能强大的图像处理软件,可以帮助用户轻松地进行图像的测量、分析、编辑等操作。
本文将指导用户如何使用ImageJ来处理图像。
首先,用户需要下载ImageJ软件,然后将图像导入ImageJ中。
用户可以选择从本地文件夹中导入图像,也可以从网络中导入图像,比如URL、FTP等。
接下来,用户可以通过ImageJ的图像处理功能对图像进行处理。
用户可以根据自己的需要调整图像的亮度、对比度、饱和度等参数。
此外,ImageJ还支持用户对图像进行滤镜处理、裁剪、旋转和缩放等操作。
同时,ImageJ还支持用户对图像进行测量和分析。
用户可以通过ImageJ的测量工具来测量图像中的面积、长度和角度等信息。
此外,ImageJ还拥有强大的图像分析功能,可以帮助用户分析图像中的细节信息,提取出图像中的特征和目标。
最后,用户可以通过ImageJ对图像进行编辑。
ImageJ提供了大量的编辑工具,可以帮助用户轻松添加文字、图标、标签等内容,以增加图像的可读性。
总之,ImageJ是一款强大的图像处理软件,可以帮助用户轻松地
进行图像的测量、分析、编辑等操作。
通过本文的指导,用户可以轻松地使用ImageJ来处理图像。
image j细胞计数
ImageJ细胞计数是一项重要的分析任务,它使科学家可以直观地了解细胞型、细胞密度和细胞类型等重要的细胞特征。
这种技术的有效性取决于科学家所使用的软件,在这篇文章中,我将介绍一款名为ImageJ的细胞计数软件包。
ImageJ是一款开源软件,用于计算图像中细胞数量,可以帮助科学家快速准确地计算细胞数量。
ImageJ可以利用计算机视觉技术,可以有效地进行细胞计数,它可以在比人类更精确的情况下获得令人满意的结果。
此外,使用ImageJ,科学家可以自定义图像处理算法,以获得更精确的结果。
ImageJ的细胞计数功能可以通过几步简单的步骤完成,首先,使用特定法则将图像分为不同的测量区域,比如说,使用多边形区域来定义感兴趣区域。
接下来,使用算法,如多种核函数,搜索完成图像中细胞数量的精确估计,最后,将图像中所有细胞标记,以便计算细胞数量。
在使用ImageJ的细胞计数功能时,科学家需要采取一些措施,以确保可靠的结果。
首先,拍摄的图像需要包含足够的细胞,以便可以准确的估计细胞的数量;其次,可以根据被测量的实验条件,人工选择合适的测量区域,获得更好的细胞计数结果;最后,使用最佳的算法,可以有效地检测到细胞,有效地避免在估计细胞时出现误差。
总之,ImageJ是一款强大的细胞计数软件,它具有准确、快速等优势,可以帮助科学家更加准确、快速地估计图像中细胞数量。
它
是一款实用的工具,可以更加有效地为研究者提供精确的细胞计数结果。
此外,使用ImageJ可以实现高效的自动细胞计数,以节省宝贵的时间,使科学家专注于研究工作本身,从而加快研究进度。
imagej用法-回复ImageJ是一款功能强大且易于使用的开源图像处理软件。
它由美国国立卫生研究院(NIH)开发,广泛应用于科学研究领域和生物医学图像处理。
本文将一步一步介绍ImageJ的基本用法,帮助读者快速上手使用该软件。
一、ImageJ的安装和启动首先,我们需要下载ImageJ软件并安装到计算机中。
可以通过ImageJ 官方网站(安装完成后,双击桌面上的ImageJ图标启动软件。
软件启动后,会弹出一个欢迎界面,显示软件的版本号和一些基本信息。
点击“OK”按钮关闭欢迎界面,进入软件的主界面。
二、打开和保存图像ImageJ可以打开常见的图像格式,如JPEG、PNG、BMP等。
在主界面中,点击“File”菜单,选择“Open”选项,弹出文件选择对话框。
在对话框中选择要打开的图像文件,并点击“打开”按钮。
软件会将选中的图像文件加载到主界面中显示。
如果想要保存图像,可以选择“File”菜单,然后选择“Save As”选项。
弹出保存对话框后,选择保存的文件路径和文件名,并选择保存的文件格式,最后点击“保存”按钮完成保存操作。
三、基本图像处理操作ImageJ提供了丰富的图像处理操作,包括调整亮度和对比度、裁剪图像、旋转图像等。
下面我们来介绍几个常用的图像处理操作。
1.调整亮度和对比度:点击“Image”菜单,选择“Adjust”选项,然后选择“Brightness/Contrast...”选项。
弹出的对话框中可以通过调整滑动条来改变图像的亮度和对比度。
2.裁剪图像:点击“Image”菜单,选择“Crop”选项。
然后使用鼠标在图像上拖拽一个矩形框,表示要裁剪的区域。
释放鼠标后,软件会自动裁剪选定的区域,并更新显示。
3.旋转图像:点击“Image”菜单,选择“Transform”选项,然后选择“Rotate...”选项。
在弹出的对话框中,可以通过填写角度来指定旋转的角度,然后点击“OK”按钮完成旋转操作。
imagej使用教程ImageJ是一款免费开源的图像处理软件,被广泛应用于生物医学图像的分析和处理中。
本教程将向您介绍如何使用ImageJ进行基本的图像处理。
1. 安装ImageJ首先,您需要从ImageJ的官方网站(https:///ij/)下载并安装ImageJ软件。
根据您的操作系统,选择适合的安装程序进行安装。
2. 打开图像在ImageJ的菜单栏上,选择"File"(文件),然后点击"Open"(打开)。
浏览您的计算机,选择要处理的图像文件并点击"Open"(打开)按钮。
3. 调整图像大小如果您需要调整图像的大小,可以在菜单栏上选择"Image"(图像),然后点击"Adjust Size"(调整尺寸)。
在弹出的对话框中,输入所需的宽度和高度,并选择插值算法。
点击"OK"(确定)按钮应用更改。
4. 调整亮度和对比度您可以在菜单栏上选择"Image"(图像),然后点击"Adjust"(调整)来调整图像的亮度和对比度。
在弹出的对话框中,拖动亮度和对比度滑块,直到您满意为止。
点击"OK"(确定)按钮应用更改。
5. 进行滤镜处理ImageJ提供了多种滤镜工具,以改变图像的外观。
在菜单栏上选择"Process"(处理),然后点击"Filters"(滤镜)来选择所需的滤镜效果。
在弹出的对话框中,您可以调整滤镜的参数,然后点击"OK"(确定)按钮应用更改。
6. 测量图像特征ImageJ允许您测量图像中的各种特征,如面积、长度、角度等。
在菜单栏上选择"Analyze"(分析),然后点击"Measure"(测量)来测量图像的特征。
在弹出的结果窗口中,您可以查看测量结果。
imagej用户使用手册第三部分【原创版】目录1.概述2.图像处理基本操作3.图像处理高级操作4.常见问题与解决方案5.总结正文【概述】本部分将详细介绍 ImageJ 图像处理软件的使用方法。
ImageJ 是一款功能强大的开源图像处理软件,广泛应用于生物医学、化学、物理等多个领域。
在本文中,我们将从基本操作到高级操作,一步一步地为您展示如何使用 ImageJ 进行图像处理。
【图像处理基本操作】1.打开和保存图像- 通过“文件”菜单打开或保存图像- 可以支持的图像格式包括:JPEG、PNG、BMP、TIFF 等2.图像的缩放与裁剪- 通过“图像”菜单下的“缩放”或“裁剪”子菜单进行操作 - 可以自由地调整图像大小和裁剪区域3.图像的旋转与翻转- 通过“图像”菜单下的“旋转”或“翻转”子菜单进行操作- 可以对图像进行任意角度的旋转或翻转【图像处理高级操作】1.区域选择与分割- 通过“选择”菜单下的“区域”子菜单进行操作- 可以使用矩形、椭圆、自由手绘等方法选择图像区域2.图像的亮度和对比度调整- 通过“图像”菜单下的“调整”子菜单进行操作- 可以对图像的亮度、对比度、色调等进行精确调整3.图像的滤波处理- 通过“图像”菜单下的“滤波”子菜单进行操作- 可以使用多种滤波器对图像进行处理,如:模糊、锐化、边缘检测等【常见问题与解决方案】1.问题:打开图像时出现“无法载入图像”的提示解决方案:检查图像文件的路径是否正确,或尝试重新安装ImageJ 软件2.问题:图像处理后保存时出现“保存失败”的提示解决方案:检查保存路径是否正确,或尝试重新安装 ImageJ 软件【总结】本篇文章详细介绍了如何使用 ImageJ 进行图像处理的基本操作和高级操作,以及常见的问题与解决方案。
ImageJ这套软件可以自动帮你你计算细胞数,也可以定量分析DNA电泳或是Western blot条带。
step 1.首先打开软件后,开启图档ImageJ这套软件可以自动帮你你计算细胞数,也可以定量分析DNA电泳或是Western blot条带。
