当前位置:文档之家› 一种改进的鸡群算法_孔飞

一种改进的鸡群算法_孔飞

一种改进的鸡群算法_孔飞
一种改进的鸡群算法_孔飞

改进的粒子群优化算法

第37卷第4期河北工业大学学报2008年8月V ol.37No.4JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY August2008 文章编号:1008-2373(2008)04-0055-05 改进的粒子群优化算法 宋洁,董永峰,侯向丹,杨彦卿 (河北工业大学计算机科学与软件学院,天津300401) 摘要粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极 小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计 算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性. 关键词粒子群优化算法;均匀化;变量搜索;初始解;搜索精度 中图分类号TP391文献标识码A A Modified Particle Swarm Optimization Algorithm SONG Jie,DONG Yong-feng,HOU Xiang-dan,Y ANG Yan-qing (School of Computer Science and Engineering,Hebei University of Technology,Tianjin300401,China) Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community. But the standard particle swarm optimization is used resulting in slow after convergence,low search precision and easily leading to local minimum.A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision.The obtained results showed the algorithm computation precision and the astringency are im- proved,and local minimum is avoided.The experimental results of classic functions show that the improved PSO is ef- ficient and feasible. Key words PSO;average;variable search;initial solution;search accuracy 0引言 粒子群优化(Particle Swarm Optimization,PSO)算法是一种基于群体的随机优化技术,最早在1995年由美国社会心理学家James Kennedy和电气工程师Russell Eberhart[1]共同提出,基本思想源于对鸟群觅食行为的研究.PSO将每个可能产生的解都表述为群中的一个微粒,每个微粒都具有自己的位置向量和速度向量,和一个由目标函数决定的适应度,通过类似梯度下降算法使各粒子向适应度函数值最高的方向群游.该算法控制参数少、程序相对简单,因此在应用领域表现出了很大的优越性.由于PSO算法容易理解、易于实现,所以PSO算法发展很快.目前,多种PSO改进算法已广泛应用于函数优化、神经网络训练、模式识别、模糊系统控制以及其他的应用领域. 许多学者对PSO算法进行研究,发现其容易出现早熟、最优解附近收敛慢等现象,并提出了一些改进方案,例如自适应PSO算法、混合PSO算法、杂交PSO算法等[2-4].因此,本文从初始解和收敛精度两个角度出发对PSO算法进行了改进,提高了算法的计算精度,有效的改善了算法的优化性能. 1基本PSO算法 PSO算法是一种基于群体的随机优化技术,基本思想源于对鸟群觅食行为的研究.通过对鸟群飞行时经常会突然改变方向、散开、聚集,但整体总保持一致性,个体与个体间鸟群好像在一个中心的控制 收稿日期:2008-04-17 基金项目:河北省自然科学基金(F2006000109) 作者简介:宋洁(1967-),女(汉族),副教授.

粒子群优化算法及其参数设置

毕业论文 题目粒子群算法及其参数设置专业信息与计算科学 班级计算061 学号3060811007 学生xx 指导教师徐小平 2016年 I

粒子群优化算法及其参数设置 专业:信息与计算科学 学生: xx 指导教师:徐小平 摘要 粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。论文介绍了粒子群优化算法的基本原理,分析了其特点。论文中围绕粒子群优化算法的原理、特点、参数设置与应用等方面进行全面综述,重点利用单因子方差分析方法,分析了粒群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置。最后对其未来的研究提出了一些建议及研究方向的展望。 关键词:粒子群优化算法;参数;方差分析;最优解 II

