当前位置:文档之家› 荷载作用位置对箱梁剪力滞效应的影响_李清富

荷载作用位置对箱梁剪力滞效应的影响_李清富

荷载作用位置对箱梁剪力滞效应的影响_李清富
荷载作用位置对箱梁剪力滞效应的影响_李清富

剪力滞后效应概念普及

(shear-lag effect)在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象。剪力滞后有时也叫剪切滞后,具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪切滞后。例如在墙体上开洞以后,由于横梁变形使剪力传递存在滞后现象,使柱中正应力分布呈抛物线状,称为剪力滞后效应。 剪力滞后效应的概念是在箱梁中提出的。剪力滞后效应在T型、工型和闭合薄壁结构中(如筒结构和箱梁)表现得较为典型,在这些结构中通常把整体结构看成一个箱形的悬臂构件。当结构处于水平力作用下时,主要反应是一种应力不均匀现象,柱子之间的横梁会产生沿着水平力方向的剪切变形,由此引起弯曲时远离肋板的翼板的纵向位移滞后于肋板附近的纵向位移,当翼板与腹板交接处的正应力大于按初等梁的计算值,称为正剪力滞,反之为负剪力滞。 剪力滞概念与有效分布宽度相同,前者用不均匀应力表示,后者用一等效板宽表示。为了使简单梁理论能够用于宽翼缘梁的分析,故对翼缘定出个“有效翼缘宽度”翼缘的有效宽度为假设的翼缘宽度,沿其宽度上受均匀压缩,其压缩值如同在同样的边缘剪力作用下的实际翼缘的受载边缘数值一样。另外,有效宽度可以视为理论的翼缘宽度,该理论翼缘承受具有均匀应力的压力。该均匀应力与原型宽翼缘处的应力峰值相等,而且总压力值相等。 在框筒结构中,结构整体可以看成一个箱形的悬臂构件。在水平力作用下,柱子之间的横梁会产生沿着水平力方向的剪切变形,从而使得翼缘框架中各柱子的轴力不相等:远离腹板框架的柱轴力越来越小,翼缘框架中各柱轴力呈抛物线形,同时腹板框架中柱子的轴力也不是线性规律。这就是一种剪力滞后效应。

如何理解剪力滞后效应

1、剪力滞后效应 剪力滞后效应在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后后现象。剪力滞后,有时也叫剪切滞后,从力学本质上说,是圣维南原理,它严格地符合弹性力学的三大方程,即几何方程、物理方程、平衡方程。具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪切滞后。 : 剪力滞效应的概念是在箱梁中提出的。剪力滞通常出现在T型、工型和闭合薄壁结构当中,如筒结构和箱梁当中,主要反应的是一种应力不均匀现象,比如说:
在对称弯曲荷载作用下,如果箱梁具有初等弯曲理论中所假定的无限抗剪刚度(即时变形的平截面假定),那么弯曲正应力沿梁宽方向是均匀分布的。但是箱梁产生的弯曲的横向力通过肋板传给翼板,而剪应力在翼板上的分布是不均匀的,在交接处最大,离开肋板逐渐减小,因此剪切变形沿翼板分布是不均匀的,从而引起弯曲时远离肋板的翼板的纵向位移滞后于肋板附近的纵向位移,所以其弯曲正应力的横向分布呈曲线形状,这种现象工程界称之为“剪力滞效应”。如果翼板与腹板交接处的正应力大于按初等梁的计算值,称为正剪力滞,反之为负剪力滞。
忽略剪力滞效应的影响,就会低估箱梁腹板和翼板交接处的挠度和应力,从而导致不安全:如1969-1971年在欧洲不同地方相继发生了四起箱梁失稳或破坏事故。事故发生后,许多桥梁专家对桥梁的设计和计算方法进行了研究和分析,提出这四座桥的计算方法存在严重缺陷,其中一项就是设计中没有认真对待“剪力滞效应”,因此导致应力过分集中造成桥梁的失稳和局部破坏。又如广东省的佛陈大桥、乐从立交桥、江湾立交桥、顺德立交桥、文沙大桥等出现桥梁翼板横向裂缝,据资料显示其主要原因是未考虑剪力滞,致使实际应力大于设计应力,不能满足翼板承载力的要求而出现裂缝
英国规范和德国工业标准规范中通过翼缘有效宽度的折减来考虑剪力滞的影响,但是我国现行桥规中仅提及可参照“T”形梁的规定办理,没有箱梁有效宽度的具体规定,因此按初等梁计算在静、动载作用下纵向弯曲的应力无折减或增长系数可依。目前对于复杂受力的大跨径桥梁,我国设计人员仅凭模型试验或大型有限元技术进行剪力滞分析,如我国的钱塘江二桥、上海南浦大桥、铜陵长江公路大桥等,花费了大量人力物力。但对于一般的工程设计,却忽略剪力滞的影响,致使不断有一些宽箱梁桥出现横向裂缝.
在箱梁中,肋处的剪力流向板中传递过程,有剪力滞后现象,称之为剪力滞效应,剪力滞概念与有效分布宽度相同,前者用不均匀应力表示,后者用一等效板宽表示。其实,剪力滞效应和T型梁的有效分布宽度是同一回事,都是由于腹板的剪力流使得上翼缘的应力分布不均匀。只是T型梁用有效宽度来简化这一现象。在桥梁的箱型截面中这一现象较突出,但当跨宽比较大或者截面腹板惯性矩与翼缘惯性矩之比较小时尤其严重,一定要考虑。高层和这个类似,高层倒小与桥梁的箱型截面其实一回事。有效分布宽度由于开口截面,剪力滞多用于封闭截面。剪力滞有正剪力滞与负剪力滞之分。剪力滞影响结构设计,需将设计值提高。
剪力滞的概念是一般狭窄翼缘的剪切扭转变形不大,其受力性能接近于简单梁理论的假设,而宽翼缘因这部分的变形的存在,而使远离梁肋的翼缘不参予沉弯工作,也即受压翼缘上的压应力随着离梁肋的距离增加而减少,这种现象就成为“剪力滞后”,简称剪力滞效应。
在框筒结构中,结构整体可以看成一个箱形的悬臂构件。在水平力作用下,柱子之间的横梁会产生沿着水平力方向的剪切变形,从而使得翼缘框架中各柱子的轴力不相等:远离腹板框架的柱轴力越来越小,翼缘框架中各柱轴力呈抛物线形,同时腹板框架中柱子的轴力也不是线性规律。这就是一种剪力滞后效应。 剪力滞后效应事实存在,很难消除,只能通过其他手段考虑该影响。 如:在结构设计中往往全长加密角柱箍筋,目的之一就是增加角柱的抗剪能力,增加延性。 1、剪力滞后现象越严重,框筒结构的整体空间作用越弱;