step 1.首先打开软件后,开启图档step 2.请先做校正,选择Analyze底下的Calibrate选项,再选择校正的模式,使用Uncalibrate OD,再按ok按下ok之后会出现校正的图形Step 3.在要分析的第一条(first lane)加上一个长型框(工具列第一个选项),再按下Analyze/Gels/select first Lane快速键(Ctr+1),此时框架中会出现一个号码1,之后可以移动框架到第二个lane再选择Analyze/Gels/select second Lane快速键(Ctr+2),当然可以一直加下去,最后按Analyze/Gels/plot Lanes快速键(Ctr +3)。
Step 4.分析以后会出现图型表示你刚选择的框内的影像强度,此时可以看到有几个比较高的区段,就是我们想定量的band,使用直线工具(工具列第五个选项)先将图形中高点为有band的区域和没有band的区域分开再,使用魔术棒工具(工具列第八个选项)点选要分析的区域。
Step 5.当我们点选分析时,在result的对话视窗会出现分析的数据,依序点选就会出现每个band的值。
注:当我们选择分析的条带也可以是横向选取,就可以只比较相同大小的DNA 的含量,同样也可以应用在western blot或其它类似实验条带的分析上。
使用ImageJ 分析图像中的颗粒数[] 原创教程,转载请保留此行1,到本站资料下载-实用小工具栏目下载 ImageJ 并安装。
2,打开ImageJ并打开要分析的图片。
请看演示图片。
3,把图像二值话或者设定阈值。
选择Image - Adjust - Threshold...根据提示设定你需要的阈值。
imagej用户使用手册第三部分【实用版】目录1.图像处理软件 ImageJ 简介2.ImageJ 的功能和特点3.安装和运行 ImageJ4.ImageJ 的基本操作5.图像处理技巧和实用功能6.高级操作和技巧7.ImageJ 的插件和资源正文【图像处理软件 ImageJ 简介】ImageJ 是一款免费的开源图像处理软件,广泛应用于生物学、医学、物理学、化学等领域的科研工作中。
它具有强大的图像处理功能,可以满足各种图像分析和处理需求。
【ImageJ 的功能和特点】ImageJ 具有以下主要功能和特点:1.多平台支持:ImageJ 可以在 Windows、MacOS 和 Linux 等多个操作系统上运行。
2.开源免费:ImageJ 是一款开源软件,用户可以免费下载和使用。
3.强大的图像处理功能:ImageJ 支持各种图像处理功能,如图像缩放、裁剪、旋转、翻转、滤波等。
4.多种图像格式支持:ImageJ 支持多种图像格式,如 JPEG、PNG、BMP、TIFF 等。
5.丰富的图像分析工具:ImageJ 提供了丰富的图像分析工具,如测量、计数、分割等。
6.可定制性:ImageJ 可以通过插件扩展功能,用户可以根据需要自行开发和安装插件。
【安装和运行 ImageJ】1.下载 ImageJ:用户可以从 ImageJ 官网(https:///)下载最新版本的 ImageJ。
2.安装 ImageJ:下载完成后,运行安装程序,按照提示进行安装。
3.运行 ImageJ:安装完成后,双击桌面上的 ImageJ 图标,即可启动 ImageJ。
【ImageJ 的基本操作】1.打开图像:在 ImageJ 中,用户可以通过“File”菜单打开图像文件。
2.显示图像:在 ImageJ 中,用户可以通过“Display”菜单调整图像的显示参数。
3.图像处理:在 ImageJ 中,用户可以通过“Process”菜单进行图像处理,如缩放、裁剪、旋转等。
Supplement to Vol. 43 ı No. 1 | 2007 ı BioTechniques ı 25Imaging Frontiersto help the Laboratory of Molecular Signaling in Babraham Institute (UK), I developed it further at the Wright Cell Imaging Facility (TWRI, Canada); here it was released as WCIF ImageJ. When I recently joined the McMaster Biophotonics Facility (MBF; www.macbiophotonics.ca) at McMaster University, Hamilton, Canada, I was encouraged to maintain this ImageJ for Microscopy bundle.Here the package was resurrected as MBF ImageJ, containing all the plugins that I have found useful. The plugins are organized in submenus, and the bundle is described in an extensively illustrated online manual (which evolved from the original lab instructions). Users of the bundle are encouraged to cite the original authors of the plugins, who have been kind enough to make the results of their work freely available. The online manual provides links to original plugins and authors’ pages. In the following discussion, I describe plugins included in the MBF ImageJ bundle (these are freely available on an individual basis elsewhere).The bundle comes in two forms. The first is a one-stop solution for Windows users. This includes a setup file that installs all of the required files. The second version is for non-Windows users. Here, the appropriate version of ImageJ from the ImageJ homepage must be installed followed by a download of the plugins only MBF_ImageJ.zip file (which must be unzipped to a user’s ImageJ folder). Each of these approaches will match the installed ImageJ to the version described in the online MBF_ImageJ manual.ImageJ for microscopyTony J. CollinsBioTechniques 43:S25-S30 (July 2007)doi 10.2144/000112517McMaster Biophotonics Facility, McMaster University, Hamilton, ON, Canadaof short add-on programs to provide additional functionality to the core program. These additional files are either written in Java (the plugins) or in ImageJ’s macro programming language (macros). Once saved to the ImageJ plugins folder, these functions are loaded on start-up and can be accessed via menu commands like any other core function.400+ PLUGINSFreely available for individual download, the 400+ plugins contribute to the success of ImageJ, but can also be overwhelming by their sheer magnitude. Where