Particle swarm optimization algorithm and its parameter set Speciality: Information and Computing Science Student: Ren Kan Advisor: Xu Xiaoping Abstract Particle swarm optimization is an emerging global based on swarm intelligence heuristic search algorithm, particle swarm optimization algorithm competition and collaboration between particles to achieve in complex search space to find the global optimum. It has easy to understand, easy to achieve, the characteristics of strong global search ability, and has never wide field of science and engineering concern, has become the fastest growing one of the intelligent optimization algorithms. This paper introduces the particle swarm optimization basic principles, and analyzes its features. Paper around the particle swarm optimization principles, characteristics, parameters settings and applications to conduct a thorough review, focusing on a single factor analysis of variance, analysis of the particle swarm optimization algorithm in the inertia weight, acceleration factor setting the basic properties of the algorithm the impact of the experience of the algorithm given parameter setting. Finally, its future researched and prospects are proposed. Key word:Particle swarm optimization; Parameter; Variance analysis; Optimal solution III

一种改进的粒子群优化算法

一种改进的粒子群优化算法 发表时间:2011-04-08T10:15:21.830Z 来源:《价值工程》2011年第3月上旬作者:武燕张冰[导读] 介绍基本粒子群优化算法的原理、特点,并在此基础上提出了一种改进的粒子群算法。 武燕 Wu Yan;张冰 Zhang Bing (江苏科技大学电子信息学院,镇江 212003)(School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China)摘要:介绍基本粒子群优化算法的原理、特点,并在此基础上提出了一种改进的粒子群算法。通过在粒子初始化时引入相对基的原理使粒子获得更好的初始解,以及在迭代过程中引入变异模型,部分粒子生成相对应的扩张及收缩粒子,比较其适应度,保留最佳粒子进行后期迭代,使算法易跳出局部最优。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。 Abstract: This paper introduces the principles and characteristics of Particle Swarm Optimization algorithm,and puts forward an improved particle swarm optimization algorithm. It adopted Opposition-Based Learning in initialization to get a better solution and adopted variation model which make some particles generate two corresponding shrink and expand particles and keep the best fitness particle iterate in later iteration to avoid getting into local minumum. The experimental results of classical function show this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation. 关键词:粒子群优化算法;相对基;变异模型 Key words: Particle Swarm Optimization(PSO);Opposition-Based Learning;variation model 中图分类号:TP301.6 文献标识码:A 文章编号:1006-4311(2011)07-0161-02 0 引言 粒子群优化算法(Particle Swarm Optimization,PSO)是一种新型的仿生算法,由Kennedy和Eberhart于1995年提出[1,2]。该算法是基于群体智能(Swarm I ntelligence,SI)的优化算法,其功能与遗传算法(Genetic Algorithm,GA)非常相似[3]。PSO优化算法因其需要调节的参数少,具有简单且易于实现的优点,因此越来越多地被应用于函数优化、神经网络训练、模式分类以及其他领域[4]。但是,其数学基础不完善,实现技术不规范,在适应度函数选取、参数设置、收敛理论等方面还存在许多需要深入研究的问题。本文主要是介绍PSO算法原理和特点,并在此基础上提出一种改进的PSO算法,并用测试函数对其进行验证。 1 粒子群算法的基本原理和特点 1.1 算法原理粒子群优化算法的基本概念是源于对鸟群捕食行为的模仿研究,人们从鸟群捕食过程当中得到启示,并用于解决优化问题。在PSO算法中,每个优化问题的解都是搜索空间中一个粒子。所有的粒子都有一个由被优化的函数决定的适应度值,每个粒子还有一个速度(v)决定它们飞行的方向和距离。PSO初始化为一群随机粒子,然后粒子根据当前的最优粒子在解空间中搜索最优解。在每一次迭代中,粒子都是通过跟踪两个“极值”来更新自己,一是就是粒子自身找到的最优解,称个体极值(pbest);另一个极值是整个群体找到的最优解,称全局极值(gbest)。如果粒子的群体规模为M,目标搜索空间为D维,则第i(i=1,2,…,M)个粒子的位置可表示为Xi,它所经过的“最好”位置记为pi,速度用Vi表示,群体中“最好”粒子的位置的位置记为pg表示,那么粒子i将根据下面的公式来更新自己的速度和位置: (2) 其中,d=1,2,…D,c1,c2为大于零的学习因子或称作加速系数;r1和r2是[0,1]上的随机数;ω(t)是Shi提出的ω线性递减的模型,即。其中,ωmax和ωmin分别是惯性权重的最大和最小值, iter[5]是最大迭代次数,iter是当前迭代次数,这样则可以保证在算法开始时,各微粒能以较大的速度步长在全局范围内探测到较好的结果;在搜索后期,较小的ω值则能保证微粒在极点周围做精细的搜索,从而使算法有较大的几率以一定精度收敛于全局最优值。 1.2 算法特点虽然PSO的功能与遗传算法极其类似,但存在如下显著的优点:无交叉和变异运算,仅依靠粒子速度完成搜索空间;有记忆性,每个粒子和群体的历史最优位置可以记忆并传递给其他粒子,而且需要调整的参数少,结构简单,易于实现;跟遗传算法采用的二进制编码不同,PSO采用实数编码,直接由问题的解决定,问题解的变量数作为粒子的维数;收敛速度快,在迭代过程中只有最优的粒子把信息传递给其他粒子,属于单向的信息流动,整个搜索更新过程是跟随当前最优解的寻优迭代过程。 2 PSO算法的改进 PSO算法虽然推出的时间不长,但有着许多的改进方法,一般而言都是在局部最优搜索问题及速度更新问题上。本文根据PSO算法的特点,在初始化以及迭代过程中作了一些改进,提出了一种基于相对基初始化及变异模型的PSO算法(OBC-PSO)。 2.1 相对基初始化相对基学习(Opposition-Based Learning)是Tizhoosh于2005年提出的一种新的机器学习算法[6]。它的主要思想是:在求解优化问题时,同时考察一个可行解和它的相对解,通过评价他们的优劣来获得较优的候选解。一般来说,在对解无任何先验知识的情况下,通常我们是采用随机法初始化群体。本文将相对基学习嵌入到PSO算法中,通过同时评价一个可行解及其相对解的优劣,以获得较优的初始候选解,从而提高收敛速度。具体方法如下: ①随机生成均匀分布的初始群体X=X i,V i i=1,2,…,N; ②计算相对群体OX:分别对X中的每个粒子按(3)、(4)式计算其相对粒子(包括位置和速度),构成相对群体OX=OX i,OV i i=1,2,…,N; ox id=L d+U d-x id(3) ov id=V min d+V max d-v id(4)