风荷载标准值

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算

剪滞效应

英文名称:SectionDayton-MuLeightoneffect 简单的说:墙体上开洞形成的空腹筒体又称框筒,开洞以后,由于横梁变形使剪力传递存在滞后现象,使柱中正应力分布呈抛物线状,称为剪力滞后现象。剪力滞后现象使框筒结构的角柱应力集中。 目录 例子 效应特点 忽略剪力滞效应造成的事故 大跨度薄壁箱梁剪力滞效应 编辑本段例子 如:在结构设计中往往全长加密角柱箍筋,目的之一就是增加角柱的抗剪能力,增加延性。 1、剪力滞后现象越严重,框筒结构的整体空间作用越弱; 2、剪力滞后的大小与梁的刚度、柱距、结构长宽比等有关。梁刚度越大、柱距越小、结构长宽比越小,剪力滞后越小; 3、框筒结构的整体空间作用只有在结构高宽较大时才能发挥出来。 此外梁柱的刚度比、平面形状及建筑物高宽比对剪力滞后影响很大。概念设计时一定考虑全 编辑本段效应特点 剪力滞后效应在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象。剪力滞后,有时也叫剪切

滞后,从力学本质上说,是圣维南原理,它严格地符合弹性力学的三大方程,即几何方程、物理方程、平衡方程。具体表现是,在某一局部范围内,剪力 所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现 象叫剪切滞后。 剪力滞后效应通常出现在T型、工型和闭合薄壁结构中如筒结构和箱梁,在这些结构中通常把整体结构看成一个箱形的悬臂构件。在结构水平力作用下,主要反应是一种应力不均匀现象,柱子之间的横梁会产生沿着水平力方 向的剪切变形,从而引起弯曲时远离肋板的翼板的纵向位移滞后于肋板附近 的纵向位移,从而使得翼缘框架中各柱子的轴力不相等:远离腹板框架的柱 轴力越来越小,翼缘框架中各柱轴力呈抛物线形,同时腹板框架中柱子的轴 力也不是线性规律。这就是一种剪力滞后效应。当翼板与腹板交接处的正应 力大于按初等梁的计算值,称为正剪力滞,反之为负剪力滞。 编辑本段忽略剪力滞效应造成的事故 忽略剪力滞效应的影响,就会低估箱梁腹板和翼板交接处的挠度和应力,从而导致不安全:如1969-1971年在欧洲不同地方相继发生了四起箱 梁失稳或破坏事故。事故发生后,许多桥梁专家对桥梁的设计和计算方法进 行了研究和分析,提出这四座桥的计算方法存在严重缺陷,其中一项就是设 计中没有认真对待“剪力滞效应”,因此导致应力过分集中造成桥梁的失稳 和局部破坏。又如广东省的佛陈大桥、乐从立交桥、江湾立交桥、顺德立交桥、文沙大桥等出现桥梁翼板横向裂缝,据资料显示其主要原因是未考虑剪 力滞,致使实际应力大于设计应力,不能满足翼板承载力的要求而出现裂缝 编辑本段大跨度薄壁箱梁剪力滞效应

