当前位置:文档之家› 高中数学抛物线练习题及答案

高中数学抛物线练习题及答案

高中数学抛物线练习题及答案
高中数学抛物线练习题及答案

高中数学抛物线练习题及答案

1.2021·宜春模拟动点P到点A0,2的距离比它到直线l:y=-4的距离小2,则动点P的轨迹方程为

Ay2=4x By2=8x

Cx2=4y Dx2=8y

2.若抛物线y2=2pxp>0的焦点在圆x2+y2+2x-3=0上,则p=

A B1 C2 D 3

3.抛物线y=-2x2上的一点M到焦点的距离为1,则点M的纵坐标是

A B C- D-

4.正三角形的一个顶点位于原点,另外两个顶点在抛物线y2=4x上,则这个正三角形的边长为

A4 B8 C8 D16

5.已知抛物线y2=2pxp>0,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为

Ax=1 Bx=-1

Cx=2 Dx=-2

6.直线l过抛物线y2=2pxp>0的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=4,=3,则p=

A2 B C D4

7.2021·西安模拟若双曲线-=1a>b>0的左右焦点分别为F1,F2,线段F1F2被抛物线

x=y2的焦点分成3∶2的两段,则此双曲线的离心率为

A B C D

8.能力挑战题若已知点Q4,0和抛物线y=x2+2上一动点Px,y,则y+|PQ|最小值为

A2+2 B11

C1+2 D6

9.以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为.

10.2021·巢湖模拟抛物线y=x2的焦点与双曲线-=1的上焦点重合,则m= .

11.2021·铜川模拟已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A 的坐标是4,a,则当|a|>4时,|PA|+|PM|的最小值是.

12.已知圆心为P的动圆与直线y=-2相切,且与定圆x2+y-12=1内切,记点P的轨迹为曲线E.

1求曲线E的方程.

2设斜率为2的直线与曲线E相切,求此时直线到原点的距离.

13.2021·宝鸡模拟已知抛物线C:y2=2pxp>0过点A1,-2.

1求抛物线C的方程,并求其准线方程.

2是否存在平行于OAO为坐标原点的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.

14.能力挑战题如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,A,B是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=,|AF2|=.

1求曲线C1和C2的方程.

2设点C,D是曲线C2所在抛物线上的两点如图.设直线OC的斜率为k1,直线OD的斜率为k2,且k1+k2=,证明:直线CD过定点,并求该定点的坐标.

1.【解析】选D.由已知得,动点P到点A0,2的距离与它到直线l:y=-2的距离相等,根据抛物线的定义得,该轨迹为以A0,2为焦点,y=-2为准线的抛物线,且=2,∴p=4.又焦点在y轴上,开口向上,所以所求方程为:x2=8y.

2.【解析】选C.由已知,0在圆x2+y2+2x-3=0上,所以有+2×-3=0,

即p2+4p-12=0,解得p=2或p=-6舍去.

3.【解析】选D.由抛物线y=-2x2得x2=-y,

所以其焦点为F0,-,

设点M纵坐标为y0,

由抛物线定义得-y0=1,得y0=-.

【方法技巧】求解抛物线上的点到焦点的距离和到准线的距离问题的技巧

抛物线上的点到焦点的距离与抛物线上的点到准线的距离经常相互转化:1若求点到焦点的距离,则可联想点到准线的距离;2若求点到准线的距离,则经常联想点到焦点的距离.解题时一定要注意.

4.【解析】选B.设其中一个顶点为x,2,∵是正三角形,∴=tan 30°=,即=,

∴x=12.

∴除原点外的另外两个顶点是12,4与12,-4,

∴这个正三角形的边长为8.

5.【解析】选B.方法一:设Ax1,y1,Bx2,y2,由题意知直线AB的方程为:y=x-,与

y2=2px联立得:y2-2py-p2=0,∴y1+y2=2p,

由题意知:y1+y2=4,

∴p=2,∴抛物线的方程为y2=4x,

其准线方程为x=-1,故选B.

