当前位置:文档之家› Dust Emission from High Redshift QSOs

Dust Emission from High Redshift QSOs

Dust Emission from High Redshift QSOs
Dust Emission from High Redshift QSOs

a r X i v :a s t r o -p h /0002386v 1 21 F e

b 2000Dust Emission from High Redshift QSOs

C.L.Carilli 1,2,F.Bertoldi 1,K.M.Menten 1,M.P.Rupen 2,E.Kreysa 1,Xiaohui Fan 3,Michael A.Strauss 3,Donald P.Schneider 4,A.Bertarini 1,M.S.Yun 2,R.Zylka 11

Max-Planck-Institut f¨u r Radioastronomie,Auf dem H¨u gel 69,D-53121Bonn,Germany 2National Radio Astronomy Observatory,P.O.Box O,Socorro,NM 87801,USA 3Princeton University Observatory,Peyton Hall,Princeton,NJ 08544,USA 4Dept.of Astronomy,Pennsylvania State University,University Park,PA 16802,USA ccarilli@https://www.doczj.com/doc/697051014.html, Received to appear in the Astrophysical Journal (Letters)

ABSTRACT

We present detections of emission at250GHz(1.2mm)from two high redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM30m telescope.The sources are SDSSp015048.83+004126.2 at z=3.7,and SDSSp J033829.31+002156.3at z=5.0,which is the third highest redshift QSO known,and the highest redshift mm emitting source yet identi?ed.We also present deep radio continuum imaging of these two sources at1.4GHz using the Very Large Array.The combination of cm and mm observations indicate that the250GHz emission is most likely thermal dust emission,with implied dust masses≈108M⊙.We consider possible dust heating mechanisms,including UV emission from the active nucleus(AGN), and a massive starburst concurrent with the AGN,with implied star formation rates>103M⊙year?1.

Subject headings:dust:galaxies—radio continuum:galaxies—infrared: galaxies—galaxies:starburst,evolution,active

1.Introduction

Modern telescopes operating from radio through optical wavelengths are detecting star forming galaxies out to redshifts z>4(Steidel et al.1999,Bunker&van Breugel2000, Adelberger&Steidel2000).These observations are pushing into the‘dark ages,’the epoch when the?rst stars and/or black holes may have formed(Rees1999).Millimeter(mm) and submm observations provide a powerful probe into this era due to the sharp rise of observed?ux density with increasing frequency in the modi?ed Rayleigh-Jeans portion of the grey-body spectrum for thermal dust emission from https://www.doczj.com/doc/697051014.html,limeter and submm surveys thereby provide a uniquely distance independent sample of objects in the universe for z>0.5(Blain&Longair1993).These surveys have revealed a population of dusty, luminous star forming galaxies at high redshift which may correspond to forming spheroidal galaxies(Smail,Ivison,&Blain1998,Hughes et al.1998,Barger et al.1998,Eales et al. 1998,Bertoldi et al.2000).An interesting sub-sample of dust emitting sources at high redshift are active galaxies,including powerful radio galaxies(Chini&Kr¨u gel1994,Hughes &Dunlop1999,Cimatti et al.1999,Best et al.1999,Papadopoulos et al.1999,Carilli et al.2000),and optically selected QSOs(Omont et al.1996a).

In an extensive survey at240GHz,Chini,Kreysa,&Biermann(1989)found that the majority of z<1QSOs show dust emission with dust masses≈few×107M⊙,comparable to normal spiral galaxies.They argue that the dominant dust heating mechanism is radiation from the active nucleus(AGN),based primarily on spectral indices between mm and X-ray wavelengths.On the other hand,Sanders et al.(1989)showed that the majority of radio quiet QSOs in the PG sample show spectral energy distributions from cm to submm wavelengths consistent with star forming galaxies.However,they suggest that this may be coincidental,since concurrent starbursts would require large star formation rates to power the dust emission,while it would require the absorption of only a fraction of the

AGN UV luminosity by dust.

Omont et al.(1996a)extended the240GHz study of QSOs to high redshift by observing a sample of z>4QSOs from the Automatic Plate Measuring(APM)survey. They found that6of16sources show dust emission at3mJy or greater,with implied FIR luminosities≥1013L⊙,and dust masses≥108M⊙.Follow-up observations of three of these dust-emitting QSOs revealed CO emission as well,with implied molecular gas masses ≈few1010M⊙(Guilloteau et al.1997,1999,Ohta et al.1996,Omont et al.1996b,Carilli, Menten,&Yun1999).Given the large dust and gas masses,Omont et al.(1996a)made the circumstantial argument that the dominant dust heating mechanism may be star formation. Supporting evidence came from deep radio observations at1.4GHz,which showed that the ratio of the radio continuum to submm continuum emission from these sources is consistent with the well established radio-to-far IR correlation for low redshift star forming galaxies (Yun et al.1999).All these data(dust,CO,radio continuum)suggest that the host galaxies of these QSOs are gas-rich,and may be forming stars at a rate≥103M⊙year?1, although it remains unclear to what extent the AGN plays a role in heating the dust and powering the radio emission.