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述 学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化是智能优化的一个重要分支,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互和合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 (1) 1 概述 (3) 2 定义及原理 (3) 2.1 定义 (3) 2.2 群集智能算法原理 (4) 3 主要群智能算法 (4) 3.1 蚁群算法 (4) 3.2 粒子群算法 (5) 3.3 其他算法 (6) 4 应用研究 (7) 5 发展前景 (7) 6 总结 (8) 参考文献 (9)

1 概述 优化是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 和粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2.1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中, i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的 可行域。

粒子群算法的研究现状及其应用

智能控制技术 课程论文 中文题目: 粒子群算法的研究现状及其应用姓名学号: 指导教师: 年级与专业: 所在学院: XXXX年XX月XX日

1 研究的背景 优化问题是一个古老的问题,可以将其定义为:在满足一定约束条件下,寻找一组参数值,使系统的某些性能指标达到最大值或最小值。在我们的日常生活中,我们常常需要解决优化问题,在一定的范围内使我们追求的目标得到最大化。为了解决我们遇到的最优化问题,科学家,们进行了不懈的努力,发展了诸如牛顿法、共轭梯度法等诸多优化算法,大大推动了优化问题的发展,但由于这些算法的低运行效率,使得在计算复杂度、收敛性等方面都无法满足实际的生产需要。 对此,受达尔文进化论的影响,一批新的智能优化算法相继被提出。粒子群算法(PSO )就是其中的一项优化技术。1995 年Eberhart 博士和Kennedy 博士[1]-[3]通过研究鸟群捕食的行为后,提出了粒子群算法。设想有一群鸟在随机搜索食物,而在这个区域里只有一块食物,所有的鸟都不知道食物在哪里。那么找到食物最简单有效的办法就是鸟群协同搜寻,鸟群中的每只鸟负责离其最近的周围区域。 粒子群算法是一种基于群体的优化工具,尤其适用于复杂和非线性问题。系统初始化为一组随机解,通过迭代搜寻最优值,通过采用种群的方式组织搜索,同时搜索空间内的多个区域,所以特别适合大规模并行计算,具有较高的效率和简单、易操作的特性。 目前使用的粒子群算法的数学描述[3]为:设粒子的寻优空间是m 维的,粒子的数目为ps ,算法的最大寻优次数为Iter 。第i 个粒子的飞行速度为T i i1i2im v [v v ]= ,,,v ,位置为T i i1i2im x [x x x ]= ,,,,粒子的个体极值T i i1i2im Pbest [,]P = ,P ,P ,全局极值为 T i i1i2im Gbest [,]g = ,g ,g 。 粒子群算法的寻优过程主要由粒子的速度更新和位置更新两部分组成,其更新方式如下: i+11122v ()()i i i i i v c r Pbest x c r Gbest x =+?+?; i+1i+1i x x v =+, 式中:12c c ,为学习因子,一般取2;12r r ,是均与分布着[0,1]上的随机数。

标准粒子群算法(PSO)及其Matlab程序和常见改进算法

一、粒子群算法概述 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy博士提出,源于对鸟群捕食的行为研究。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。 PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个”极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 二、算法原理 粒子群算法采用常数学习因子,及惯性权重,粒子根据如下的公式更新自己的速度和位置。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 三、算法步骤 1、随机初始化种群中各微粒的位置和速度; 2、评价个粒子的适应度,将各粒子的位置和适应度储存在各微粒的pbest(Q bi)中,将所有pbest中适应度最优的个体的位置和适应度存储在gbest(Q bg)中。 3、更新粒子的速度和位移。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 4、对每个微粒,与其前一个最优位置比较,如果较好,则将其作为当前的最优位置。 5、比较当前所有的pbest和上一迭代周期的gbest,更新gbest。 6、若满足停止条件(达到要求精度或迭代次数),搜索停止,输出结果,否则,返回2。

