当前位置:文档之家› 线性规划模型求解

线性规划模型求解

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。 2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都

(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点 整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。 松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。 若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。 一、整数线性规划数学模型的一般形式 ∑==n j j j x c Z 1 min)max(或 中部分或全部取整数n j n j i j ij x x x m j n i x b x a t s ,...,,...2,1,...,2,10 ),(.211 ==≥=≥≤∑= 整数线性规划问题可以分为以下几种类型 1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。有时,也称为全整数规划。

2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。 3、0—1型整数线性规划(zero —one integer liner programming):指决策变量只能取值0或1的整数线性规划。 1 解整数规划问题 0—1型整数规划 0—1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的 ???? ? ????≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益.

8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策. 3.3 线性规划在运输问题中的应用 运输是物流活动的核心环节,线性规划是运输问题的常用数学模型,利用数学知识可以得到优化的运输方案. 运输问题的提出源于如何物流活动中的运输路线或配送方案是最经济或最低成本的.运输问题解决的是已知产地的供应量,销地的需求量及运输单价,如何寻找总配送成本最低的方案;运输问题包含产销平衡运输问题和产销不平衡运输问题;通常将产销不平衡问题转化为产销平衡问题来处理;运输问题的条件包括需求假设和成本假设.需求假设指每一个产地都有一个固定的供应量所有的供应量都必须配送到目的地.与之类似,每一个目的地都有一个固定的需求量,整个需求量都必须有出发地满足;成本假设指从任何一个产地到任何一个销地的配送成本和所配送的数量的线性比例关系.产销平衡运输问题的一般提法是: 假设某物资有m个产地a1,a2,?,am;各地产量分别为b1,b2,?,bn,物资从产地Ai运往销地Bj的单位运价为cij,满足:

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决策问题,贴近生活,很好的吧线性规划应用到生活实践中。 1、简单线性问题步骤简单介绍 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际容,要明确目标函数和约束条件,通过表格的形式把问题中的已知

整数线性规划理论

整数线性规划理论 §1 概论 1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型整数线性规划。目前所流行的求解整数规划的方法,往 1.2 如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。 2o 变量部分限制为整数的,称混合整数规划。 1.3 整数规划特点 (i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 例1 原线性规划为 21min x x z += 0,0,5422121≥≥=+x x x x 其最优实数解为:4 5min ,4 5,021===z x x 。LINGO1.lg4 LINGO11.lg4 ③有可行解(当然就存在最优解),但最优解值变差。 例2 原线性规划为 21m i n x x z += 0,0,6422121≥≥=+x x x x 其最优实数解为:2 3min ,23,021===z x x 。 若限制整数得:2min ,1,121===z x x 。LINGO2.lg4 LINGO21.lg4 (ii ) 整数规划最优解不能按照实数最优解简单取整而获得。 1.4 求解方法分类: (i )分枝定界法—可求纯或混合整数线性规划。 (ii )割平面法—可求纯或混合整数线性规划。 (iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。 (iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。 (v )蒙特卡洛法—求解各种类型规划。 下面将简要介绍常用的几种求解整数规划的方法。 §2 分枝定界法 对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行

整数线性规划word版

第三章 整数线性规划 本章, 我们介绍三种解决整数线性规划问题的软件: 第一种: MATLAB 中的optimization toolbox 中的若干程序; 第二种: LINDO 软件; 第二种: LINGO 软件. 1. MATLAB 程序说明 程序名: intprogram, L01p_e, L01p_ie, transdetobi, biprogram intprogram 是利用分支定界法解决整数规划问题, 是全部的整数规划问题; L01p_e 是利用枚举法解决0-1规划问题, 变量要求全部为0或者1; L01p_ie 是利用隐枚举法解决0-1规划问题, 变量要求全部为0或者1; Transdetobi 是枚举法和隐枚举法中利用到的将十进制数转化为二进制数的函数; Biprogram 是MATLAB6.5以上版本中有的求解0-1规划的函数的程序. intprogram 执行实例1: 12 121212max 2010s.t.5424 2513 ,0, f x x x x x x x x =++≤+≤≥ 且为整数 在命令窗口的程序执行过程和结果如下: >> c=[-20,-10]; %将最大转化为最小; >> a=[5,4;2,5]; >> b=[24;13]; >> [x,f]=intprogram(c,a,b,[0;0],[inf;inf],[],0,0.0001) % c,a,b 之后[0;0] is the value of low bound;[inf;inf] is the value of up bound;[] is the initialization;0 is the number of the equation constraints; 0.0001 is the concise rate. x = 4.0000 1.0000 f = -90 intprogram 执行实例2: 书中例题3.3.1 在命令窗口的程序执行过程和结果如下: >> c=[-1,-1]; >> a=[-4,2;4,2;0,-2]; >> b=[-1;11;-1];