方法二:设Ax1,y1,Bx2,y2,

由题意得y1+y2=4,=2px1,=2px2,

两式相减得:kAB====1,∴p=2,

∴抛物线的方程为y2=4x,其准线方程为x=-1.

6.【解析】选C.过A,B分别作准线的垂线交准线于E,D.因为|AF|=4,=3,所以

|AE|=4,|CB|=3|BF|,且|BF|=|BD|,设|BF|=|BD|=a,则|BC|=3a,根据三角形的相似性可得=,即=,解得a=2,所以=,即==,

所以p==,选C.

7.【解析】选D.由已知得F1-c,0,F2c,0,

抛物线x=y2,即y2=2bx的焦点F,0,

依题意=.

即=,得:5b=2c?25b2=4c2,

又b2=c2-a2,∴25c2-a2=4c2,

解得c=a.

高中数学抛物线习题精选(带答案)

抛物线习题精选 一、选择题 1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为(). A.45°B.60°C.90°D.120° 2.过已知点且与抛物线只有一个公共点的直线有(). A.1条B.2条C.3条D.4条 3.已知,是抛物线上两点,为坐标原点,若 ,且的垂心恰好是此抛物线的焦点,则直线的方程是(). A.B.C.D. 4.若抛物线()的弦PQ中点为(),则弦的斜率为() A.B.C.D. 5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是() A.B.C.D. 6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于() A.4 B.-4 C.D.

7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是() A.B. C.D. 8.当时,关于的方程的实根的个数是() A.0个B.1个C.2个D.3个 9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于() A.-1 B.1 C.7 D.9 10.以抛物线()的焦半径为直径的圆与轴位置关系为() A.相交 B.相离 C.相切 D.不确定 11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是() A.10 B.8 C.6 D.4 12.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小() A.小于B.等于C.大于D.不能确定 13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0) 14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为() A.1 B.C.2 D.

高中抛物线知识点归纳总结与练习题及答案

一. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 二. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0( p ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ?,以及2121,x x x x +,还可进一步求出

b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 1. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2 122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y = =+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存 在,且不等于零)

高中数学抛物线的一个重要模型(模型解题法)

【模型解题法】高中数学抛物线焦点弦模型 【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。 过抛物线)0(22 >=p px y 的焦点弦,A B 分别抛物线准线l 的垂线,交l 构成直角梯形ABCD (图1).些重要结论呢? 【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥o 轴()时,称弦AB 为通径。 例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ?的面积. 例4. 连,(2)CF DF CF DF ⊥,求证图. 例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项, 即 2 FE CE DE =?. 例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22 >=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C 在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为 2sin p θ . 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2 NF AF BF =?. 例12. 已知抛物线y x 42 =的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M. (I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →· AB → 为定值;

【模型解析】 设直线AB 的倾角为θ,当=90AB x θ⊥o 轴()时,称弦AB 为通径。 例1 求通径长. 解: 由于=90AB x θ⊥o 轴(),)0,2 ( p F , ∴ 当2 p x - =时,代入)0(22 >=p px y 中,得22,.B y p p y p ===-A ,故y ∴ 2AB p =. 例2 求焦点弦AB 长. 解法一:设),(),,(2211y x B y x A ,当90AB θ≠o p 时,设直线的方程为:y=k(x-).2 由22, () 2y px p y k x ?=??=-??得22222 (2)04p k k x p k x -++=, ......① ∴ 1222 (1)x x p k +=+ . ......② Q =AB AF BF AD BC =++,准线方程2 p x -=, ∴ 1212()22 p p AB x x x x p =+++=++. 由②知,2 22.p AB p k =+ ......③ 当90θ=o ,由(一)知2AB p =. 说明:Q tan k θ= ∴ 22222222 11cos sin cos 1 111.tan sin sin sin k θθθθθθθ ++=+=+== 因此,由 ③ 得22122(1).sin p AB p k θ =+ = 特别,当902,AB p θ==o 时,上式为是通径长。 解法二:设),(),,(2211y x B y x A . 902;AB p θ==o 时,上式为 90AB θ≠o 时,设直线的方程为11 ()2tan p x my m k θ =+ ==其中.

