当前位置:文档之家› 如何预测连接器使用寿命

如何预测连接器使用寿命

如何预测连接器使用寿命
如何预测连接器使用寿命

如何预测连接器使用寿命

连接器的使用寿命是衡量连接器性能可靠性的首要指标,随着人们对电子产品无故障工作性能的要求不断增强,连接器设计中提高使用寿命成为一种设计导向。此外,市场竞争的加剧也要求设计人员在非昂贵合金中寻找适宜的材料以降低连接器的成本。在许多情况下,这些趋势的综合结果使得连接器的铜合金的工作特性更接近其性能极限。

初始接触力是连接器设计和材料特性的一个重要因素。由于在接触件中,弹性变形会转换成塑性变形,故应力释放会导致接触力的减小。如果接触力低于某一临界水平,则接触件会出现功能失效。因此,预测作为时间和温度相关函数的应力释放自然就成为确保连接器可靠性的关键因素。下面浩隆电子就详细介绍应力释放测试预测连接器使用寿命的相关问题。

应力释放数据是设计人员预测电子连接器使用寿命的一个有效工具,并使之可以根据现有数据对接触材料的选择作出决策。这些数据现已广泛应用于计算机、通信和汽车电子工业。而目前,有关产品的寿命周期的数据是非常缺乏的,尤其在计算机领域。不仅如此,它还是缩短产品开发周期和有效期的一个更为有用的数据。

大多数连接器设计人员采用应力释放数据主要是以此来根据应用要求缩小

接触件材料的选择范围。不过,许多设计人员也正在寻求适当的试验方法以更准

炉管剩余寿命预测

剩余寿命预测 1 高温炉管剩余寿命预测的基本原则和方法 1.1 高温炉管寿命预测的基本原则 炉管检测后的最终质量通常用A、B、C三个级别进行评价。即“A”级管有较轻度或没有蠕变裂纹,这种炉管继续使用没有问题;“B”级管有一定程度的蠕变裂纹,但可以继续使用,同时应加强监视;“C”级管的蠕变深度及面积已达到极限。这类炉管不能继续使用,必须更换。要预测炉管的残余寿命,实际上就是预测“B”级管的使用年限,因为对大多数高温炉管来说,“C”级管是必须更换的。 目前,炉管的检测通常釆用专业炉管检测装置进行。虽然炉管检测装置具有它的可靠性、稳定性和准确性,但它只有一个单一的蠕变裂纹深度指标,如果要估算炉管的残余寿命必须要综合考虑,不能绝对地靠检测到“A、B”级来对炉管残余寿命下定义,因为化学成分和原始组织决定材料的原始强度,而运行时间、温度及应力的变化决定材料受蠕变损伤的程度。 根据国内外对高温炉管的研究结果,本文在对扬子石化公司芳烃厂BA1051制氢转化炉炉管进行评定时,按照如下的基本原则预测炉管的寿命。首先确定导致炉管损伤的主要原因,然后根据炉管的损伤状态,选择相应的预测方法。在对预测结果进行修正时同时兼顾其它因素的影响,在最终得到的使用寿命中应包含一定的安全余度,以适应炉管工作条件的变化。 1.2 高温炉管寿命预测的方法 为了最经济地利用炉管,剩余寿命评价技术必须准确,同时工程上又要求其实施必须简便。近年来国内外对高温炉管剩余寿命评价技术的研究投入了大量的人力和物力,提出了多种预测炉管剩余寿命的方法,归纳起来可大致可分为间接法和直接法两类。直接法即非破坏检查和破坏检查两类剩余寿命诊断技术,间接法即理论解析法。解析法和破坏检查所需时间较长,而非破坏检查可在较短时间,对较多部位进行诊断,且能定期监测。所以采用非破坏检查的方法预测炉管剩余寿命更为实用。 目前非破坏性检查的剩余寿命诊断技术主要有: (1)金属组织变化测定法,炉管长期在高温、应力和环境共同作用下服役,材料的微观组织会发生变化,如碳化物的析出、蠕变空洞的增殖等等。金属组织变化测定法就是通过测定组织的变化来评价炉管的剩余寿命。这种方法需要事先搞清楚金属组织变化与寿命之间的定量关系。目前比较成熟的法有A参数法、晶粒变形法、微结构法、另外还有空洞面积率法。A参数法是英国(ERA、CEGB)、美国(EPRI)于1983年提出的方法,其主要思路是沿主应力方向引一参考线,A参数就是参考线横切晶界总数与存在空洞晶界数的比值。预先求得各种材料的A参数与蠕变寿命比,通过复制试样法测定A参数,进行评价剩余寿命。实验验证表明:A参数能较好地定量损伤状态。空洞面积率是空洞所占面积与全观察面积的比值,它比较容易计量且与寿命的相关性好。应用该方法应注意要把蠕变空洞与碳化物或夹杂物脱落所造成的空洞区别开来,以免误判。A参数法和空洞面积率法还有两个问题需解决: a.有裂纹时,如何来测A参数和空洞面积率,虽然测定方法较多,但不同的方法得到的值不同; b.空洞分布不均匀性的计算及其影响。有些材料往往寿命后期才出现空洞,此时用A参