第二部分 风荷载计算

第二部分 风荷载计算 一:风荷载作用下框架的弯矩计算 (1)风荷载标准值计算公式:0k z s z W w βμμ=??? 其中k W 为垂直于建筑物单位面积上的风荷载标准值 z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w = 该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。 (2)确定各系数数值 因结构高度19.830H m m =<,高宽比19.8 1.375 1.514.4 H B ==<,应采用风振 系数z β来考虑风压脉动的影响。该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。 (3)计算各楼层标高处的风荷载z q 。攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=???得沿房屋高度分布风荷载标准值。 7.20.4 2.88z z s z z s z q βμμβμμ=?=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。其中1()q z 为迎风面,2()q z 背风面。 风正压力计算: 7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==????= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==????= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==????= 风负压力计算: 7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==????= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==????= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????=

T型悬臂梁剪力滞效应研究

T型悬臂梁剪力滞效应研究 一、问题简述 本例采用T型悬臂梁来研究刚度对剪力滞的影响,采用的是钢材Q345B跨度为5米,采用ansys进行分析,采用实体单元进行研究。通过设置界面的不同尺寸来改变截面的刚度,进而分析对剪力滞的影响。 二、剪力滞效应描述 初等梁理论中,我们假定离中性轴同一距的截面我们假定离中性轴同一距的截面在弯矩作用下,沿宽度方向截面的正应力是相等。实际上带翼缘板T梁和箱形截面梁,在对称垂直力作用下翼缘板上的正应沿宽度方向呈不均匀的分布状态。这种由于腹板处剪力流向翼缘板中传递的滞后而导致翼缘板正应力沿宽度方向呈不均匀分布的现象,称为“剪而导致翼缘板正应力沿宽度方向呈不均匀分布的现象,称为“剪滞效应”。剪力滞效应大小的程度用剪力滞系数λ表示,剪力滞系数λ表示为截面应力σ与初等梁理论计算所得应力σ之比。 三、荷载和工况设置 本例通过设置4个工况来研究T型梁不同刚度对剪力滞效应的影响,本例汇总采用均布荷载集度为q=2500N/m,现将工况设置列表如下: 表 1

其中,B1为翼缘板宽度,H1为整个截面高度,B2为腹板厚度,H2为翼缘板高度。 四、计算结果 本例通过ansys建立模型,通过剪力滞理论并结合绘图软件得出以下结果:

五、分析感悟 剪力滞效应是由于腹板在受剪的过程中将剪力传递给翼缘,从而造成翼缘正应力分布不均匀的现象,桥梁结构中的一种重要的现象。由于剪力滞效应的影响,桥梁结构中的应力呈现铰复杂的分布,在腹板附近使得按照初等梁理论的桥梁结构应力小于实际值,如果不考虑剪力滞效应的影响很有可能会低估该部分位置的应力,使得桥梁结构的设计偏于危险。在复杂的桥梁结构特别是翼缘较宽时应该考虑剪力滞的影响,从而对桥梁结构进行设计。

箱梁剪力滞效应求解与应用,

箱梁剪力滞效应求解与应用 摘要:剪力流在横向传递过程中有滞后的现象,称为剪力滞效应。 剪力滞效应带来的应力分布不均匀,应力集中效应,应给予足够的重视。 本文主要通过介绍了薄壁箱梁剪力滞效应及常用求解方法 , 通过对一具体例题的有限元求解 , 详细阐述了剪力滞现象的存在。剪力滞后现象使翼缘有效分布宽度的确定成为正截面承载力计算的关键 , 结合现行规范 , 对考虑箱梁有效宽度后的应力计算结果与有限元求解结果进行了对比。 关键词 :薄壁 ;箱梁 ;剪力滞 ;有效宽度 ;应力 随着箱形梁桥向长悬臂板、大肋间距的简洁型单箱单室截面方向发展,其剪力滞效应日益受到人们关注。然而, 梁弯曲初等理论的基本假定是变形的平截面假定, 它不考虑剪切变形对纵向位移的影响, 因此不再适用于扁平的薄壁箱梁。目前, 国内外均建造了大量的箱形薄壁梁桥, 对高跨比较大、宽高比较突出的箱形梁桥, 其剪力滞效应相当严重, 如果忽略剪力滞的影响, 势必导致结构失稳或破坏。箱形梁的受力是一个复杂结构空间分析问题,对箱形梁进行受力分析时,往往采用一些假定和近似处理方法,将作用于箱形梁上的偏心荷载分解成对称荷载与反对称荷载对称荷载作用时,按梁的弯曲理论求解;反对称荷载作用时,按薄壁杆件扭转理论分析,按叠加原理将计算结果叠加而得。箱形梁在偏心荷载作用下将产生纵向弯矩、扭转、畸变及横向挠曲四种基本状变形态。