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

高考数学抛物线试题汇编

第三节 抛物线 高考试题 考点一 抛物线的定义和标准方程 1.(2010年陕西卷, 理8)已知抛物线y 2 =2px(p>0)的准线与圆x 2 +y 2 -6x-7=0相切, 则p 的值为( ) (A) 12 (B)1 (C)2 (D)4 解析:圆x 2 +y 2 -6x-7=0化为标准方程为(x-3)2 +y 2 =16, ∴圆心为(3, 0), 半径是4, 抛物线y 2 =2px(p>0)的准线是x=-2 p , ∴3+ 2 p =4, 又p>0, 解得p=2.故选C. 答案:C 2.(2011年辽宁卷, 理3)已知F 是抛物线y 2 =x 的焦点, A, B 是该抛物线上的两点, |AF|+|BF|=3, 则线段AB 的中点到y 轴的距离为( ) (A) 34 (B)1 (C) 54 (D) 74 解析:∵|AF|+|BF|=x A +x B +12 =3, ∴x A +x B = 52 . ∴线段AB 的中点到y 轴的距离为2 A B x x += 5 4 .故选C. 故选C. 答案:C 3.(2020年四川卷, 理8)已知抛物线关于x 轴对称, 它的顶点在坐标原点O, 并且经过点M(2, y 0).若点M 到该抛物线焦点的距离为3, 则|OM|等于( ) (C)4 解析:由题意设抛物线方程为y 2 =2px(p>0), 则M 到焦点的距离为x M + 2p =2+2 p =3, ∴p=2, ∴y 2 =4x.∴ 2 0y =4×2, ∴故选B. 答案:B 4.(2010年上海卷, 理3)动点P 到点F(2, 0)的距离与它到直线x+2=0的距离相等, 则点P 的轨迹方程是 . 解析:由抛物线的定义知, 点P 的轨迹是以F 为焦点, 定直线x+2=0为准线的抛物线, 故其标准方程为y 2 =8x. 答案:y 2 =8x 5.(2020年陕西卷, 理13)如图所示是抛物线形拱桥, 当水面在l 时, 拱顶离水面2 m, 水面宽4 m.水位下降

高考数学抛物线试题汇编

第三节 抛物线 高考试题 考点一 抛物线的定义和标准方程 1.(2010年陕西卷,理8)已知抛物线y 2 =2px (p>0)的准线与圆x2 +y 2 -6x-7=0相切,则p 的值为( ) (A) 1 2 (B )1 (C)2(D)4 解析:圆x 2 +y 2 -6x -7=0化为标准方程为(x-3)2 +y 2 =16,∴圆心为(3,0),半径是4, 抛物线y 2 =2px(p >0)的准线是x =- 2 p , ∴3+ 2 p =4, 又p >0,解得p =2.故选C. 答案:C 2.(2011年辽宁卷,理3)已知F 是抛物线y 2 =x 的焦点,A,B是该抛物线上的两点,|AF|+|BF |=3,则线段AB的中点到y 轴的距离为( ) (A) 3 4 (B)1 (C) 54 (D) 74 解析:∵|A F|+|BF|=xA +xB + 1 2 =3, ∴xA+xB= 52 . ∴线段AB 的中点到y 轴的距离为 2A B x x =5 4 .故选C . 故选C. 答案:C 3.(2012年四川卷,理8)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y 0).若点M 到该抛物线焦点的距离为3,则|O M|等于( )