to start? One at a time?The long list of plugins reflects ImageJ’s usage throughout a range of fields in science and engineering; it is used in medical imaging, microscopy, the material sciences, not to mention biological light microscopy. A review of the breadth of ImageJ’s role in image processing and analysis was published in July 2004 in BioTechniques . This range of applications is reflected in the plugins available. As such, not all are suited for use in microscopy, and some need to be finessed. Needless to say, collecting and maintaining the add-on files that could benefit a given research program would be prohibitively time-consuming and arduous.MBF ImageJThe ImageJ for Microscopy bundle and accompanying manual was developed to manage this wide-ranging array of plugins. Initially collated from the ImageJ home pageINTRODUCTIONImageJ will celebrate its tenth anniversary in September of this year. These past 10 years have seen the Java-based open-source software mature into an invaluable laboratory tool. In addition to its impressive functionality, this cutting-edge image-processing tool has an indispensable support community of enthusiasts on the ImageJ mailing list.Wayne Rasband is the core author of ImageJ; after developing the Macintosh-based National Institutes of Health (NIH) Image for 10 years, he made the brave decision of starting afresh with ImageJ using the Java programming language. By shifting to Java, Rasband liberated the software from an individual operating system. To run ImageJ, a given system needs only the operating system-specific Java runtime environment. Java runtime environ-ments (JRE) are freely available, either from Sun or bundled with platform-specific installations of ImageJ (/ij). With JRE available for most operating systems, ImageJ is platform-independent, running on Macintosh, Windows, Linux, and even a PDA operating system. The new 64-bit operating systems and their JRE have happily broken the long-held 1.7 Gb memory limit for Java applica-tions. One of the downsides of the Java heritage is an interface that may feel a little unfamiliar. However, a few steps into ImageJ, and this minor inconve-nience is forgotten.While Rasband is the author of the core program, an extensive group of additional developers has written and made available a growing arsenalImaging FrontiersFILE FORMATSImageJ supports a wide number of standard image file formats, including the recent implementation 48-bit color composite image support. The ability of ImageJ to open a wide variety of proprietary image formats has long been an important feature. Not only is the image data imported, the extra metadata is typically imported as well. This may include useful information, such as exposure settings and laser powers, but also essential settings such as pixel size, acquisition rate, and z-step—all required for proper interpre-tation of the data.Recently the LOCI group from theUniversity of Wisconsin has developeda bundled suite of plugins that willopen over 65 image file formats fromthe biosciences (see a short list inTable 1 and their web site, www.loci., for a complete list). Thislist is continually under developmentand is frequently updated; the ImageJcommunity has been providing sampleimages. An example of the devel-opment process reflects the collab-orative nature of ImageJ development:when we took possession of our LeicaTCS SP5 confocal, it came with yetanother proprietary image format. TheLeica LIF format is a database fileformat in which an individual file maycontain multiple images (and imageseries) from a single experiment. Eachtime the acquisition button is pressed,a new image or image series is savedto the one file. This posed a