1箱梁剪力滞及其求解方法 1.1剪力滞 根据初等梁理论中的平截面假定,不考虑剪切变形效应对纵向位移的影响,箱梁的两腹板处在对称竖向荷载作用下,沿梁宽度方向上、下翼板的正应力是均匀分布的。但由于在宽翼箱梁中沿翼缘板宽度方向剪切变形的非均匀分布,引起弯曲时腹板的翼板纵向位移滞后于近肋板处的翼板纵向位移,而弯曲正应力的横向分布呈曲线形状。这种由翼缘板的剪切变形造成沿宽度方向弯曲正应力的非均匀分布,在美国称为“剪力滞效应”,英国则称为“弯曲应力离散”。靠近腹板处的纵向应力若大于靠近翼缘板中点或悬臂板边缘处的纵向应力,称为“正剪力滞”;反之,则称为“负剪力滞”。剪力滞效应常用剪力滞系数λ来衡量, λ的经典定义为: σ λ = σ- σ:实际截面上发生的应力 σ-:初等梁理论算出的应力

箱形截面梁的剪力滞效应

龙源期刊网 https://www.doczj.com/doc/647070695.html, 箱形截面梁的剪力滞效应 作者:田建辉 来源:《中国新技术新产品》2010年第09期 摘要:随着交通事业的发展以及城市化速度的加快,桥梁在日益繁忙的公路和城市交通中显得越来越重要。许多新的桥型、大跨宽桥以及特宽桥相继出现,各种桥梁截面形式纷纷被采用,其中箱形截面形式就是常被采用的形式之一。剪力滞效应分析是箱形截面分析的重要组成部分。本文主要阐述了剪力滞效应的概念、影响因素及其计算理论。 关键词:剪力滞;箱形截面 1 剪力滞效应的概念及其所引起的问题 1924年卡曼(T.V.Karman)对宽翼缘的T梁探讨有效分布宽度的问题时涉及了剪力滞效应的问题,一般情况下,狭窄翼缘的剪切扭转变形不大,其受力性能接近于简单梁理论的假定,即平截面假定,而宽翼缘因这部分变形的存在,而使远离梁肋的翼缘不能参与承弯工作,也即受压翼缘上的压应力随着离梁肋的距离的增加而减小,这个现象就称为“剪力滞后”,简称剪力滞效应。箱梁在对称荷载作用下的弯曲也同样存在这种剪力滞现象,特别是大跨度预应力混凝土桥梁中所采用 的宽箱梁,由于箱梁上下翼板的剪切扭转变形使翼缘板远离箱肋板处的纵向位移滞后于肋板边 缘处,因此产生较为明显的剪力滞效应,且在翼缘板内的弯曲应力呈曲线分布。近几年相继建造了大量的箱形薄壁梁桥, T构、刚构、斜拉桥,特别是一些宽跨比较大,宽高比也较为突出的桥,这些桥的剪力滞效应是较为严重的。 2 剪力滞效应的计算理论 2.1 弹性理论解法 弹性理论解法有板壳理论(J.E.Gibson、M.H.Mitwally)、正交异性板法(Abdel-Sayed)和弹性折板理论法(Goldberg、Leve)。弹性理论解法是以经典的弹性理论为基础,其优点是能获得较精确的解答,能够很好的解决简单的力学模型,经常用于等截面简支梁的剪力滞问题求解。其中,弹性折板法运用谐波分析的方法,可以求解各种支承条件的梁。用该方法研究悬臂箱梁是一个由 板件构成的实际的空间体系,分析时比应用有限元法能大大节约时间,况且它是一种精确解。但是,弹性理论解法由于分析和计算公式的繁琐,很难应用于实际的工程问题,无法用于复杂结构问题的分析。 2.2 比拟杆法

剪力滞后

框筒结构有单筒和束筒之分,单筒是梁柱在平台内侧形成的闭合体,束筒是在平台内侧形成的多个闭合体。无论单筒和束筒,腹板框架承担绝大部分剪力而翼缘框架承担绝大部分弯矩,它们之间通过框筒束联系,如果角柱很弱,则达不到上述效果。由于梁的弹性变形,在侧向荷载的作用下,截面并不保持为平面,角柱处轴向变形为最大,离角柱越远的各柱轴向变形为最小,这种现象称为剪力滞后,如图所示。 剪力滞后效应在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后后现象。剪力滞后,有时也叫剪切滞后,从力学本质上说,