We have begun an extensive observational program at cm and mm wavelengths on

a sample of high redshift QSOs from the Sloan Digital Sky Survey(SDSS;York et al. 2000).The sample is the result of optical spectroscopy of objects of unusual color from the northern Galactic Cap and the Southern Equatorial Stripe,which has yielded40QSOs with z≥3.6,including the four highest redshift QSOs known(Fan et al.1999,Fan et al. 2000,Schneider et al.2000).This sample presents an ideal opportunity to investigate the properties of the most distant QSOs and their host galaxies.The SDSS sample spans a range of M B=?26.1to?28.8,and a redshift range https://www.doczj.com/doc/697051014.html,parative numbers for the APM sample observed by Omont et al.(1996a)are M B=?26.8to?28.5,and

4.0≤z≤4.7.

Our observations of the SDSS QSO sample include sensitive radio continuum imaging at1.4GHz with the Very Large Array(VLA),and photometry at250GHz using the Max-Planck Millimeter Bolometer array(MAMBO)at the IRAM30m telescope.These observations are a factor three more sensitive than previous studies of high redshift QSOs at these wavelengths(Schmidt et al.1995,Omont et al.1996a),and are adequate to detect emission powered by star formation in the host galaxies of the QSOs at the level seen in low redshift ultra-luminous infrared galaxies(L F IR≥1012L⊙;Sanders and Mirabel1999). We will use these data to measure the correlations between optical,mm,and cm continuum properties,and optical emission line properties,and look for trends as a function of redshift.

In this letter we present the?rst two mm detections from this study.The sources are SDSSp J033829.31+002156.3(hereafter SDSS0338+0021),and SDSSp

J015048.83+004126.2(hereafter SDSS0150+0041);these objects’names are their J2000 coordinates.They have z=5.00±0.04with i?=19.96,and z=3.67±0.02with i?=18.20 (Fan et al.1999).The absolute blue magnitudes of these quasars are–26.56and–27.75, respectively,assuming H o=50km s?1Mpc?1and q o=0.5.These two sources were taken from the Fall survey sample(Fan et al.1999),which covered a total area of140deg2.Note that J0150+0041is the second most lumininous QSO in the combined Fall and Spring samples of Fan et al.(1999,2000).

2.Observations and Results

Observations were made using MAMBO(Kreysa et al.1999)at the IRAM30m telescope in December1999and February2000.MAMBO is a37element bolometer array sensitive between190and315GHz.The half-power sensitivity range is210to290GHz,

and the e?ective central frequency for a typical dust emitting source at high redshift is250 GHz.The beam for the feed horn of each bolometer is matched to the telescope beam of 10.6′′,and the bolometers are arranged in an hexagonal pattern with a beam separation of 22′′.Observations were made in standard on-o?mode,with2Hz chopping of the secondary by50′′in azimuth.The data were reduced using IRAM’s NIC and MOPSI software packages(Zylka1998).Pointing was monitored every hour,and was found to be repeatable to within2′′.The sky opacity was monitored every hour,with zenith opacities between 0.23and0.36.Gain calibration was performed using observations of Mars,Neptune,and Uranus.We estimate a20%uncertainty in absolute?ux density calibration based on these observations.The target sources were centered on the central bolometer in the array (channel1),and the temporally correlated variations of the sky signal(sky-noise)detected in the remaining bolometers was subtracted from all the bolometer signals.The total

on-target plus o?-target observing time for SDSS0338+0021was108min,while that for SDSS0150+0041was77min.

The source SDSS0338+0021was detected with a?ux density of3.7±0.5mJy(Figure 1).At z=5.0,250GHz corresponds to an emitted frequency of1500GHz,or a wavelength of200μm.The source SDSS0150+0041was detected at250GHz with a?ux density of 2.0±0.4mJy(Figure1).At z=3.7,250GHz corresponds to an emitted frequency of1180 GHz,or a wavelength of254μm.The quoted errors in?ux density do not include the20% uncertainty in gain calibration.The sources were not seen to vary dramatically(≤30%) between December1999and February2000.

Assuming a dust spectrum of the type seen in the low redshift starburst galaxy Arp220 (corresponding roughly to a modi?ed black body spectrum of index1.5and temperature of 50K),the implied60μm luminosity(Rowan-Robinson et al.1997)for SDSS0338+0021is L60=8.2±1.0×1012L⊙,while that for0150+021is L60=5.0±1.0×1012L⊙.Increasing

the temperature to100K would increase the values of L60by a factor of about3.5,while using the spectrum of M82as a template would increase the values by a factor of1.5.