粒子群优化算法及其应用研究

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

一种新的改进粒子群算法研究

一种新的改进粒子群算法研究 马金玲,唐普英 电子科技大学光电信息学院,成都 (610054) E-mail:majinling2006@https://www.doczj.com/doc/6f6680987.html, 摘 要:研究粒子群优化算法(PSO)的收敛速度,以提高该算法性能是PSO的一个重要而且有意义的研究。Jun Sun 等人通过对PSO系统下的单个个体在量子多维空间的运动及其收敛性的分析,提出了具有δ函数形式的粒子群算法(Quantum Delta-Potential-Well-based PSO)。论文在此基础上提出了改进型算法(IQDPSO),用粒子的速度来产生一个随机数引导粒子向最优解快速靠拢,并对速度的处理采取了新的策略。仿真结果表明:该改进算法较原算法在收敛速度上有很好的改善,而且稳定性也较好。 关键词:粒子群优化算法,量子行为,量子机理 中图分类号: TP301.6 1. 引言 粒子群优化算法(PSO)是近年来被广泛关注和研究的一种智能优化算法,最初由Kennedy和Eberhart于1995年提出并成功地应用于函数优化,后来又进行了有效的拓展。它是对鸟群觅食过程和集聚的模拟[1],是一种全局优化算法。其基本的表达式为 v t+1= v t +c1·r1(P t - x t) + c2·r2(P g - x t) (1) x t+1 = x t + v t+1(2)其中,r1 ,r2是介于(0,1)之间的随机数;c1、c2均是正常数;P g是全局最优解;P t是当前代的个体粒子最优解;x t是当前代粒子的位置;v t是当前代粒子的速度。经典PSO算法的粒子就是根据以上两式来更新自己的位置和速度,寻求最优解。 后来Shi 等人又提出了惯性权重的方法[2]和用模糊控制器来动态自适应地改变惯性权重的技术[3],以提高算法的收敛速度。Clerc 等人提出了压缩因子法[4],以控制系统行为最终收敛。随后又有很多学者从各个角度提出了改进型算法,这些改进的算法虽然解决了一些实际应用问题,但大部分却牺牲了粒子群算法简单、易实现的特性,并且大大增加了计算量。这对要求快速找到最优解的问题显然是不适用的。所以探索在不增加计算量的情况下,能够更好的解决实际问题的粒子群算法,是一个值得研究的课题。Jun Sun等人提出的具有δ函数形式的粒子群算法就很好的保持了粒子群算法的特性[5]。文中的算法就是该算法的改进(IQDPSO):用个体粒子的速度产生一个引导该粒子向最优解靠拢的随机数,但是只有当前代个体粒子的适应值不如前一代时,才更新粒子的速度。仿真结果显示:该改进算法在收敛率上有很大的提升,并且稳定性也近乎完美。 2. QDPSO算法 该算法改变了经典PSO的粒子更新策略。文献[5]认为,在PSO系统下的个体粒子如果具有量子行为,那么此粒子将会与经典PSO算法中的粒子以截然不同的方式运行。根据传统的牛顿力学机制,经典PSO算法中的每一个粒子的状态都是由它的速度向量和位置向量来描述的,粒子移动的过程形成了一个确定的运动“轨迹”。文献[5]的作者认为,这个所谓的“轨迹”对具有量子机理的粒子已经没有意义了。因为粒子的速度向量和位置向量不能再依据“不确定原理”被同时确定了。所以文献[5]在保持了PSO算法原理下,提出了QDPSO (Quantum Delta-Potential-Well-based PSO)算法。该算法只用了粒子的位置向量,并且是用