是圣维南原理,它严格地符合弹性力学的三大方程,即几何方程、物理方程、平衡方程。具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪切滞后。 剪力滞后后效应通常出现在T型、工型和闭合薄壁结构中如筒结构和箱梁,在这些结构中通常把整体结构看成一个箱形的悬臂构件。当结构水平力作用下,主要反应是一种应力不均匀现象,柱子之间的横梁会产生沿着水平力方向的剪切变形,从而引起弯曲时远离肋板的翼板的纵向位移滞后于肋板附近的纵向位移,从而使得翼缘框架中各柱子的轴力不相等:远离腹板框架的柱轴力越来越小,翼缘框架中各柱轴力呈抛物线形,同时腹板框架中柱子的轴力也不是线性规律。这就是一种剪力滞后后效应。当翼板与腹板交接处的正应力大于按初等梁的计算值,称为正剪力滞后,反之为负剪力滞后。 忽略剪力滞后效应的影响,就会低估箱梁腹板和翼板交接处的挠度和应力,从而导致不安全:如1969-1971年在欧洲不同地方相继发生了四起箱梁失稳或破坏事故。事故发生后,许多桥梁专家对桥梁的设计和计算方法进行了研究和分析,提出这四座桥的计算方法存在严重缺陷,其中一项就是设计中没有认真对待“剪力滞后效应”,因此导致应力过分集中造成桥梁的失稳和局部破坏。又如广东省的佛陈大

风荷载标准值

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计 计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特 点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动 (简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对 结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。阵风对结构的 作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析 脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法 为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引 起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风 振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉 动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作

剪力滞后效应知识科普

剪力滞后效应知识科普 剪力滞后效应在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象.剪力滞后有时也叫剪切滞后,具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪切滞后.例如在墙体上开洞以后,由于横梁变形使剪力传递存在滞后现象,使柱中正应力分布呈抛物线状,称为剪力滞后效应. 剪力滞后效应的概念是在箱梁中提出的.剪力滞后效应在T 型、工型和闭合薄壁结构中(如筒结构和箱梁)表现得较为典型,在这些结构中通常把整体结构看成一个箱形的悬臂构件.当结构处于水平力作用下时,主要反应是一种应力不均匀现象,柱子之间的横梁会产生沿着水平力方向的剪切变形,由此引起弯曲时远离肋板的翼板的纵向位移滞后于肋板附近的纵向位移,当翼板与腹板交接处的正应力大于按初等梁的计算值,称为正剪力滞,反之为负剪力滞. 剪力滞概念与有效分布宽度相同,前者用不均匀应力表示,后者用一等效板宽表示.为了使简单梁理论能够用于宽翼缘梁的分析,故对翼缘定出个“有效翼缘宽度”翼缘的有效宽度为假设的翼缘宽度,沿其宽度上受均匀压缩,其压缩值如同在同样的边缘剪

力作用下的实际翼缘的受载边缘数值一样.另外,有效宽度可以视为理论的翼缘宽度,该理论翼缘承受具有均匀应力的压力.该均匀应力与原型宽翼缘处的应力峰值相等,而且总压力值相等. 在框筒结构中,结构整体可以看成一个箱形的悬臂构件.在水平力作用下,柱子之间的横梁会产生沿着水平力方向的剪切变形,从而使得翼缘框架中各柱子的轴力不相等:远离腹板框架的柱轴力越来越小,翼缘框架中各柱轴力呈抛物线形,同时腹板框架中柱子的轴力也不是线性规律.这就是一种剪力滞后效应.

结构在风荷载作用的研究现状浅谈

结构在风荷载作用的研究现状浅谈 摘要:为了满足建筑的经济性、安全性以及舒适性的要求,本文主要介绍了风荷载的定义记忆结构在风荷载作用下的研究现状,为设计者提供一定的参考价值。 关键词:风荷载;结构;研究现状 1、引言 风灾是自然灾害中影响较大的一种,它每年都给人类生命和财产带来巨大的损失。据估计,全球每年由于风引起的损失高达100亿美元。在结构设计特别是在高耸结构、大跨度桥梁、屋盖结构中,风荷载是一个极其重要的设计荷载。而对于高耸、高层结构和玻璃幕墙结构来说,风荷载引起的响应在总荷载中占有相当大的比重,甚至起着决定性的作用,合理的抗风设计对保障这些建筑结构的功能有重要的意义。在风力作用下,屋面常受到很大的吸力,如果自重等荷载的作用不足以抵抗吸力的作用,屋面将会被掀起而破坏。风荷载作为屋盖结构的主要外来荷载,是引起破坏的主要原因。 2、风荷载的基本概念 在工程设计中,风力常用风压来表示。根据测得的风速可以求出风压,风速是随高度、周围地貌的变化而变化的。在设计中所用的风压是基本风压。基本风压是按规定的地貌和高度所测风速经统计换算确定的。离地面越近,地面对风的摩阻也越大,风速便会减小。我国现行《建筑结构荷载规范》规定的基本风压是以10米高为标准高度。风速与地表的粗糙度有关,粗糙度越大,风能消耗也越大,平均风速便减小,我国将地表粗糙度分为A、B、C三种。风载具有很大的随机性,因而对最大风速的测试结果各年都不一样,但在结构设计中必须保证结构的安全性,也就是所用的风荷载必须具有很大的代表性和预防性。 我国目前所用的最大风速的重现期对一般结构是30年一遇;对高层建筑是50年一遇;对特别重要的结构是100年一遇。屋盖结构是房屋中的重要部分,它起着围护及承重作用。在风力的作用下,屋盖受到很大的风荷载,如果结构的自承重等荷载不足以抵抗吸力的作用,屋盖则有可能被掀起而破坏。因此在屋盖设计中,风荷载是一个比较重要的设计荷载。在实际情况下,风的方向是任意的。对一个具体结构来说,在风荷载的作用下,既有水平分力,又有竖向分力。对大多数结构,水平风力起主导作用。对屋盖结构而言,当风力沿水平方向时,其风荷载通常是垂直于屋面的,沿竖向方向的分力很大。因而对屋盖结构既得考虑水平方向的风荷载,也得考虑垂直方向的风荷载。 3、结构在风荷载作用下的研究现状 3.1我国风荷载规范的在结构中的应用研究现状