newchallenge for the LOCI group, wherea straightforward import plugin wouldnot have been appropriate. A creativesolution here was to implement a frontend for the LIF file format, promptingTable 1. Abridged List of Microscopy-Related File Formats Supported by ImageJ Through the LOCI Group’s Loci_Tools Plugin Suite ABD TIFF tif Andor Bio-imaging Division (Andor Technology) Alicona 3D al3d Alicona ImagingAmersham Biosciences GEL gel Molecular Dynamics (GE Healthcare Life Sciences) AxioVision zvi Carl Zeiss Vision (Carl Zeiss)Deltavision dv, r3d Applied PrecisionDigital Imaging and Communication inMedicinedcm, dicom National Electrical Manufacturers Association Digital Micrograph dm3GatanFlexible Image Transport System fits National Radio Astronomy ObservatoryFluoView FV1000 OIB oib, oif (tif, roi, pty, lut, bmp)OlympusFluoView TIFF tif OlympusImage Cytometry Standard ics, ids Reference 6Image-Pro Sequence seq, ipw Media CyberneticsImaris ims BitplaneIPLab ipl Scanalytics (BD Biosciences)Laser Scanning Microscope 510lsm Carl Zeiss Microscopy (Carl Zeiss)Leica lei + tif Leica Microsystems (Leica)Leica Image File Format lif Leica Microsystems (Leica)Medical Research Council mrc MRC Laboratory of Molecular Biology MetaMorph stk Universal Imaging (Molecular Devices)Nikon nef + tif, nd2NikonOME-TIFF tiff Laboratory for Optical and ComputationalInstrumentationOME-XML ome Open Microscopy EnvironmentOpenlab liff & RAW ImprovisionPerkinElmer UltraView tif, tim, zpo, csv, htm, ano, rec, cfg, 2,3, 4, 5, 6, 7, 8, ...PerkinElmerPIC pic Bio-Rad (Carl Zeiss)Prairie TIFF tif, xml, cfg Prairie TechnologiesQuickTime mov Apple ComputerSlideBook sld Intelligent Imaging Innovations and Olympus SPCImage sdt Becker & HicklμManager tif, txt Vale LabA full list of supported formats and additional functions can be found at the LOCI Group’s web site at /ome/formats.html.26ıBioTechniquesı Supplement to Vol. 43 ı No. 1 | 2007Supplement to Vol. 43 ı No. 1 | 2007 ı BioTechniques ı 27Imaging Frontiersthe user to select which image to open. A further tweak provides users with the series’ name, as well as a helpful thumbnail image of the series. As with previous individual file import plugins, the spatial calibrations are automati-cally imported, and the full metadata is optionally displayed. This process was greatly facilitated by Leica providing detailed specifications of their newfile format—no surprise that the user community widely applauded this action. Manufacturers of acquisition systems are not always so forthcoming with assistance in helping the ImageJ community to generate import plugins for proprietary file formats. The rationale for this is unclear (a restricted image file format is hardly a persuasive reason to choose an acquisition system).It is more easily imagined that, with two equally matched systems, an open image format would be considered a significant advantage.Sometimes images need to be imported as TIFF series; ImageJ has a number of sequence import filters and stack manipulation routines to ensure the stack is imported and ordered appropriately for subsequent processing and analysis.A single post-acquisition software solution for a core facility is a huge benefit. Instead of providing routine post-acquisition training for each individual software package, a user trained to process their Bio-Rad PIC images in ImageJ will also be equipped to process their Zeiss AxioVision-acquired images without having to go via viewer software and the dreaded export as tiff step—or the strip metadata step, as I think of it. Bypassing this tedious step when retrieving the original data not only provides immediate access to the image and metadata (facilitating the addition of scale bars for example), it also halves the data storage requirements.INTENSITY PROCESSING AND ANALYSISImageJ incorporates a number of useful tools for image processing. These include histogram manipu-lations and standard image filters (mean, median, etc.)