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

整数线性规划

整数线性规划 【数学模型】 m in T x f x st. A x b ?≤ A eq x b eq ?= lb x ub ≤≤ i x 取值为整数 其中f , x , b , beq , lb 和ub 为向量,A 和Aeq 为矩阵。 【函数】 intprog 【说明】 在Matlab 中无求解整数线性规划的现成函数,利用Matlab 的线性规划函数linprog 来编写整数线性规划函数,输入与输出与linprog 类似,采用分枝定界法来实现。 Matlab 主程序intprog 如下: function [x,fval,status] = intprog(f,A,B,I,Aeq,Beq,lb,ub,e) %整数规划求解函数 intprog() % 其中 f 为目标函数向量 % A 和B 为不等式约束 Aeq 与Beq 为等式约束 % I 为整数约束 % lb 与ub 分别为变量下界与上界 % x 为最优解,fval 为最优值 % 控制输入参数 if nargin < 9, e = 0.00001; if nargin < 8, ub = []; if nargin < 7, lb = []; if nargin < 6, Beq = []; if nargin < 5, Aeq = []; if nargin < 4, I = [1:length(f)]; end , end , end , end , end , end %求解整数规划对应的线性规划,判断是否有解 options = optimset('display','off'); [x0,fval0,exitflag] = linprog(f,A,B,Aeq,Beq,lb,ub,[],options); if exitflag < 0 disp('没有合适整数解'); x = x0; fval = fval0; status = exitflag; return ; else %采用分支定界法求解

线性规划建模问题

线性规划建模问题 1、招聘问题 新机电器始创于1989年,是高低压电器元件、成套装置附件、高压电控电器配套件的专业生产制造商,是国家的高、低压电器开关行业协会理事单位,在业内享有很高声誉。新机电器已发展成为拥有八家子公司,在永嘉、温州、厦门、青田、陕西均有设厂。 工种:普车车工、数控车工、装配工、检验员、计算机绘图员各1名。 要求:具有良好的工作心态,吃苦耐劳,虚心好学,积极进取,有团队协作精神以及良好的沟通能力。 面试须知: 岗位安排方案完成后,新机为前往厂内实习的人员,提供了往返车费,总共是46元。获悉该厂又分新、旧两个厂区,要求每区至少去一名同学,且去旧厂区面试的同学比新厂区至少多一名。 已知前往新厂区每位同学的往返车费是4元,该厂区为每人提供的考虑岗位数为5个;旧厂区每位同学的往返车费是6元,而为每人可供考虑的岗位数为3个。 建模分析: 分析:以两组为基本单位,共同出谋划策,怎样合理地安排分别前往新、旧两区的人数,并能使面试时可选择的空缺岗位数达到最多,这样每人实习录用的机会就增多。请问岗位最多是多少? 假设: 问题解答: 解:设前往新、旧厂区的 人数分别为y x,,设岗位数 为z,则根据题意得, y x z3 5+ =,且 1,1 1 4646 x y y x x y ≥≥ ? ? ≥+ ? ?+≤ ? y=1

在坐标系中将各不等式区域表示如下: 我们发现当5 ,4= =y x时,不等式所夹的区域最大,因此,前往新、旧厂区的人数分别为4、5时,可供选择的岗位数最大,为35个。 2、已知高翔工业区内的新机厂区并不是真正的加工厂,实际上只完成装配工作,所需配件由青田与陕西两个厂区供应,而这两个厂生产出的零部件毛利价格不同。 拿“JN15-12-31.5型户内高压接地开关”为例,扭簧为其中的配件之一,而青田与陕西产的扭簧可获利润不同,毛利价格现列表如下: 要求:每日由青田与陕西厂区供应的货品总和需保持在500—1000件之间,而且青田厂区的产品数至少要比陕西的多100件,下面请你给出一项合理的方案,将货源如何进行调配,才能使我厂每日的毛利最多?最多为多少?方案的好坏,以及策划的速度快慢都直接影响到你在实习期间以及今后工作岗位的调动及职务与薪酬。 问题解决: 解:设每日青田与陕西厂区所提供的货品数分别为y x,,设每日扭簧的毛利为z元,则根 据题意得:y x z20 15+ =,且 0,0 5001000 100 x y x y x y ≥≥ ? ? ≤+≤ ? ?≥+ ? ,在坐标系中将各不等式的区域表示如