经典算法优缺点

根据电为系统无功优化问题非线性、多约束、多目标、连续和离散变量共存的 特点[3],目前无功优化研究的关键点主要集中在两个问题上,第一个是建立合适的无功优化数学模型,第二个是选择合适的无功优化方法。针对第一个问题,一般采 取的是具体问题具体分析,建立的数学模型首先要符合电力系统的运行情况和各项 约束,其次再根据个人偏好确定所需的目标函数。针对第二个问题,目前广泛使用 的无功优化方法主要分为两类:经典数学优化方法和新型人工智能优化方法,这两 类方法在电力系统无功优化问题上都得到了广泛的应用。 1.2.1经典数学优化算法 经典数学优化算法的基本思路大致都是:先选定某一合适的初值,进行不断迭 代,当满足迭代结束条件时,收敛到局部或者全局最优解。无功优化中最常见的数 学优化算法主要包括线性规划法W、非线性规划法W、混合整数规划法及动态规 划法m等等。 线性规划法的原理是对目标函数和约束条件运用泰勒公式进行数学变换,变换 后略去高次项,这样就把电力系统无功优化这一非线性问题转换为线性问题。典型 的线性规划法主要有内点法W和灵敏度分析法W。这类方法的优势在于方法成熟、 模型简单、求解速度快、收敛性好。但是把非线性问题运用线性化的方法解决必然 会带来一系列误差。首先是对于大型电网,线性规划法的收敛精度可能存在较大的 误差,其次是步长的选择问题,步长过大会导致反复偏离最优解而产生振荡,步长 过小则会导致算法的收敛速度变慢。显然,要针对不同系统选择合适的步长,因此 算法的通用性不强。最后,线性规划法对初值和函数的凹凸性都有一定要求,W上 这些缺陷使其在应用和发展上都存在一定局限性。 (2)非线性规划法 非线性规划法的原理是通过引入拉格朗日系数或惩罚系数将含约束的优化问题 转换为序列无约束优化问题或者线性规划问题求解,是一种能处理系统优化模型中 各类约束条件或目标函数至少有^个是非线性函数的规划方法。因为电力系统无功 优化问题本身就是非线性优化问题,所L乂非线性规划法更加适合求解电力系统无功优化问题。典型的非线性规划法主要有简化梯度法W、牛顿法和二次规划法U23。这类方法优势主要是模型精确,方法简单,计算精度高,但其缺点也十分明显,如 计算量大、稳定性不好、某些不等式和高维问题难LjA处理等等,尤其是电力系统无功优化的控制变量既有连续变量又有离散变量且各类等式不等式约束较多,这就大 大限制了非线性规划法的作用。 (3)混合整数规划法 混合整数规划法是一种处理含离散变量问题的方法,主要的原理是先取好整数 变量,再用上述线性或非线性规划法处理连续变量。送比直接将离散变量当做连续 变量优化,然后再对其取整有一定优势。因此,混合整数规划法十分适合优化电刀 系统无功优化的某些控制变量,如变压器的抽头位置和电容器组的投切数目。这类 方法的优势主要是能更精确的处理优化过程中的离散变量,但也存在一系列问题, 如随着维数提升,计算量成倍増加,容易产生"维数灾",尤其随着电力系统规模 的不断增大,混合整数规划法的作用将会大大受限。所tU兑,混合整数规划法一般适用于规模较小的电力系统无功优化研究。典型的混合整数规划法主要有分支界定 法山]。 3