The1.4GHz VLA observations were made in the A(30km)and BnA(mixed30 km and10km)con?gurations on July8,August14,September30,and October8,1999, using a total bandwidth of100MHz with two orthogonal polarizations.Each source was observed for a total of2hours,with short scans made over a large range in hour angle to improve Fourier spacing coverage.Standard phase and amplitude calibration were applied, as well as self-calibration using background sources in the telescope beam.The absolute ?ux density scale was set using observations of3C48.The?nal images were generated using the wide?eld imaging and deconvolution capabilities of the AIPS task IMAGR.The observed rms noise values on the images were within30%of the expected theoretical noise. The Gaussian restoring CLEAN beam was between1.5′′and2′′FWHM.

Neither source was detected at1.4GHz.For SDSS0338+0021the observed value

at the source position was37±24μJy beam?1,and the peak in an8′′box centered on the source position was60μJy beam?1located3.4′′southwest of the source position.At z=5.0,1.4GHz corresponds to an emitted frequency of8.4GHz.For SDSS0150+0041 the observed value at the source position was?3.0±19μJy beam?1,and the peak in an 8′′box centered on the source position was55μJy beam?1located2.8′′north of the source position.At z=3.7,1.4GHz corresponds to an emitted frequency of6.6GHz.We quote maximum and minimum values in an8′′box in the eventuality that the dust emission is not centered on the QSO position(see discussion below).In the analysis below we adopt an upper limit of60μJy beam?1for both sources.

Assuming a radio spectral index of–0.8,the3σupper limit to the rest frame spectral luminosity at5GHz of SDSS0338+0021is3.3×1031erg s?1Hz?1,while that for0150+0041 is1.7×1031erg s?1Hz?1.These upper limits place the sources in the radio quiet regime,

using the division at1033erg s?1Hz?1at5GHz suggested by Miller et al.(1990).Note that90%of optically selected high redshift QSOs are radio quiet according to this de?nition (Schmidt et al.1995).

3.Discussion

The fact that the cm?ux densities for these sources are at least two orders of magnitude below the mm?ux densities,and that the sources do not appear to be highly variable at 250GHz,argues that the mm signal is thermal emission from warm dust.Adopting the relation between L60and dust mass for hyper-luminous infrared galaxies(i.e.galaxies with L60≥1013L⊙),derived by Rowan-Robinson(1999),the dust mass in SDSS0338+0021 is3.5×108M⊙,while that in SDSS0150+0021is2×108M⊙.This gives gas masses of 10×1010M⊙,and6×1010M⊙,respectively,using the dust-to-molecular gas mass ratio of 300suggested by Rowan-Robinson(1999).Of course,such estimates using data at a single frequency are quite uncertain due to the lack of knowledge of the dust temperature and emissivity law,and uncertainties in the gas-to-dust ratio.We are currently searching for CO emission from these two sources to obtain a better understanding of the gas content of these QSOs.

Omont et al.(1996a)found that dust emission seems to be correlated with broad absorption line systems(BALs)in the APM QSO sample.The source SDSS0150+0041 has been classi?ed as a‘mini-BAL’by Fan et al.(1999).The source SDSS0338+0021also shows strong and broad associated C IV absorption in high signal-to-noise spectra(Songaila et al.1999).The presence of strong associated absorption is yet another indication of a rich gaseous environment in these systems.

The critical question when interpreting thermal dust emission from high redshift QSOs

is whether the emission is powered by the AGN or star formation.This question has been considered in great detail for ultra-and hyper-luminous infrared galaxies(Sanders& Mirabel1996,Sanders et al.1989,Genzel et al.1998),and a review of this question can be found in Rowan-Robinson(1999).Dust emitting luminous QSOs,such as SDSS0338+0021 and SDSS0150+0041,comprise a subset of the ultra-and hyper-luminous infrared galaxies. In QSOs,typically less than30%of the bolometric luminosity is emitted in the infrared. Using the blue luminosity bolometric correction factor of16.5derived for the PG QSO sample by Sanders et al.(1989),the FIR luminosity of SDSS0338+0021accounts for only 15%of its bolometric luminosity,and the FIR emission of SDSS0150+0041comprises only 3%of its bolometric luminosity.It is important to keep in mind that the FIR luminosity estimates are based on measurements at a single frequency,and hence have at least a factor two uncertainty(Adelberger&Steidel2000),while the bolometric luminosity estimates require an extrapolation from the rest frame UV measurements into the blue,and hence have comparable uncertainties.Still,it is likely that only a minor fraction of the total AGN luminosity needs to be absorbed and re-emitted by dust to explain the FIR luminosity in both SDSS0338+0021and SDSS0150+0041.