(A)2 2 (B)2 3(C)4 (D)2 5 解析:由题意设抛物线方程为y 2 =2px(p>0),则M 到焦点的距离为xM+ 2p =2+2 p =3,∴p=2,∴y 2 =4x .∴ 20y =4×2,∴|OM|=20 4y += 48+=23.故选B. 答案:B 4.(2010年上海卷,理3)动点P 到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P 的轨迹方程是. 解析:由抛物线的定义知,点P的轨迹是以F 为焦点,定直线x+2=0为准线的抛物线,故其标准方程为y 2 =8x. 答案:y2 =8x 5.(2012年陕西卷,理13)如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.水位下降 1 m 后,水面宽m . 解析:建立如图所示的平面直角坐标系,设抛物线方程为 x 2 =-2py (p >0), 则A (2,-2),将其坐标代入 x 2 =-2py,得p=1.∴x 2 =-2y . 当水面下降1 m,得D(x 0,-3)(x 0>0), 将其坐标代入x 2 =-2y得2 0x =6, ∴x 06,∴水面宽6 m. 答案6

抛物线及其性质知识点大全和经典例题及解析

抛物线及其性质 【考纲说明】 1、掌握抛物线的简单几何性质,能运用性质解决与抛物线有关问题。 2、通过类比,找出抛物线与椭圆,双曲线的性质之间的区别与联系。 【知识梳理】 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2p x =- 2p x = 2p y =- 2p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 以AB 为直径的圆必与准线l 相切

3.抛物线)0(22>=p px y 的几何性质: (1)范围 因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点( ,0)2p F ,准线2 p x -=,焦准距p . (4) 焦点弦:抛物线)0(22 >=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。 4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点( ,0)2 p F (1) 若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:21 24 p x x =,2 12y y p =-。 (2) 若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α =(α≠0)。 (3) 已知直线AB 是过抛物线2 2(0)y px p =>焦点F , 112AF BF AB AF BF AF BF AF BF p ++===?? (4) 焦点弦中通径最短长为2p 。通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径. (5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则 AB =||1 1||1212212y y k x x k -+ =-+= 【经典例题】 (1)抛物线——二次曲线的和谐线 椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.

高中数学抛物线复习(几个常见结论及其应用)

抛物线的几个常见结论及其应用 抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。 结论一:若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2 124 p x x =,212y y p =-。 证明:因为焦点坐标为F( 2 p ,0),当AB 不垂直于x 轴时,可设直线AB 的方程为: ()2p y k x =-, 由2 ()22p y k x y px ?=-???=? 得: 2220ky py kp --= ∴212y y p =-,2242 12 1222244y y p p x x p p p =?==。 当AB ⊥x 轴时,直线AB 方程为2 p x =,则1y p =,2y p =-,∴2 12y y p =-,同上也有:2124p x x =。 例:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:11AF BF +为定值。 证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+ ,22 p BF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2 124 p x x =。 则:212 121211()()()2224AF BF AB AB p p AF BF AF BF x x x x x x ++===?+++++ =22 2()424AB p p p p AB p =+-+(常数) 结论二:(1)若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α =(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 证明:(1)设11(,)A x y ,22(,)B x y ,设直线AB:()2 p y k x =- 由2()22p y k x y px ? =- ?? ?=? 得:,2220ky py kp --= ∴122p y y k +=,212y y p =-, ∴12AB y -==222222(1)2(1tan )2tan sin p k p P k ααα++===。 易验证,结论对斜率不存在时也成立。 (2)由(1):AB 为通径时,90α=o ,2 sin α的值最大,AB 最小。 例:已知过抛物线2 9y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。 解:由结论二,12= 29 sin α (其中α为直线AB 的倾斜角), 则sin 2α=± ,所以直线AB 倾斜角为3 π或23π。