薄壁箱梁剪力滞理论的评述和展望_罗旗帜

第19卷第3期 佛山科学技术学院学报(自然科学版) Vol.19No.3 2001年9月 Jo urnal o f Foshan Univer sity(Natural Science Editio n)Sep.2001 文章编号:1008-0171(2001)03-0029-07 薄壁箱梁剪力滞理论的评述和展望 罗旗帜1,吴幼明2 (1.佛山科学技术学院教务处,广东佛山528000;2.佛山科学技术学院数学系,广东 佛山528000) 摘要:介绍了国内外近几十年来有关薄壁箱梁剪力滞的研究成果,综述了所获成果的研究理 论和方法,评述了各种理论和方法的适用性和局限性,提出了今后有待进一步研究的方向。 关键词:薄壁箱梁;剪力滞;评述;展望 中图分类号:U448.213 文献标识码:A 在20世纪60年代末至70年代初,奥地利、英国、澳大利亚及德国相继发生了四起大跨径钢箱梁的重大事故,据各国专家分析,造成重大事故的直接原因是设计理论上的失误,其中重要一项就是对剪力滞未加考虑。近几年来,宽翼薄壁箱梁在我国大跨径桥梁、城市立交桥和高架桥中得到广泛的应用。但是我国现行桥梁设计规范中缺乏关于确定箱梁剪力滞效应的具体规定。所以在一般工程设计中忽视了这一问题,从而造成一些箱梁桥不断地发现有横向裂缝[1]。因此,箱梁的剪力滞问题引起各国桥梁专家的高度重视。近几十年来,国内外许多学者致力于该课题的研究,分别从解析理论、数值解法和模型试验等方面对剪力滞问题提出了许多新设想和新理论,并获得了许多的研究成果,部分成果已纳入规范之中,如英国规范[2]和德国工业标准规范[3]等。本文介绍了国内外有关薄壁箱梁剪力滞的研究成果,从理论和实际应用上评述了各种理论和方法的适应性和局限性,并提出了今后研究的方向。 1 解析理论 1.1 弹性理论解法 (1)调谐函数法 调谐函数法是以肋板结构为基础,取肋板和翼板为隔离体,肋板由初等梁理论分析,而翼板由平面应力分析,用逆解法求解应力函数,然后根据肋板和翼板之间的静力平衡条件和变形条件,建立方程组,求出未知数,从而导得翼板的应力和挠度解。早在1924年,弗?卡门[4]就利用该方法解决了无限宽翼缘板的应力分布及其有效分布宽度问 收稿日期:2001-03-05 作者简介:罗旗帜(1955-),男,浙江温州人,佛山科学技术学院教务处处长,教授,主要从事桥梁工程与交通工程教学与科研工作。

风荷载计算解析

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素 有关。 按下式计算:垂直作用于建筑物表面单位面积上的风荷载标准值式中: Wo 1.基本风压值按当地空旷平坦地面上10米高度处10分钟平均的风速观测数 据,经概率统计得出50年一遇的按公式确定。但不得小 于0.3kN/m2。值确定的风速V0(m/s) 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 风荷载高度变化系数μz