—an excellent background subtraction routine that copes particularly well with uneven background and other user-written plugins for more sophisticated filtering (e.g., Kalman filtering, anisitropic diffusion). Another strength is the large number of automated image segmen-tation algorithms, again allowing the user to choose the most appropriate. These include Otsu thresholding, mixture modeling, maximum entropy, color-based thresholding, and K-means clustering (this last is particularly good at segmenting color histology images) (see Figure 1).ImageJ will also perform iterative deconvolution. Bob Dougherty (OptiNav, Bellevue, WA, USA) has written two plugins: one of these generates a theoretical widefield point-Figure 1. Masson’s trichrome-stained heart section. (A) The original image was segmented with three clusters (representing white background, blue collagen, and magenta noncollagen regions). (B) The seg-mented image is shown with each segment colored to the cluster’s centrid value for easy visualization. Scale bar, 100 μm.Figure 2. Yeast expressing endoplasmic reticulum (ER)-targeted green fluorescent protein (GFP; green) and stained with MitoTracker ® Orange (red; Invitrogen, Carlsbad, CA, USA). Maximum intensity z-projections of (Ai) the raw data, (Aii) after iterative deconvolution with ImageJ (2 h process-ing time), and (Aiii) after iterative deconvolution in V olocity (5 min processing time). Scale bar, 2.5 μm. (B) The volume of the mitochondria in the red channel of the V olocity deconvolved data was quantified in ImageJ using the TransfomJ and Object Counter three-dimensional (3-D) plugins. The volume of the mitochondria was calculated as 12.0 μm 3 (the volume calculated in V olocity with the same threshold was 12.1 μm 3). (Bi) Median section (slice 90) of deconvolved stack overlaid with the object boundar-ies identified by the ImageJ plugin. (Bii) The axial section along the y-y ′ line from Bi showing object boundaries in cyan. (Biii) Summed z-projection of the stack of identified object boundaries.spread function (PSF) based on user-provided parameters, and the other plugin uses this PSF to deconvolve a z-series image. It is worth noting that this plugin requires considerable memory. We have to date only managed to use it with 64-bit operating systems, in which extra memory can be allocated (Figure 2). So, while this plugin is useful for a one-off image, we have not found this to be suitable for routine use.The accessibility of the source code has also made ImageJ a favorite for development and implementation of fluorescence resonance energy transfer (FRET) image analysis. There are various plugins available that perform sensitized emission and acceptor photo-bleaching analysis of FRET image sequences. We are also using ImageJ to analyze lifetime images that have been acquired, processed, and exported from our Becker and Hickl TCSPC system.CO-LOCALIZATION ANALYSISAnother key advantage of ImageJ is its abilities in co-localization analysis. Given that no single co-localization quantification technique is appropriate for all circumstances, ImageJ’s large suite of co-localization plugins provides options for this additional function-ality. Since users are not restricted to a specific approach, the most appro-priate co-localization technique from the toolbox can be chosen. Among others, plugins are available to perform qualitative overlays [and convert them from Red-Green-Blue (RGB) to the color-blind-friendly