高中数学《抛物线》练习题

高中数学《抛物线》练习题 一、选择题: 1. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( ) (A) 18 (B)41 (C) 2 1 (D)1 2. (上海)过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A .有且仅有一条 B .有且仅有两条 C .有无穷多条 D .不存在 3. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( ) (A) 2 (B) 3 (C) 4 (D) 5 4. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42 =的准线重合,则该双曲线与抛物线x y 42 =的交点到原点的距离是 ( ) A .23+6 B .21 C .21218+ D .21 5 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) ( A ) 1617 ( B ) 1615 ( C ) 8 7 ( D ) 0 6. (湖北卷)双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( ) A . 163 B . 8 3 C . 3 16 D . 3 8 二、填空题: 7.顶点在原点,焦点在x 轴上且通径长为6的抛物线方程是 . 8.若抛物线m x x y +-= 22 12 的焦点在x 轴上,则m 的值是 . 9.过(-1,2)作直线与抛物线x y 42 =只有一个公共点,则该直线的斜率为 . 10.抛物线2 2x y =为一组斜率为2的平行弦的中点的轨迹方程是 . 三、解答题: 11. (江西卷)如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. (1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹 12. (上海)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.

高中数学抛物线压轴题答案

综合题答案 1.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方 程的两个根,点C在x轴负半轴上,且AB:AC=1:2 (1)求A、C两点的坐标; (2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围; (3)点P是y轴上的点,在坐标平面内是否存在点Q,使以 A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由. 1答案:

2.如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(-2,0),与y轴交于点C(0,3).(1)求出这个二次函数的解析式;(2)直接写出点B的坐标为______; (3)在x轴是否存在一点P,使△ACP是等腰三角形?若存在,求出满足条件的P点坐标;若不存在,请说明理由;(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大?若存在,请求出Q点坐标及面积的最大值;若不存在,请说明理由. 解答:解:(1)∵y=ax2+x+c的图象经过A(-2,0),C(0,3), ∴c=3,a=-, ∴所求解析式为:y=-x2+x+3; (2)(6,0); (3)在Rt△AOC中, ∵AO=2,OC=3, ∴AC=, ①当P1A=AC时(P1在x轴的负半轴),P1(-2-,0); ②当P2A=AC时(P2在x轴的正半轴),P2(-2,0); ③当P3C=AC时(P3在x轴的正半轴),P3(2,0); ④当P4C=P4A时(P4在x轴的正半轴), 在Rt△P4OC中,设P4O=x,则(x+2)2=x2+32 解得:x=, ∴P4(,0);

教案高中数学抛物线高考经典例题

(教案)高中数学抛物线-高考经典例题

————————————————————————————————作者:————————————————————————————————日期:

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK == 。 ⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、 准线是公切线。 ⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样 的圆过定点F 、过顶点垂直于轴的直线是公切线。 ⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 4抛物线px y 22 =的图像和性质: ①焦点坐标是:?? ? ??02,p , ②准线方程是:2 p x - =。 ③焦半径公式:若点),(00y x P 是抛物线px y 22 =上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02 p PF x =+ , ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 或P px y y x 2),(2 =其中 5一般情况归纳: 方程 图象 焦点 准线 定义特征 y 2=kx k>0时开口向右 (k/4,0) x= ─k/4 到焦点(k/4,0)的距离等于到准线x= ─k/4的距离 k<0时开口向左 x 2=ky k>0时开口向上 (0,k/4) y= ─k/4 到焦点(0,k/4)的距离等于到准线y= ─k/4的距离 k<0时开口向下 抛物线的定义: 例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. 分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义. 答案:y 2 =-16x 例2:斜率为1的直线l 经过抛物线y 2 =4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的 长. C N M 1 Q M 2 K F P o M 1 Q M 2 K F P o y x

高中数学抛物线练习(有答案)

1抛物线的定义:平面与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2 抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、 准线是公切线。 ⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样 的圆过定点F 、过顶点垂直于轴的直线是公切线。 ⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。 3抛物线标准方程的四种形式: 4 抛物线 5一般情况归纳:

抛物线的定义: 例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. 分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义. 例2:斜率为1的直线l 经过抛物线y 2 =4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长. 分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和. 解:如图8-3-1,y 2 =4x 的焦点为F (1,0),则l 的方程为y =x -1. 由???+==1 42x y x y 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B 两点到准线的距离为A ',B ',则 ()()()8262112121=+=++=+++='+'x x x x B B A A 点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。 例3:(1) 已知抛物线的标准方程是y 2 =10x ,求它的焦点坐标和准线方程; (2) 已知抛物线的焦点是F (0,3)求它的标准方程; (3) 已知抛物线方程为y =-mx 2 (m >0)求它的焦点坐标和准线方程; (4) 求经过P (-4,-2)点的抛物线的标准方程; 分析:这是为掌握抛物线四类标准方程而设计的基础题,解题时首先分清属哪类标准型,再录求P 值(注意p >0).特别是(3)题,要先化为标准形式:y m x 12 - =,则m p 1 2=.(4)题满足条件的抛物线有向左和向下开口的两条,因此有两解. 答案:(1) ??? ??025 ,F ,25- =x .(2) x 2=12y (3) ??? ? ?-m F 410,,m y 41= ;(4) y 2=-x 或x 2 =-8y . 例4 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2); (2)焦点在直线x -2y -4=0上 分析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p ;从实际分析,一般需确定p 和确定开口方向两个条件,否则,应展开相应的讨论 解:(1)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0), ∵过点(-3,2), ∴4=-2p (-3)或9=2p ·2 ∴p = 32或p =4 9 ∴所求的抛物线方程为y 2=- 34x 或x 2=29y ,前者的准线方程是x =31,后者的准线方程是y =-8 9 (2)令x =0得y =-2,令y =0得x =4, ∴抛物线的焦点为(4,0)或(0,-2)

(完整)高中数学抛物线练习题.doc

高中数学《抛物线》练习题 一、选择题: 1. (浙江 )函数 y =ax 2+1 的图象与直线 y =x 相切,则 a =( ) (A) 1 (B) 1 (C) 1 (D)1 8 4 2 2. (上海)过抛物线 y 2 4x 的焦点作一条直线与抛物线相交于 A 、 B 两点,它们的横坐标之和等于 5,则 这样的直线( ) A .有且仅有一条 B .有且仅有两条 C .有无穷多条 D .不存在 3. 抛物线 x 2 4 y 上一点 A 的纵坐标为 4,则点 A 与抛物线焦点的距离为 ( ) (A) 2 (B) 3 (C) 4 (D) 5 y 2 4. (辽宁卷)已知双曲线的中心在原点,离心率为 3 .若它的一条准线与抛物线 4x 的准线重合,则 该双曲线与抛物线 y 2 4x 的交点到原点的距离是 ( ) A .2 3+ 6 B . 21 C .18 12 2 D . 21 5 .(江苏卷) 抛物线 y=4 x 2 上的一点 M 到焦点的距离为 1,则点 M 的纵坐标是 ( ) 17 15 ( C ) 7 (D)0 ( A ) ( B ) 8 16 16 6. (湖北卷)双曲线 x 2 y 2 1(mn 0) 离心率为 2,有一个焦点与抛物线 y 2 4x 的焦点重合,则 mn m n 的值为 ( ) A . 3 B . 3 C . 16 D . 8 16 8 3 3 二、填空题: 7.顶点在原点,焦点在 x 轴上且通径长为 6 的抛物线方程是 . 8.若抛物线 y 1 x 2 2x m 的焦点在 x 轴上,则 m 的值是 . 2 9.过(- 1, 2)作直线与抛物线 y 2 4x 只有一个公共点,则该直线的斜率为 . 10.抛物线 y 2x 2 为一组斜率为 2 的平行弦的中点的轨迹方程是 . 三、解答题: y M 11. (江西卷) 如图, M 是抛物线上 y 2=x 上的一点, 动弦 ME 、MF 分别交 x 轴于 A 、 B B 两点,且 MA=MB. O A x ( 1)若 M 为定点,证明:直线 EF 的斜率为定值; E ( 2)若 M 为动点,且∠ EMF=90 °,求△ EMF 的重心 G 的轨迹 F 12. (上海)本题共有 3 个小题 ,第 1 小题满分 4 分, 第 2 小题满分 6 分, 第 3 小题满分 6 分.