地面粗糙类别 D B C A

高度(m) 1.17 1.00 0.74 0.62 5 1.38 1.00 10 0.74 0.62 1.52 1.14 15 0.74 0.62 计算公式 0.24 =1.379(z/10)A类地区1.63 1.25 0.84 0.62 20 0.32 = (z/10)B类地区1.80 30 1.42 1.00 0.62 )0.44 =0.616(z/1040 C1.92 1.56 1.13 0.73 类地区0.6 =0.318(z/10)1.25 2.03 1.67 50 0.84 D类地区0.93 1.35 2.12 60 1.77 1.02 2.20 70 1.86 1.45 1.11 1.95 1.54 2.27 80 1.19 1.62 2.02902.34 1.27 100 2.40 2.091.70 1.61 2.03 2.382.64 150 1.92 200 2.612.30 2.83 2.19 2.802.99 2502.54 2.45 3.12 3002.972.75 2.68 3502.94 3.123.12 2.91 3.123.12 4003.12 3.12 3.123.12 3.12 450 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 确定各个表面的风载体型2-4.2表P57计算主体结构的风荷载效应时风荷载体型系数可按书中 或由风洞试验确定。几种常用结构形式的风载体型系数如下图 注:“+”代表压力;“-”代表拉力。 zβ 4.风振系数z反映了风荷载的动力作用,它取决于建筑物的高宽比、基本自振周期及地面粗糙度风振系数β 基本风压。《荷载规范》规定对于基本自振周期大于0.25s的工程结构,如房屋、屋盖及各种高耸结构,及对于高度大于30m且高宽比大于1.5的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。其z可按下式计算:

风荷载特点

高层建筑横向承载力 摘要:随着经济的发展,近年来高层建筑尤其是体型复杂的超高层建筑得到了蓬勃的发展。一般而言,高层建筑物占地面积少,建筑面积大,造型独特,相对集中。这一特点使得高层建筑物在人口稠密的大城市迅速发展。但是高层建筑物上风荷载也越来越大,导致水平荷载不断增大。因此,高层建筑物需要较大的承载力和刚度来解决水平荷载的问题。关键词:风载荷高层建筑物影响 在高层建筑中,竖向荷载对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。对一些较柔的高层建筑,风荷载是结构设计的控制因素,随着建筑物高度的增高,风荷载的影响越来越大。高层建筑中除了地震作用的水平力以外,主要的侧向荷载是风荷载,在荷载组合时往往起控制作用。因此,高层建筑在风荷载作用下的结构分析与设计引起了研究人员和工程师们的重视。 建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。高层建筑不应采用严重不规则的结构体系,应符合下列要求:1、应具有必要的承载能力、刚度和变形能力;

2、应避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力; 3、对可能出现的薄弱部位,应采取有效措施予以加强。 高层建筑的结构体系尚宜符合要求:结构的竖向和水平布置宜具有合理的刚度和承载力分布,避免因局部突变和扭转效应而形成薄弱部位。风荷载是结构的重要设计荷载,特别对于高耸结构(如烟囱、塔架、桅杆等)、高层建筑、大跨度桥梁、冷却塔、屋盖等,有时甚至起到决定性的作用,因而抗风设计是工程结构中的重要课题。 近二十年来,国内外建造了超高层建筑和大跨度结构。对这些限高层建筑结构风荷载和风震响应的计算分析,确保高层建筑物的质量是十分必要的。 参考文献: [1]黄本才,结构抗风分析原理及应用[M],天津:同济大学出版社,2001,1-7 [2]张向庭.工程抗风设计计算手册[M],北京:中国建筑工业出版社,1998 [3]GB50009)2001建筑结构荷载规范[S],2001,北京:中国建筑工业出版社,2002

结构中的剪切滞后

一、剪力滞后效应的力学本质 剪力滞后(有时也叫剪切滞后)效应,在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象。剪力滞后,从力学本质上说,是圣维南原理,它严格地符合弹性力学的三大方程,即几何方程、物理方程、平衡方程。具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪力滞后。 例如:一长方形平板(长度远大于宽度),在两个短边受到一对平衡集中力。由圣维南原理可知,在板的中部,应力是均匀分布的,而在靠近短边的端部,就出现了剪力滞后现象。由于正应力是靠剪力的作用逐渐由集中力转化为均匀的,而由于剪力传递正应力有一个逐渐的过程,所以在端部,剪力的所能起的作用还很有限,而正应力分布还不均匀,这种现象就称为剪力滞后。 二、剪力滞后效应在具体工程中的表现 1、拉杆、宽梁的翼缘 第一部分所举的例子其实就是一根拉杆,它出现了剪力滞后现象。陈绍藩在《钢结构设计原理》的第5.2章节中详细描述了有孔拉杆因为剪力滞后效应和其他因素造成承载力降低的现象。 另外宽梁的翼缘中正应力分布不均匀,也是剪力滞后效应造成的,陈绍藩在《钢结构设计原理》的11.1.4章节讲述此问题,并提出采用有效宽度代替实际宽度的方法来计算。钢砼组合梁计算时,混凝土翼板取有效宽度而不取实际宽度,也是对剪力滞后效应的考虑。 2、薄壁构件(主要是桥梁结构构件) 许多学者对薄壁杆件理论进行了广泛的研究,Vlasov、Timoshenko等提出了薄壁杆件分析的经典方法,并作了两个基本假定(1)’薄壁杆件横截面的外形轮廓线在其自身平面内保持刚性,即不变形;(2)薄壁杆件中面的剪应变为零(开口截面)或剪力流为常数(闭口截面)。由于第二个假定经典方法不能反映薄壁杆件的剪力滞后现象,所以不具有一般性。 剪力滞后效应通常出现在T型、工型和闭合薄壁结构中如筒结构和箱梁,在对称弯曲荷载作用下,如果箱梁具有初等弯曲理论中所假定的无限抗剪刚度(即时变形的平截面假