Magenta-Green-Blue], generate Pearson’s coefficients, generate Mander’s coefficients, and perform various randomization co-localization tests [e.g., Fay (1), Costes (2), and van Steensel (3)]. However, as with all analysis tools, they can be misused, and researchers are encouraged to understand these analyses before selecting and using one. The open-source nature of ImageJ also allows the development of novel co-localization routines. Intensity corre-lation analysis by Li and colleagues was refined only after implementation in ImageJ enabled an improved rate of analysis (4,5).Z-FUNCTIONSIn addition to the standard z-projec-tions and axial sectioning, ImageJ alsohas some sophisticated three-dimen-sional (3-D) reconstruction routines.VolumeJ from Michael Abramoffgenerates ray-traced surface renderingof z-series (Figure 3). This pluginemploys a user-defined threshold togenerate a surface-rendered image. Itcan be used with RGB multichannelor depth-coded images and to generaterotational movies.T-FUNCTIONSOne of the quirks of ImageJ isthe presumption that a stack’s thirddimension will be the z-axis. Anintensity versus time plot can beperformed by the menu commandPlot z-axis profile (Figure 4). ImageJsupports a number of time courseprocessing and analysis routines. Thisincludes bleach correction for visual-ization, normalization to initial intensity,ratio-imaging, and delta-fluorescenceroutines. The core region of interest(ROI) manger allows multiple regionsof interest to be analyzed (and the ROIssaved), greatly facilitating intensityversus time studies, such as calciumimaging. With Rasband’s help, wehave recently integrated a ratiometricanalysis plugin with the ROI manager,again, facilitating analysis, and alsoproviding a plugin template for multi-region processing for other types ofanalysis.PARTICLE ANALYSISThe integral Particle Analyzer is apowerful multi-region detection andanalysis routine. Along with particleseparation based on watershedor maxima parameters, ImageJ’score program provides a range ofoptions for users. Plugins add tothis functionality with 3-D particlemeasurements and various particletracking routines.MACROS AND PLUGINSThe internal macro programminglanguage of ImageJ is a simple text-based scripting language that canbe used just to automate multipleprocessing and analysis steps andbatch processing, but can also evolveinto very sophisticated routines.First attempts at writing macros areeasily undertaken using the macrorecorder function to record the menucommands a user wants to automate.This initial macro can then befurther developed using the macroprogramming language, which is welldocumented on the ImageJ web site.The ImageJ web site also hostsmany sample macros that canbeFigure 3.Three-dimensional (3-D) surface render of depth coded z-series. Confocal z-series of 40 μM thick 4′,6-diamidino-2-phenylindole (DAPI)-stained mouse aorta showing the nuclei in the different smooth muscle layers. Sample provided by M. Kahn (McMaster University). Scale bars, 30 μm.Supplement to Vol. 43 ı No. 1 | 2007Supplement to Vol. 43 ı No. 1 | 2007 ı BioTechniques ı 29Imaging Frontiersmodified to suit specific needs. There are several generic batch-processing macros that will automate a series of commands on all images in a folder or even all images in subfolders.While macros can become quite sophisticated, the real power of ImageJ is the plugins. As with macros, a user unfamiliar with Java can start by editing the source code of existing plugins.ImageJ RESOURCESOnce installed, the core ImageJ program (the IJ.JAR file) can be easily upgraded by simply downloading it from the NIH web site. Keeping an eye on the News page on the ImageJ web site provides a quick summary