An important related point is that the IR emitting region has a minimum size of about0.5kpc for sources such as SDSS0338+0021and SDSS0150+0041,as set by the far IR luminosity and assuming optically thick dust emission with a dust temperature of 50K(Benford et al.1999,Carilli et al.1999).In the Sanders et al.(1989)model for AGN-powered IR emission from QSOs,dust heating on kpc scales is facilitated by assuming that the dust is distributed in a kpc-scale warped disk,thereby allowing UV radiation from the AGN to illuminate the outer regions of the disk.Detailed models by Andreani, Franceschini,and Granato(1999)and Willott et al.(1999)show that the dust emission spectra from3μm to30μm can be explained by such a model.

The alternative to dust heating by the AGN is to assume that there is active star formation co-eval with the AGN in these systems.Omont et al.(1996)and Rowan-Robinson (1999)argue that star formation would be a natural,although not required,consequence of the large gas masses in these systems.Imaging of a few high redshift dust emitting AGN shows that in some cases the dust and CO emission come from regions that are separated from the location of the optical AGN by tens of kpc(Omont et al.1999b,Papadopoulos et al.2000,Carilli et al.2000).Such a morphology argues strongly for a dust heating mechanism unrelated to UV emission from the AGN,at least in these https://www.doczj.com/doc/697051014.html,stly, Rowan-Robinson(1999)performed a detailed analysis of the spectral energy distributions (SEDs)of hyper-luminous infrared galaxies and concluded that,although≥50%of these systems show evidence for an AGN in the optical spectra,the SEDs between50μm and 1mm are best explained by dust heated by star formation.Yun et al.(2000)have extended this argument to cm wavelengths and reach a similar conclusion.

Carilli&Yun(2000)present a model for the expected behavior with redshift of the observed spectral index between cm and submm wavelengths for star forming galaxies, relying on the tight radio-to-far IR correlation found for nearby star forming galaxies (Condon1992).Using the observed mm?ux densities of SDSS0150+0041and SDSS 0338+0021,these models predict?ux densities at1.4GHz between15and60μJy for both sources.Radio images with a factor three better sensitivity are required to determine if these two sources have cm-to-mm SEDs consistent with low redshift star forming galaxies.

If the dust and radio continuum emission is powered by star formation in SDSS 0338+0021and SDSS0150+0041,then the star formation rates in these galaxies are high. Using the relation between L60and total star formation rate given in Rowan-Robinson (1999)for a108year starburst assuming a standard Salpeter IMF,the implied rate for SDSS 0338+0021is2700M⊙year?1,while that for SDSS0150+0041is1800M⊙year?1.Note

that the high redshift QSOs from the APM sample were detected at?ux levels between 3mJy and12mJy at240GHz(Omont et al.1996a),hence the required star formation rates may be even larger in some systems.The implication is that we may be witnessing the formation of a large fraction of the stars of the AGN host galaxy on a timescale≤108years.

Magni?cation by gravitational lensing would lower the required luminosities,bringing the sources more in-line with known ultra-luminous infrared galaxies.Two of the

APM QSOs detected at240GHz by Omont et al.(1996a)show possible evidence for gravitational lensing,while two other high redshift dust emitting QSOs,H1413+117and APM08279+5255,are known to be gravitationally lensed(Barvainis et al.1994,Downes et al.1999).However,thus far there is no evidence for multiple imaging on arc-second scales for either SDSS0338+0021or SDSS0150+0041in optical and near IR images(Fan et al.2000).Imaging at sub-arcsecond resolution is required to determine if these sources are gravitationally lensed.

An important question concerning the formation of objects in the universe is:which came?rst,black holes or stars(Rocca-Volmerange et al.1993)?If the dust emission

is powered by a starburst in SDSS0338+0021and SDSS0150+0041,then the answer

to the above question in some systems may be:both.Co-eval starbursts and AGN at high redshift may not be surprising,since both may occur in violent galaxy mergers as predicted in models of structure formation via hierarchical clustering(Franceschini et al. 1999,Taniguchi,Ikeuchi,&Shioya1999,Blain et al.1999,Kau?mann&Haehnelt2000, Granato et al.2000).To properly address the interesting question of AGN versus starburst dust heating in these high redshift QSOs requires well sampled SEDs from cm to optical wavelengths,and perhaps most importantly,imaging of the mm and cm continuum,and CO emission,with sub-arcsecond resolution.

The VLA is a facility of the National Radio Astronomy Observatory(NRAO),which

is operated by Associated Universities,Inc.under a cooperative agreement with the National Science Foundation.This work was based on observations carried out with the IRAM30m telescope.IRAM is supported by INSU/CNRS(France),MPG(Germany) and IGN(Spain).This research made use of the NASA/IPAC Extragalactic Data Base (NED)which is operated by the Jet propulsion Lab,Caltech,under contract with NASA. CC acknowledges support from the Alexander von Humboldt Society.DPS acknowledges support from National Science Foundation Grant AST99-00703.XF and MAS acknowledge support from the Research Corporation,NSF grant AST96-16901,and an Advisory Council Scholarship.