风荷载取值

3、1、3 风荷载 建筑物受到得风荷载作用大小,与建筑物所处得地理位置、建筑物得形状与高度等多种因素有关,具体计算按照《荷载规范》第7章执行。 1、风荷载标准值计算 垂直于建筑物主体结构表面上得风荷载标准值W K ,按照公式(3、1-2)计算: βz ——高度Z 处得风振系数,主要就是考虑风作用得不规则 性,按照《荷载规范》7、4要求取值。多层建筑,建筑物高度<30m,风振系数近似取1。 (1)风荷载体型系数μS 风荷载体型系数,不但与建筑物得平面外形、高宽比、风向与受风墙面所成得角度有关,而且还与建筑物得立面处理、周围建筑物得密集程度与高低等因素有关,一般按照《荷载规 表3、1、10 建筑物体型系数取值 表 注1:当计算重要且复杂得建筑物、及需要更细致地进行风荷载作用计算得建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。 注4:当多栋或群集得建筑物相互间距离较近时,宜考虑风力相互干扰得群体作用效应。一般可将单体建筑得体型系数乘以相互干扰增大系数,该系数可参考类似条件得试验资料确定,必要时宜通过风洞试验确定。 注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2、0。 注4:验算表面围护结构及其连接得强度时,应按照《荷载规范》7、3、3规定,采用局部 W W z s z k μμβ=)21.3(-

风压力体型系数。 (2)风压高度变化系数μz 设置风压高度变化系数,主要就是考虑建筑物随着高度得增加风荷载得增大作用。 对于位于平坦或稍有起伏地形上得建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7、2要求选用,表3、1、11中列出了常用风压高度变化系数得取值要求。 表3、1、11 风压高度变化系数 A类:近海海面、海岛、海岸、湖岸及沙漠地区; B类:田野、乡村、丛林、丘陵以及房屋比较稀疏得乡镇与城市郊区; C类:有密集建筑群得城市市区; D类:有密集建筑群与且房屋较高得城市市区。 (3)基本风压值W0 基本风压值W0,单位kN/m2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为标准确定得风压值,各地得基本风压可按照《荷载规范》附录D 中得全国基本风压分布图查用,表3、1、12为浙江省主要城镇基本风压取值参考表。 2、基本风压得取值年限 《荷载规范》在附录D中分别给出了n=10年、n=50年、n=100年一遇得基本风压标准值,工程设计中根据建筑物得使用性质与功能要求,一般按照下列方法选用风压标准值得取值年限: ①临时性建筑物:取n=10年一遇得基本风压标准值; ②一般得工业与民用建筑物:取n=50年一遇得基本风压标准值; ③特别重要得建筑物、或对风压作用比较敏感得建筑物(建筑物高度大于60m):取 表3、1、12 浙江省主要城镇基本风压(kN/m2)取值参考表

风荷载作用-例题

[例题2-1] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m ,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为30m ?40m ,地下室筏板基础底面埋深为12m,如图2-4所示。已知100年一遇的基本风压为2 /45.0m kN =? 建筑场地位置大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。为简化计算,将建筑物沿高度划分为6个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值、计算在风苛载作用下结构底部(一层)的剪力设计值和筏板基础底面的弯矩设计值。 [解] (1) 基本自振周期 根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期 为: s n T t 9.13805.005.0≈?== ( n 是层数) 222210/62.19.145.0m s kN T ?=?=? (2) 风荷载体型系数 对于矩形平面,由《高层规程》附录A 可求得 80.01=s μ 57.0)40 12003.048.0()03.048.0(2=?+-=+-=L H s μ (3) 风振系数 由条件可知地面粗糙度类别为B 类,由表2-6可查得脉动增大系数 502.1=ξ 脉动影响系数v 根据H /B 和建筑总高度H 由表2-7确定,其中B 为与风向相一致的房屋宽度,由H/B=4.0可从表2-7经插值求得v=0.497;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即 H H i z =?。i H 为第i 层标高;H 为建筑总高度。则由式(2-4)可求得风振系数为: H H H H i z i z v z z v z ??+=?+=+=μμξμα?ξβ497.0502.1111 (4) 风荷载计算 风荷载作用下,按式(2-2a)的可得沿房屋高度分布的风荷载标准值为: z z z z z q βμβμ66.2440)57.08.0(45.0)(=?+?= 按上述方法可求得各区段中点处的风荷载标准值及各区段的合力见表2-9,如图2-4所示。

相关主题
文本预览
相关文档 最新文档