of what’s new with core ImageJ functionality and user-written plugins and macros.The MacBiophotonics ImageJ for Microscopy online manual is a useful resource for new users of ImageJ, covering the typical image processing and analysis steps for microsco-pists. More complex issues can be addressed via the ImageJ mailing list, an excellent source of infor-mation and assistance. The mailinglist archives are searchable from the ImageJ web site and usually throw up the answer—many questions have already been addressed. Failing this, a detailed description of the problem to the user group usually results in a quick response with the solution. A recent example of this came when I tried to integrate the ROI manager with a ratio-analysis plugin I had already written. My efforts resulted in a functional, but very slow plugin—taking approximately 1 min to analyze a 600-frame stack. A detailed note to the mailing list was met with a quick fix that reduced the analysis to a far more respectable 5 s. This example also addresses one of the perceptions that Java is intrinsi-cally slow. Since Java is highly acces-sible, functional rather than efficient code can be written by users such as myself with programming-enthusiasm rather than formal training. However, whether a function is executed in 1 or 2 s is probably not relevant except in extreme batch processing of thousands of images.There is an increasing interest in ImageJ at international meetings and workshops. The first ImageJ user and developer conference was held in 2006, and Microscopy andMicroanalysis in 2007 will have a session (Symposium A16) dedicated to ImageJ. A number of ImageJ workshops are also cropping up. An ImageJ lab will form an integral part of our Practical Biophotonics introductory workshop that we are hosting in mid-July 2007 and is planned to be a significant part of one of the advanced workshops in the series (www.macbiophotonics.ca/workshop).SUMMARYImageJ is an essential tool for us that fulfills most of our routine image processing and analysis requirements. The near-comprehensive range of import filters that allow easy access to image and meta-data, a broad suite processing and analysis routine, and enthusiastic support from a friendly mailing list are invaluable for all microscopy labs and facilities—not justthose on a budget.Figure 4. Intensity versus time (intensity vs. T) analysis of a fluo3-loaded HeLa cell treated with 2.5 μM histamine to elicit calcium puffs prior to a global cytoplasmic calcium signal. (A) Median intensity projection of the time-course to illustrate a puffsite (circle) and the axis of the pseudo-linescan plot (x-x ′). Scale bar 10, μm. (B) Intensity versus time plot of the puffsite region of interests (ROI; circle in panel A) generated by the Plot z-axis profile menu com-mand. ImageJ assumes the third axis of a stack is z. The raw data was processed for F ÷ F0 prior to analysis. (C) Intensity versus xt pseudo-linescan image of the line (x-x ′) drawn in panel A. Contrast was adjusted to improve visualization of the calcium puffs that precede the global signal. (D) Surface plot of image C using the Interactive three-dimensional (3-D) Surface Plot plugin. (E) Intensity versus xyt. Frames taken from a surface plot movie of the F ÷ F0 processed image stack generated using the Surface Plot menu command.Imaging FrontiersACKNOWLEDGMENTSI am grateful to Wayne Rasband and the plugin authors who have made their work freely available to the scientific community.MacBiophotonics is sup-ported by the Canadian Foundation for Innovation and the Ontario Innovation Trust.REFERENCES1. Fay, F.S.,K.L.Taneja,S.Shenoy,L.Lifshitz, and R.H.Singer. 