REFERENCES

Adelberger,K.L&Steidel,C.C.2000,ApJ,in press(astroph0001126)

Andreani,P.,Franceschini,A.,and Granato,G.1999,MNRAS,306,161

Barger,A.,Cowie,L.L.,Sanders,D.B.,Fulton,E.,Taniguchi,Y.,Sato,Y.,Kawara,K.,& Okuda,H.1998,Nature,394,248

Barvainis,R.,Tacconi,L.,Antonucci,R.,Alloin,D.and Coleman,P.1994,Nature,371, 586

Benford,D.J.,Cox,P.,Omont,A.,Phillips,T.G.,&McMahon,R.G.1999,ApJ(letters), 518,65

Bertoldi,F.et al.2000,in preparation

Best,P.et al.1999,MNRAS(letters),301,15

Blain,A.W.,&Longair,M.S.1993,MNRAS,264,509

Blain,A.W.,Jameson,A.,Smail,I.,Longair,M.S.,Kneib,J.-P.,and Ivison,R.J.1999, MNRAS,309,715

Bunker,A.J.and van Breugel,W.J.M.(eds)1999,The Hy-Redshift Universe(PASP,San Francisco)

Carilli,C.L.&Yun,M.S.1999,ApJ,513,L13

Carilli,C.L.,Menten,K.M.&Yun,M.S.1999,ApJ(lettes),521,L25

Carilli,C.L.&Yun,M.S.2000,ApJ,in press

Carilli,C.L.et al.2000,in preparation

Carilli,C.L.,Menten,K.M.,Yun,M.S.,Bertoldi,F.,Owen,F.,&Dey,A.1999,in Scienti?c imperatives at centimeter&meter wavelengths,eds.M.P.van Haarlem&J.M.van der Hulst(NFRA,Dwingeloo)

Chini,R.,Kreysa,E.,&Biermann,P.L.1989,A&A,219,87

Chini,R.&Kr¨u gel,E.1994,A&A(letters),288,33

Cimatti,A.,Freudling,W.,R¨o ttgering,H.,Ivison,R.J.,&Mazzei,P.1998,A&A,329,399 Condon,J.J.1992,ARAA,30,575

Downes,D.,Neri,R.,Wiklind,T.,Wilner,D.J.,and Shaver,P.A.1999,ApJ(letters),513, 1

Eales,S.et al.1999,ApJ,515,518

Fan,X.et al.1999,AJ,118,1

Fan,X.et al.2000,AJ,119,1

Franceschini,A.,Hasinger,G.,Mayaji,T.,&Malquori,D.1999,MNRAS(letters),310,5 Granato,G.L.et al.2000,MNRAS,in press(astroph9911304)

Guilloteau,S.,Omont,A.,McMahon,R.G.,Cox,P.,&Petitjean,P.1997,A&A,328,L1 Guilloteau,S.,Omont,A.,McMahon,R.G.,Cox,P.,&Petitjean,P.1999,A&A,349,363 Hughes,D.H.et al.1998,Nature,394,241

Hughes,D.H.&Dunlop,J.S.1999,in Highly Redshifted Radio Lines,eds.C.Carilli,S.

Radford,K.Menten,&https://www.doczj.com/doc/697051014.html,ngston(PASP,San Francisco),p.103

Kreysa,E.et al.1999,SPIE,3357,319

Kau?mann,G.&Haehnelt,M.2000,MNRAS,311,576

Ohta,K.,Yamada,T.,Nakanishi,K.,Kohno,K.,Akiyama,M.,&Kawabe,R.1996, Nature,382,426

Omont,A.,McMahon,R.G.,Cox,P.,Kreysa,E.,Bergeron,J.,Pajot,F.,&Storrie-Lombardi,L.J.1996a,A&A,315,1

Omont,A.,Petitjean,P.,Guilloteau,S.,McMahon,R.G.,Solomon,P.M.,&Pecontal,E.

1996b,Nature,382,428

Papadopoulos,P.P.et al.2000,ApJ,528,626(astroph9908286)

Rees,M.J.1999,in After the Dark Ages,eds.S.Holt&E.Smith(AIP,Washington),p.13 Rowan-Robinson,M.1999,MNRAS,in press(astroph9912286)

Rowan-Robinson,M.et al.1997,MNRAS,298,490

Rocca-Volmerange,B.,Guiderdoni,B.,Dennefeld,M.,&Van,Tran-Thanh1993,First Light in the Universe,(Editions Frontieres,Cedex,France)

Sanders,D.B.&Mirabel,I.F.1996,ARAA,34,749

Sanders,D.B.,Phinney,E.S.,Neugebauer,G.,Soifer,B.T.,&Matthews,K.1989,ApJ, 347,29

Schmidt,M.,van Gorkom,J.H.,Schneider,D.P.,&Gunn,J.E.1995,AJ,109,473 Schneider,D.P.et al.2000,PASP,112,6