非线性规划模型

非线性规划模型 在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。 一、非线性规划的分类 1无约束的非线性规划 当问题没有约束条件时,即求多元函数的极值问题,一般模型为 ()min 0 x R f X X ∈??? ≥?? 此类问题即为无约束的非线性规划问题 1.1无约束非线性规划的解法 1.1.1一般迭代法 即为可行方向法。对于问题()min 0x R f X X ∈??? ≥?? 给出)(x f 的极小点的初始值)0(X ,按某种规律计算出一系列的),2,1()(Λ=k X k ,希望点阵}{)(k X 的极限*X 就是)(x f 的一个极小点。 由一个解向量) (k X 求出另一个新的解向量)1(+k X 向量是由方向和长度确定的,所以),2,1()1(Λ=+=+k P X X k k k k λ 即求解k λ和k P ,选择k λ和k P 的原则是使目标函数在点阵上的值逐步减小,即

.)()()(10ΛΛ≥≥≥≥k X f X f X f 检验}{)(k X 是否收敛与最优解,及对于给定的精度0>ε,是否ε≤?+||)(||1k X f 。 1.1.2一维搜索法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维搜索的方法很多,常用的有: (1)试探法(“成功—失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等); (3)微积分中的求根法(切线法,二分法等)。 考虑一维极小化问题 )(min t f b t a ≤≤ 若)(t f 是],[b a 区间上的下单峰函数,我们介绍通过不断地缩短],[b a 的长度,来搜索得)(min t f b t a ≤≤的近似最优解的两个方法。通过缩短区间],[b a ,逐步搜索得 )(min t f b t a ≤≤的最优解*t 的近似值 2.1.3梯度法 选择一个使函数值下降速度最快的的方向。把)(x f 在) (k X 点的方向导数最小的方向 作为搜索方向,即令)(k k X f P -?=. 计算步骤: (1)选定初始点0 X 和给定的要求0>ε,0=k ; (2)若ε

0-1型整数线性规划模型理论

0-1型整数线性规划模型理论 (1) 0-1型整数线性规划 0-1型整数线性规划是一类特殊的整数规划,它的变量仅取值0或1.其模型如下: T min ..01(1,2, ,)j f s t x j n =??=?c x Ax =b 取或 其中()T 12,,,,n c c c =c ()T 12,,,,n x x x =x (),ij m n a ?=A ()T 12,,,.m b b b =b 称此时的决策变量为0-1变量,或称二进制变量.在实际问题中,如果引进0-1变量,就可以把各种需要分别讨论的线性(或非线性)规划问题统一在一个问题中讨论了. (2) 求解0-1型整数线性规划的分支界定法Matlab 指令 x = bintprog(f,A,b): 求解0-1型整数线性规划,用法类似于linprog. x = bintprog(f,A,b,Aeq,beq): 求解下述线性规划问题: T min ,z =f x ≤Ax b ,≤Ax b ,?≤Aeq x beq ,x 分量取0或1. x = bintprog(f,A,b,Aeq,beq,x0): 指迭代初值x0,如果没有不等式约束,可用[]代替A,b 表示默认,如果没有等式约束,可用[]代替Aeq 和beq 表示默认;用[x,fval]代替上述各命令行中左边的x,则可得到最优解处的函数值fval. 例如:求解0-1型整数线性规划模型: 1min n i i Z x ==∑ ()()() 123453568946791234712567 5812923 2200..20 0020 01(1,2,,9)j x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x x j ?-++++≤-?-++++≤-??-+++≤-??--+≤?-≤??--+≤??-≤?-+≤??--+≤??==? 或 用Matlab 软件编程可解得1236791x x x x x x ======,其他变量为0,共六门课,满足

相关主题
文本预览
相关文档 最新文档