浅谈粒子群算法改进方法

浅谈粒子群算法改进方法 【摘要】本文介绍了粒子群算法的基本概念及粒子群算法的训练过程,分别从基本进入、改变惯性因子、改变收缩因子三个方面对其进行优化改进。 【关键词】粒子群;进化方程;惯性因子;收缩因子 1.粒子群算法综述 二十世纪九十年代,美国的社会心理学家James Kennedy和电气工程师Russell通过对自然界的鸟群进行觅食的行为进行观察和研究,提出了模仿鸟群行为的新型群体智能算法——粒子群(Particle Swarm Optimization,PSO)算法。 粒子群算法与其它进化类算法十分相似,同样也是采用“群体”与“进化”的概念,同样也是依据粒子的适应值大小进行操作。而与之不同的是,粒子群算法不像其它进化算法那样,对于每个个体使用进化算子,而是将每个个体看作是在一个n维搜索空间中的没有重量没有体积的微粒,并在搜索空间中以一定的速度进行飞行。该飞行速度这个个体的飞行经验和群体的飞行经验来进行动态的调整。 2.粒子群算法实现的步骤 这里将基本粒子群算法的训练过程描述如下: (1)首先将初始化方程作为依据,将该粒子群体的随机位置和速度进行初始化设置; (2)计算粒子群中每个粒子的适应度值; (3)将该粒子群中每个粒子的适应值与其经历过的最好位置Pi的适应值进行比较,如果好,将它作为当前的最好位置; (4)将该粒子群体中每个粒子的适应值与所有粒子经历的最好位置Pg的适应值进行比较,如果好,将它作为当前的全局最好位置; (5)以粒子群进化方程为依据,进化粒子的速度及位置; (6)如果没有达到设置的结束条件或达到一个设置的最大迭代次数,则返回到第二步,否则结束。 3.粒子群算法进化方程的改进 3.1 基本粒子群算法进化方程的分析