Songaila,A.,Hu,E.M.,Cowie,L.L.,&McMahon,R.G.1999,ApJ(letters),525,5 Steidel,C.C.,Adelberger,K.L.,Giavalisco,M.,Dickinson,M.,&Pettini,M.1999,ApJ, 519,1

Taniguchi,Y.,Ikeuchi,S.,&Shioya,Y.1999,ApJ(letters),514,9

Willott,C.J.,Rawlings,S.,and Jarvis,M.J.2000,MNRAS,in press(astroph9910422) York,D.G.et al.2000,AJ,submitted

Yun,M.S.,Carilli,C.L.,Kawabe,R.,Tutui,Y.,Kohno,K.&Ohta,K.2000,ApJ,in press Zylka,R.1998,MOPSI Users Manual,(IRAM:Grenoble)

Fig.1.—The time averaged,opacity corrected,sky-noise subtracted?ux densities derived for35of the37bolometers(two channels were disfunctional).The thick line represents the time-averaged signal from the central,on-source bolometer(channel1).The thin solid line is the mean of the o?-source bolometers,and the dashed lines show the1σnoise envelope for the o?-source bolometers.The upper?gure shows observations of SDSS0338+0021and the lower?gure shows observations of SDSS0150+0041.

食品生产许可证委托加工备案须知

食品生产许可证委托加工备案须知 一、项目名称 委托加工实施生产许可证制度管理的产品备案 二、办理依据 《工业产品生产许可证管理条例实施办法》第四十五条至第五十条 三、实施主体及受理范围 各地级以上市食品药品监督管理局负责办理食品生产企业的生产许可证委托加工备案 四、办理条件 1.委托企业和被委托企业均需取得有效营业执照(注:经营范围覆盖申请委托加工备案的产品,且按规定进行年审); 2.被委托企业取得了委托加工产品的生产许可证; 3. 对于未获得食品生产许可证的企业委托获证企业加工时,委托方除提供营业执照外,还需提供食品流通许可证。 4.委托加工产品符合产业政策有关要求; 5.委托企业和被委托企业签订委托加工合同[委托加工合同应明确委托加工产品全部由委托企业负责销售;委托加工合同可不进行公证,但合同应明确以下主要内容:产品质量责任的承担方,委托企业应负责全部委托加工产品的销售,委托加工的产品品种、规格型号和数量,委托加工的合同期限。]; 6.委托加工产品标识标注符合法律、法规和规章的规定。 五、申请人需要提交的申请材料 以下申请材料均应加盖申请人公章,相关人员的身份证件、个人资质证明等复印件应由本人签名。 1.委托加工备案申请书[一式四份。食品生产企业提交《食品委托加工备案申请书》(主要是针对辽宁省).其他省也可能不同,如《广东省委托加工实施生产许可证管理的产品情况备案登记表》]; 2.委托企业和被委托企业营业执照、组织机构代码证复印件(各四份);

3.委托加工合同复印件[一式四份]; 4.被委托方的工业产品生产许可证复印件(一式四份); 5.委托加工产品标注的样式(四份);(标签标注信息必须同相关证照信息一致) (1)有证企业(委托方)委托另一相同产品有证企业(被委托方)进行生产,委托方负责全部产品销售的企业可选择以下两种标注方式:①产品或其包装、说明书上应当标注委托方的名称、地址和被委托方的名称和生产许可证标记、编号;②产品或其包装、说明书上应当标注委托方的名称、地址以及生产许可证标记、编号; (2)无证企业(委托方)委托有所委托产品生产许可证企业(被委托方)进行生产,委托方负责全部产品销售的,产品或其包装、说明书上应当标注委托方的名称、地址,以及被委托方的名称和生产许可证标记、编号; 6.法定代表人身份证件复印件(四份,不同地区区别对待); 六、办理程序 1.申请。被委托企业向所在地办理部门提交备案申请材料,办理部门签署意见后,委托企业向所在地办理部门提交被委托方所在地办理部门已签署意见的备案申请材料。 2.接收。备案申请材料符合法定形式、材料齐全的,办理部门接收申请材料并出具接收材料回执;申请事项不属于备案范围、申请材料不齐全或者不符合法定形式的,出具补证告知书,不予接收申请材料。 3.备案。接收申请材料的,办理部门在5-10个工作日核实申请材料;符合备案条件的予以备案,不符合条件的不予备案并说明理由。 备注:备案材料齐全后,我公司先到当地食品药品监督管理局备案,完成后邮寄给贵公司四份,请贵公司到当地食品药品监督管理局备案后,再把两份资料邮寄给我,一份我公司存档,一份当地食品药品监督管理局存档。 七、收费标准及依据 委托加工备案不收取费用。