1997. Quantitative digital analysis of diffuse and concentrated nuclear distributions of nascent transcripts, SC35 and poly(A). Exp. Cell Res. 231:27-37.2. Costes,S.V.,D.Daelemans,E.H.Cho,Z.Dobbin,G.Pavlakis, and S.Lockett. 2004.Automatic and quantitative measurement of protein-protein colocalization in live cells.Biophys. J. 86:3993-4003.3. van Steensel, B., E.P.van Binnendijk,C.D.Hornsby,H.T.van der Voort,Z.S.Krozowski,E.R.de Kloet, and R.van Driel.1996. Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J. Cell Sci. 109:787-792.4. Khanna,R.,Q.Li,L.Sun,T.J.Collins, andE.F.Stanley.2006. N type Ca2+ channelsand RIM scaffold protein covary at the pre-synaptic transmitter release face but are com-ponents of independent protein complexes.Neuroscience 140:1201-1208.5. Li,Q.,u,T.J.Morris,L.Guo,C.B.Fordyce, and E.F.Stanley. 2004. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocaliza-tion. J. Neurosci. 24:4070-4081.6. Dean ,P., L. Mascio, D. Ow, D. Sudar, andJ. Mullikin. 1990. Proposed standard for im-age cytometry data files. Cytometry 11:561-569.Address correspondence to Tony J. Collins, McMaster Biophotonics Facility, Dept. Biochemistry and Biomedical Sciences, HSC 4H21A, McMaster University, Hamilton, ON, L8N 3Z5, Canada. e-mail: tcollins@macbiophotonics.ca www.macbiophotonics.caTo purchase reprints of this article, contact: Reprints@ Validity of bioluminescence... (Continued from page 13)41. J enkins,D.E.,Y.Oei,Y.S.Hornig,Y.S.-F.Yu,J.Dusich,T.Purchio, and P.M.Contag.2003. Bioluminescent imaging (BLI) to im-prove and refine traditional murine models of tumor growth and metastasis. Clin. Exp.Metastasis 20:733-744.42. Jenkins,D.E.,Y.S.-F.Yu,Y.S.Hornig,T.Purchio, and P.M.Contag.2003. In vivo monitoring of tumor relapse and metastasis using bioluminescent PC-3M-luc-C6 cells in murine model of human prostate cancer. Clin.Exp. Metastasis 20:745-756.43. Rehemtulla, A.,L.D.Stegman,S.J.Cardozo,S.Gupta,D.E.Hall,C.H.Contag, and B.D.Ross. 2000. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2:491-495.44. Veenendaal,L.M.,R.van Hillegersberg,N.Smakman,J.D.van der Bilt,P.J.van Diest, O.Kranenburg, and I.H.Borel Rinkes.2006. Synergistic effect of interstitial laser co-agulation and doxorubicin in a murine tumor recurrence model of solitary colorectal liver metastasis. Ann. Surg. Oncol. 13:168-175. 45. Mouchess,M.L.,Y.Sohara,M.D.Nelson,Jr., Y.A. DeCLerck, and R.A. Moats. 2006.Multimodal imaging analysis of tumor pro-gression and bone resorption in a murine cancer model. J. Comput. Assist. Tomogr.30:525-534.46. Van der Pluijm,G.,I.Que,B.Sijmons,J.T.Buijs,C.W.Lowik,A.Wetterwald,G.N.Thalmann,S.E.Papapoulos, and M.G.Cecchini. 2005. Interference with the micro-environmental support impairs the de novo formation of bone metastases in vivo. Cancer Res. 65:7682-7690.47. Dikmen,Z.G.,G.C.Gellert,S.Jackson,S.Gryaznov,R.Tressler,P.Dogan,W.E.Wright, and J.W.Shay. 2005. In vivo inhi-bition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res.65:7866-7873.48. Sweeney,T.J.,V.Mailander,A.A.Tucker,A.B.Olomu,W.Zhang,Y.Cao,R.S.Negrin,and C.H.Contag. 1999. Visualizing the kinet-ics of tumor-cell clearance in living animals.Proc. Natl. Acad. Sci. USA 96:12044-12049.49. Van Noorden,C.J.F.and I.M.C.Vogels.1989. Polyvinyl alcohol and other tissue pro-tectants in enzyme histochemistry: a consum-er’s guide. Histochem. J. 21:373-379.50. Griffini,P.,S.M.Smorenburg,F.J.Verbeek,and C.J.F.Van Noorden.1997. Three-di-mensional reconstruction of colon carcinoma metastases in liver. J. Microsc. 187:12-21. Address correspondence to C.J.F. Van Noorden, Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands. e-mail: c.j.vannoorden@amc.va.nlTo purchase reprints of this article, contact: Reprints@30ıBioTechniquesı Supplement to Vol. 43 ı No. 1 | 2007。