粒子群算法常用改进方法总结

粒群算法的改进方法 一.与其他理论结合的改进 1.协同PSO(CPSO)算法 原理:提出了协同PSO的基本思想,采用沿不同分量划分子群体的原则,即用N个相互独立的微粒群分别在D维的目标搜索空间中的不同维度方向上进行搜索。 优点:用局部学习策略,比基本PSO算法更容易跳出局部极值,达到较高的收敛精度. 缺点:此算法在迭代初期,适应值下降缓慢,且其收敛速度与种群所含微粒数目成反比. 2.随机PSO(SPSO)算法 原理:其基本思想是利用停止进化的微粒来改善全局搜索能力。即将式(1)中的当前速度项V过去掉,从而使得速度本身失去记忆性,减弱了全局搜索能力.但这样也使得在进化的每一代均至少有一个微 粒出予处于微粒群的历史最好位置而停止进化.然后在搜索空问中重新随机产生新的微粒以代替停止微粒的进一步进化.这样就大大增强了全局搜索麓力. 3.有拉伸功能的PSO算法 原理:为了有效地求解多模态复杂函数优化问题,Parsopoulos等人将函数“Stretching”技术引入PSO算法,形成了一种高效的全局优化算法一“Stretching PSO”(SPSO)。它通过消除不理想的局部极小而保留全局最小来避免陷入局部极小.在检测到目标函数的局部极小

点后,立即对待优化的目标函数进行拉伸变换. 优点:.SPSO具有稳健的收敛性和良好的搜索能力,在很多高维度,多局部极值的函数最小值的求解问题上,搜索成功率显著提高。 缺点:计算耗时相应地也会增加. 4.耗散PSO(DPSO)算法 原理:谢晓峰等人根据耗散结构的自组织性,提出了一种耗散型PSO 算法.耗散PSO算法构造了一个开放的耗散系统.微粒在开放系统中的“飞行”不只依赖于历史经历,还要受环境的影响.附加噪声从外部环境中,持续为微粒群弓|入负熵,使得系统处于远离平衡态的状态.又由于群体中存在内在的非线性相互作用,从而使群体能够不断进化。 二.与其他算法结合的改进 1.混合PSO(HPSO)算法 原理:Angeline于1998年提出采用进化计算中的选择操作的改进型PSO模型,成为混合PSO(HPSO)。 优点:HPSO提高了收敛速度并保持了一定的全局收敛能力 缺点:在解决超高维、非线性、多局部极值的复杂性优化问题时有些力不从心。 2.杂交PSO算法 原理:借鉴遗传算法的思想,Angelinec最早提出了杂交PSO算法的概念,而Lovbjerg等人进一步将进化计算机制应用于PSO算法,给出了算法交叉的具体形式。