食品生产许可证申请书样本

食品生产许可证申请书样本

————————————————————————————————作者:————————————————————————————————日期: 2

食品生产许可证申请书 申请食品品种类别及申证单元产品种类(产品单元) 申请人名称填写企业营业执照上的注册名称或预核准名称 生产场所地址填写申请企业的实际生产场地的详细地址,要注明市(地)、区(县)、路(街道、社区、乡、镇)、号(村)等,即:××市(地)××区(县)×××乡(镇)×××路(街道) 联系人×××(填写企业负责办理生产许可证工作的人员姓名) 联系电话填写有效的企业联系电话,包括座机和手机 传真 电子邮件×××××××××@ ×××××× 申请日期××年××月××日 首次申请□延续换证□变更□ (根据实际申请的需要在□打“√”) (格式文本,自行下载,按法律规定和后附注意事项填写) — 3 —

注意事项 1. 填写要实事求是,不得弄虚作假。 2. 用钢笔填写或打印,要求字迹清晰、工整,不得涂改。 3. 申请人署名、印章的名称应与工商行政管理部门预先核准或登记注册的一致(印章复印无效)。 4. 申请生产食品品种类别及申证单元按照相应审查细则的规定填写。 5. 一个申证单元一套申请材料,一套申请材料不得包含多个申证单元。 6. 计量单位应使用行业通用的法定计量单位。 7. 申请人提交本申请书一式3份。 8.申请生产许可证变更时,只填写变更部分内容。 食品生产许可证申请书目录 1. 申请人陈述 2. 申请人基本条件和申请生产食品情况表 3. 申请人治理结构 4. 申请人生产加工场所有关情况 5. 申请人有权使用的主要生产设备、设施一览表 6. 申请人有权使用的主要检测仪器、设备一览表 7. 申请人具有的主要管理人员、技术人员一览表 8. 申请人各项质量安全管理制度清单及其文本 — 4 —

其他方便食品生产许可证审查细则

附件11: 0701方便食品生产许可证审查细则(2006版)实施食品生产许可证管理的方便食品是指部分或完全熟制,不经烹调或仅需简单加热、冲调就能食用的食品。该类食品包括方便面、方便米饭、方便粥、方便米粉(米线)、方便粉丝、方便湿米粉、方便豆花、方便湿面、麦片、黑芝麻糊、红枣羹、油茶等。 实施食品生产许可证管理的方便食品分为2个申证单元,即方便面、其他方便食品。 在生产许可证上应当注明获证产品名称及申证单元名称,即方便食品(方便面、其他方便食品)。方便食品生产许可证有效期为3年,其产品类别编号为0701。 方便面按相应的细则审查。 其他方便食品生产许可证审查细则 一、发证产品范围及申证单元 实施食品生产许可证管理的其他方便食品是指部分或完全熟制,不经烹调或仅需简单加热、冲调就能食用的除方便面之外的食品。该类食品包括主食类,如方便米饭、方便粥、方便米粉(米线)、方便粉丝、方便湿米粉、方便豆花、方便湿面等;冲调类,如麦片、黑芝麻糊、红枣羹、油茶等。 二、基本生产流程及关键控制环节 (一)基本生产流程。 1.主食类: 基本生产流程包括原辅料处理、调粉(或不经调粉)、成型(或不经成型)、熟制、干燥(非脱水干燥产品除外)、冷却、包装等过程。 2.冲调类:

基本生产流程包括原辅料处理、熟制(或部分原料熟制)、成型或粉碎、干燥(或不经干燥)、混合、包装等过程。 (二)关键控制环节。 1.原辅料的使用。2.食品添加剂的使用。3.熟制工序的工艺参数控制。4.干燥工序的工艺参数控制。 (三)容易出现的质量安全问题。 1.食品添加剂超量、超范围使用。2.使用非食品原料加工食品。3.微生物污染。4.脱水干燥工艺的主食类产品复水性(率)低。 三、必备的生产资源 (一)生产场所。 其他方便食品生产企业应具备与生产能力相适应的原辅材料库房、加工车间、包装车间、成品库房等生产场所。生产用厂房能满足工艺要求。厂房与设施必须根据工艺流程合理布局,并便于卫生管理和清洗、消毒。各生产场所的环境要采取控制措施,保证其在连续受控状态。 (二)必备的生产设备。 1.主食类: (1)原辅料处理设施(如:清洗设施、浸泡设施、粉碎设备、胶磨设备等);(2)调粉设备(如:和面机等);(3)成型设施(如:榨条机、切片(条)机、复合压延机、刀具等);(4)熟制设备(如:蒸煮机等);(5)干燥设施(如:热风干燥机、冷冻干燥机等);(6)冷却设施(如:冷却装置、冷却间等);(7)包装设施(如:包装机等)。 2.冲调类: (1)原辅料处理设施(如:清理设施、脱壳设备、浸泡设施、破碎设备、胶磨设备等);(2)熟制设施(如:蒸煮机、烘烤箱、炒

食品生产许可证申请(完整版)