高中数学抛物线经典习题

1. 一个动圆经过点F (-1,0),又与直线L:x=1相切,则动圆圆心的轨迹方程是( ) A.x y 42= B.x y 22-= C.x y 42-= D.x y 82-= 2.顶点在原点,且过点P (-4,4)的抛物线标准方程是( ) A.x y 42-= B.y x 42= C.x y 42-=或y x 42= D.x y 42=或y x 4-2= 3.设抛物线的顶点在原点,且其准线方程为:x=2,则抛物线的方程为( ) A.x y 42= B.y x 82-= C.x y 82= D.x y 82-= 4.抛物线)0(22>=p px y 的焦点为F ,倾斜角为 60的直线L 过点F 且与抛物线的一个交点为A ,3=AF ,则抛物线的方程为( ) A.x y 32= B.x y 292= C.x y 232=或x y 2 92= D.x y 32=或x y 92= 5.过点(-1,0)且与抛物线x y =2有且仅有一个公共点的直线有( ) A.1条 B.2条 C.3条 D.4条 6.已知动圆圆心在抛物线x y 42=上,且动圆与直线x=-1相切,则动圆必过定点( ) A.(2,0) B.(1,0) C.(0,1) D.(0,2) 7.已知过抛物线x y 42=焦点F 的直线与抛物线交于A ,B 两点,且两点的横坐标之和为4,则线段AB 的长度为( ) A.4 B.5 C.6 D.8 8.已知过抛物线x y 42=焦点F 的直线与抛物线交于A ,B 两点(其中A 点在第一象限),3=,则直线L 的斜率为( ) A.2 B.2 1 C.23 D.3 9. 抛物线C:x y 42=的准线L 与x 轴的交点为A ,焦点为F ,若P 点为抛物线上的任意一点,设PF PA t =, 则t 的最大值为( ) A.1 B.2 C.2 D.4 10.已知点P 为抛物线x y 42=上的一个动点,设点P 到y 轴的距离为d ,对于定点A (3,4),d PA +的最

高中数学教案抛物线

抛物线 一、知识网络 二、高考考点 1.抛物线定义的应用; 2.抛物线的标准方程及其几何性质;焦点、准线方程; 3.抛物线的焦点弦引出的问题; 4.直线与抛物线相交(或相切)引出的求法或范围问题; 5.抛物线与三角形(或四边形)问题。 三、知识要点 (一)定义与推论 1.定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的准线. 这一定义为抛物线上任意一点M的焦点半径与水平线段(或垂直线段)的等价转换奠定理论基础. 2.推论:抛物线的焦点半径公式 设为抛物线上任意一点,则 设为抛物线上任意一点,则 其它情形从略。 (二)标准方程与几何性质 1.标准方程设抛物线的焦点F到准线l的距离为p(焦参数),则在特定直角坐标系下导出抛物线的标准方程: ①②③④ 认知:上述标准方程中的一次项的功能:一次项本身决定抛物线的形状与位置. 其中,一次项所含变元对应的数轴为对称轴(焦点所在数轴); 一次项系数的符号决定焦点所在半轴(或开口方向):系数为正,焦点在相应的正半轴上(或开口朝着对称轴正向),反之,焦点在负半轴上(或开口朝着对称轴负向); 一次项系数的绝对值决定抛物线开口大小(形状):恰等于焦点参数的2倍. 2.几何性质对于抛物线 (1)范围:这条抛物线在y轴右侧,且向右上方和右下方无限延伸; (2)对称性:关于x轴对称轴为这条抛物线的轴. 认知:抛物线的准线与其对称轴垂直(抛物线主要共性之一) (3)顶点:原点O(0,0)(抛物线方程为标准方程的必要条件之一) (4)离心率:(抛物线主要共性之二) (三)挖掘与引申 1.抛物线方程的统一形式 1)顶点在原点,以x轴为对称轴的抛物线方程为,其焦点参数(一次项系数绝对值的一半); 焦点,准线; 顶点在原点,以y轴为对称轴的抛物线方程为,其焦点参数(一次项系数绝对值的一半); 焦点,准线; (2)顶点在,对称轴垂直y轴的抛物线方程为:,其焦点参数;