优化算法开题报告

篇一:基于粒子群算法的电力系统无功优化开题报告 附件 基于粒子群算法的电力系统无功优化 一、选题背景及其意义 电力系统无功优化,一般是指在满足电网的安全运行约束的前提下,通过变压器分接头的合理选择,发电机机端电压的理想配合以及无功补偿的优化配置等措施,使系统无功潮流达到最优分布,减少有功损耗。它对于提高系统电压质量,减少有功损耗,保证系统安全、可靠和经济运行有重要意义。 在我国,随着电力系统的迅速发展,电网规模越来越大,结构也日趋复杂,使系统的稳定性问题更加突出,而单凭经验进行无功配置已不能适应现代系统的需要,需要在现代电子与计算机技术的基础上,研究建立无功优化的数学模型、提出相应的算法,在电网的规划建设和实际调度运行中实现无功优化,并在满足电网安全运行条件下,减少有功损耗和投资。同时对于电力公司而言,减少有功网损就是增加利润,在电力公司由粗放型经营向集约化经营方式转变的今天,进行无功优化就显的更加必要和重要了。本论文通过分析电力系统无功优化中各类主要影响因素,结合当前电力系统无功优化主要的研究方法,建立电力系统无功优化的数学模型。采用智能优化算法——粒子群算法求解数学模型,选取实际的电网作为计算算例,得到无功优化的结果,并与优化前的无功配置方案进行对比,分析粒子群算法在无功优化应用中的优缺点,为今后实际电网的无功规划提供一定的参考价值。 二、国内外研究动态 早在六十年代,电力系统无功优化就受到了国内外学者的关注,经过多年的研究,已经取得了大量成果。总的来看,电力系统的无功优化问题可以分为两类:一类是对系统稳态运行情况下的运行状态进行优化,目的是进行无功平衡,以提高运行电压水平、降低损耗;另一类是研究系统在扰动情况下的电压稳定性。前者根据所研究问题的时间跨度、目标函数和解决方法又可以进一步细分。本文的研究内容为稳定运行时的无功优化及电压控制,不涉及暂态和动态情况下的电压稳定性。 电力系统无功优化问题有离散性、非线性、大规模、收敛性依赖于初值的特点,针对无功优化的特点,近年来许多专家学者就此做了大量的研究,并将各种优化算法应用于这一领域,目前已取得了许多成果。文献[3]提出将一种改进的 tabu 搜索算法用于电力系统无功优化,考虑有功损耗费用和补偿费用,使得总费用最小。在一般的 tabu 搜索算法的基础上,对搜索步长、禁忌表、不同循环点的选择以及算法终止判据等问题做了改进,更容易跳出局部最优解,保证可以搜索整个可行域,从而得到全局最优解的可能性更大。与线性规划算法相比具有更强的全局寻优能力。文献[4]运用改进的模拟退火算法求解高中压配电网的无功优化问题,采用了记忆指导搜索方法来加快搜索速度。采用模拟法来进行局部寻优以增加获得全局最优解的可能性,从而能够以较大概率获得全局最优解,收敛稳定性较好。文献[5]提出了一种应用于电力系统无功规划优化问题的改进遗传算法,该算法采用十进制整数与实数混合的编码方式,在选择算子中使用最优保存策略,并对群体规模的选取加以改进。为了使解更快进入可行解域,作者提出了利用专家知识辅助搜寻可行解,并提出罚因子自适应调整,大大加快了算法的收敛性。 相对模拟退火算法、禁忌搜索算法和遗传算法而言,粒子群算法是模拟鸟群觅食的一种新型算法。粒子群优化(pso) 最初是处理连续优化问题的, 目前其应用已扩展到组合优化问题[6]。由于其简单、有效的特点, pso 已经得到了众多学者的重视和研究,并在电力系统优化中得到广泛应用。文献[7]对粒子群算法经行了改进,用于变电站的选址;文献[8]采用粒子群算法优化分布式电源的接入位置和容量;文献[9]利用改进的粒子群算法进行网络重构的优化。从以上文献的研究可以看出,粒子群算法在求解优化问题时有其自身特有的诸多优点。

一种改进的粒子群优化算法-《价值工程》武燕 张冰

一种改进的粒子群优化算法 武燕Wu Yan;张冰Zhang Bing (江苏科技大学电子信息学院,镇江212003) (School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China) 摘要:介绍基本粒子群优化算法的原理、特点,并在此基础上提出了一种改进的粒子群算法。通过在粒子初始化时引入相对基的原理使粒子获得更好的初始解,以及在迭代过程中引入变异模型,部分粒子生成相对应的扩张及收缩粒子,比较其适应度,保留最佳粒子进行后期迭代,使算法易跳出局部最优。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。 Abstract: This paper introduces the principles and characteristics of Particle Swarm Optimization algorithm,and puts forward an improved particle swarm optimization algorithm. It adopted Opposition-Based Learning in initialization to get a better solution and adopted variation model which make some particles generate two corresponding shrink and expand particles and keep the best fitness particle iterate in later iteration to avoid getting into local minumum. The experimental results of classical function show this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation. 关键词:粒子群优化算法;相对基;变异模型 Key words: Particle Swarm Optimization(PSO);Opposition-Based Learning;variation model 中图分类号:TP301.6 文献标识码: A 文章编号:1006-4311(2011)07-0161-02 0 引言 粒子群优化算法(Particle Swarm Optimization,PSO)是一种新型的仿生算法,由Kennedy和Eberhart于1995年提出[1,2]。该算法是基于群体智能(Swarm I ntelligence,

相关主题
文本预览
相关文档 最新文档