食品生产许可证申请一. 食品生产许可证申请流程图

二.网上申报具体操作流程 1.1 办理建设项目选址设计审查 1)进入深圳市市场监督管理局(https://www.doczj.com/doc/697051014.html,/)界面: 2)选择该网页下面的“网上办事业务区”—选择“食品准入”—选择“食品生产许可管理系统” 3)点击进入:

4)在该网页左下角点击所需项目,可下载相关申请材料资料表格,如未注册,先申请注册后,点击登录按钮: 5)根据红字部分说明1:申请人办理食品生产许可证新办业务之前,须先办理建设项目选址设计审查。 单击菜单列表中的【建设项目选址设计审查申办】进入查询界面。 分别在单位名称、项目名称、法定代表人、申请日期的相关信息后,单击【查询】按钮进行精确和模糊查询。单击返回按钮如图所示:

6)如果用户查询不到相关信息,请单击【新增】按钮,转到新增页面,填写相关信息后单击【保存】按钮来保存信息。单击【返回】按钮返回到查询列表,提示:“*”号的是必填写项。如图所示: 7)单击【保存】按钮后,如图所示:

8)单击【返回】按钮后,查看相关填写的内容,并打印相关信息。如图所示: 9)当在查询列表处,查询到的数据,单击操作栏的修改按钮,可以去修改选中的数据。如图所示: 10)单击【修改】后转到查询界面,单击【保存】按钮保存信息,每次修改数据,根据情况打印最终的回执、申请表。 建设项目选址设计审查备案期限为15个工作日内,选址设计备案不收费。审查通过后,方可申请办理食品生产许可证新办业务。 1.2 食品生产许可业务新办 1.2.1 新办类型选择 1)用户如果需要申办生产许可业务,请在菜单列表中单击【新办】按钮到新办界面选择业务类型,如图所示:

最新食品生产许可证委托加工备案须知

__________________________________________________ 食品生产许可证委托加工备案须知 一、项目名称 委托加工实施生产许可证制度管理的产品备案 二、办理依据 《工业产品生产许可证管理条例实施办法》第四十五条至第五十条 三、实施主体及受理范围 各地级以上市食品药品监督管理局负责办理食品生 产企业的生产许可证委托加工备案 四、办理条件 1.委托企业和被委托企业均需取得有效营业执照(注:经营范围覆盖申请委托加工备案的产品,且按规定进行年审); 2.被委托企业取得了委托加工产品的生产许可证; 3. 对于未获得食品生产许可证的企业委托获证企业加工时,委托方除提供营业执照外,还需提供食品流通许可证。 4.委托加工产品符合产业政策有关要求; 5.委托企业和被委托企业签订委托加工合同[委托加工合同应明确委托加工产品全部由委托企业负责销售;委托加工合同可不进行公证,但合同应明确以下主要内容:产品质量责任的承担方,委托企业应负责全部委托加工产品的销售,委托加工的产品品种、规格型号和数量,委托加工的合同期限。]; 6.委托加工产品标识标注符合法律、法规和规章的规定。 五、申请人需要提交的申请材料 以下申请材料均应加盖申请人公章,相关人员的身份证件、个人资质证明等复印件应由本人签名。

__________________________________________________ 1.委托加工备案申请书[一式四份。食品生产企业提交《食品委托加工备案申请书》(主要是针对辽宁省).其他省也可能不同,如《广东省委托加工实施生产许可证管理的产品情况备案登记表》]; 2.委托企业和被委托企业营业执照、组织机构代码证复印件(各四份); 3.委托加工合同复印件[一式四份]; 4.被委托方的工业产品生产许可证复印件(一式四份); 5.委托加工产品标注的样式(四份);(标签标注信息必须同相关证照信息一致) (1)有证企业(委托方)委托另一相同产品有证企业(被 委托方)进行生产,委托方负责全部产品销售的企业可选择以下两种标注方式:①产品或其包装、说明书上应当标注委托方的名称、地址和被委托方的名称和生产许可证标记、编号;②产品或其包装、说明书上应当标注委托方的名称、地址以及生产许可证标记、编号; (2)无证企业(委托方)委托有所委托产品生产许可证企业(被委托方)进行生产,委托方负责全部产品销售的,产品或其包装、说明书上应当标注委托方的名称、地址,以及被委托方的名称和生产许可证标记、编号; 6.法定代表人身份证件复印件(四份,不同地区区别对待); 六、办理程序 1.申请。被委托企业向所在地办理部门提交备案申请材料,办理部门签署意见后,委托企业向所在地办理部门提交被委托方所在地办理部门已签署意见的备案申请材料。 2.接收。备案申请材料符合法定形式、材料齐全的,办理部门接收申请材料并出具接收材料回执;申请事项不属于备案范围、申请材料不齐全或者不符合法定形式的,出具补证告知书,不予接收申请材料。 3.备案。接收申请材料的,办理部门在5-10个工作日核实申请材料;符合备案条件的予以备案,不符合条件的不予备案并说明理由。

相关主题
文本预览
相关文档 最新文档