(完整word版)高二文科数学——抛物线练习题

高二文科数学——抛物线练习题 【知识回顾】 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。 (1)设00(,)P x y 是抛物线上的一点,则当焦点F 在x 轴上时,02 p PF x = +;当焦点F 在y 轴上时,02 p PF y = +。此公式叫做焦半径公式。 (2)设AB 是过抛物线2 2y px =的焦点F 的一条弦,则12||AB x x p =++。 一、选择题(每小题4分,共40分。答案填在答题表里) 1.经过(1,2)点的抛物线的标准方程是( ) A .y 2=4x B .x 2= 21y C . y 2=4x 或x 2=2 1 y D . y 2=4x 或x 2=4y 2.抛物线y = -2x 2的准线方程是( ) A .x = - 21 B .x =21 C . y =81 D . y = -8 1 3.动圆M 经过点A (3,0)且与直线l :x = -3相切,则动圆圆心M 的轨迹方程是 A . x y 122= B . x y 62= C . x y 32= D .x y 242= 4.动点M 到定点(4,0)F 的距离比它到定直线x +5=0的距离小1,则点M 的轨迹是( ) A .y 2=4x B .y 2=16x C .x 2=4y D .x 2=16y 5.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A .x y 162= B .y x 82-= C . x y 162=或y x 82-= D . x y 162=或y x 82= 6.抛物线y 2+4x =0关于直线x +y =0对称的曲线的方程为( ) A .x 2= -4y B .x 2=4y C .y 2=4x D .y 2= -4x 7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上的点(,2)M m -到焦点P 的距离为4,则m 的值为 ( ) A .4± B .2- C . 2-或4- D .2± 8.设AB 是抛物线py x 22 =的焦点弦,B A 、在准线上的射影分别为11B A 、,则11FB A ∠等于( ) A . ?45 B . ?60 C . ?90 D .?120 9.抛物线y =x 2上的点到直线2x -y =4的距离最短的点的坐标是( ) A .(41, 21) B .(1,1) C .(4 9 ,23) D .(2,4) 10.设F 为抛物线y x 42 =的焦点,点P 在抛物线上运动,点)3,2(A 为定点,使||||PA PF +为最小值时点P 的坐标是 ( ) A .?? ? ??41,1 B .)1,2(- C .)1,2( D .)0,0( 二、填空题(每小题4分,共16分。答案填在试卷指定的横线上) 11.抛物线y 2= -8x 的焦点到准线的距离是 12.抛物线)0(12 <=m x m y 的焦点坐标是 13.过抛物线x y 42 =的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,若621=+x x ,则 ||AB 的值是 14.设AB 是抛物线x y 22 -=的过焦点的弦,4=AB ,则线段AB 中点C 到直线1x =的距离为 【附加题】 (12广东文)(12分)在平面直角坐标系xoy 中,已知椭圆22 122:1(0)x y C a b a b +=>>的左焦 点1(10)F -,,且在(01)P ,在1C 上。 (1)求1C 的方程; (2)设直线l 同时与椭圆1C 和抛物线2 2:4C y x =相切,求直线l 的方程

高考数学抛物线大题专练30题(含详解)经典收藏版

目录 目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11

抛物线大题专练(一) 1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为; (1)求抛物线C的方程; (2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同), 求当∠MAB为钝角时,点A的纵坐标y1的取值范围. 2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切 线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N. (1)求抛物线的方程; (2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.

相关主题
文本预览
相关文档 最新文档