浅谈桥梁的使用寿命问题

浅谈桥梁的使用寿命问题 【摘要】随着全球各行各业日新月异的飞速发展,也推动了桥梁事业的快速发展。本文通过对城市桥梁结构与设计理念的分析,研究了桥梁的使用寿命、设计性能、桥梁的寿命周期和提高耐久性的设计理论,并对桥梁的设计、使用及维护提出了一些建议。 【关键词】城市桥梁结构与设计理念;耐久性;桥梁的使用寿命 城市桥梁设计宜采用百年一遇的洪水频率,对特别重要的桥梁可提高到三百年一遇。地震区城市桥梁结构的设计和布置应符合现行的《公路工程抗震设计规范》有关规定。影响桥梁系统使用寿命的问题主要与桥梁的前期设计、建造过程及使用期间的管理和维护有关系。前期的设计、施工方法和质量直接影响到桥梁施工完成后的质量,会涉及到桥梁的安全性能和使用寿命,必须给予足够的重视并加以改进。设计、建设、养护分离,不重视桥梁使用期间桥梁的检查、管理和维护工作,建设过程中单纯抓进度,忽略主体结构的耐久性等等,都造成了近些年我国修建的许多桥梁相继出现了质量不达标、腐蚀严重、达不到设计使用年限、甚至断索的一系列问题。更有甚者,有的新桥还未投入使用便出现了严重事故。不管在中国还是在全世界,桥梁使用寿命的问题都应该引起大家足够的重视。 城市桥梁设计和施工中出现的问题导致了桥梁的耐久性不合格,这个情况又给后期的维护、管理和修缮都造成了沉重的负担,与此同时,桥梁使用期间维护、管理和修缮水平的好坏又直接关系到交通安全和桥梁的耐久性,这是相辅相成的?中国现在使用的一些桥梁存在着管理和维护方法不当或者人手不足力度不够的问题,一些桥梁的问题主要是由于养护维修方法不恰当或跟不上桥梁退化附带出来的一系列问题。 在传统设计理念里,设计工作的中心任务集中在了施工过程中所耗费的成本和主体结构在短期时间内性能的优化上,或者是桥梁的美观性被盲目扩大化,但是却对建筑结构的耐久性和使用寿命不够重视,再加上设计中并未涉及到设计使用年限内的正确管理、使用维护、部件更换等建成以后的一系列问题。同时,在开发者的投资决策上,也只注重建筑物在整个建设期间的投资时间和成本,而不重视桥梁整个使用周期内的总价值。桥梁的使用周期是准确衡量一个桥梁的使用性能、建造水平等是否达标的过程,同时又通过后期的管理和维护等手段将其服务状态维持在一定水平或者提高到一定阶段的过程,如此反复,最终使桥梁尽量能达到预期的使用寿命。因此,桥梁的使用寿命设计理论研究不应该只是局限于建筑物短期内性能的设计最优及建设期的成本等,而是应该考虑桥梁整个使用周期内能达到设计的基本要求,在此基础上再尽量考虑使用过程中可能会现的问题并对其变化进行优化,包括桥梁使用过程中的性能设计和优化、使用价值的分析和评价、使用周期内桥梁性能的低减和维护水平的好坏。因此,在桥梁事业蒸蒸日上向前发展的背景下,我们不是单纯的要严格遵循传统的设计理念,使桥梁的使用都能达到规定的设计使用年限,更是要在此基础上提出更新的、更实用的桥梁设计理念,使桥梁事业能美观和实用并存,日本的桥梁事业就很值得我们借鉴

加速老化试验预测橡胶使用寿命(自己翻译过来的)

加速试验预测橡胶组件的使用寿命(翻译的) 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用三元乙丙橡胶(EPDM),丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测EPDM,NBR的使用寿命,对这两种橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。 为了解决工程实践中的一些问题,橡胶材料物理性能受老化影响的程度,橡胶组件使用

管道腐蚀剩余寿命预测

管道腐蚀剩余寿命预测 埋地管道长年埋置地下,不可避免地遭受腐蚀。特别是随着埋地管道服役时间的增加,管道腐蚀情况越来越严重,给管道使用单位的安全生产和经济效益带来严重的影响。开展埋地管道腐蚀的剩余寿命预测评估,对提高埋地管道事故隐患区段的预测能力,实施管道运行完整性管理具有十分重要的意义。 埋地管道因遭受内在和外在因素的破坏,使其设计寿命严重地受到威胁。其中内在因素如管道本身的擦痕、划痕、压痕等机械损伤,管道制造和施工过程中的质量问题;外在因素如地下管道受到腐蚀、人为破坏、管道运行管理不善等。目前,我国埋地管道面临着管道老化、变质等问题,管道使用寿命和剩余使用寿命问题越来越受到重视。 管道的设计寿命一般为33年,为保持管道预期设计寿命,管道使用单位都制定了严格的管道定期检测和日常维护计划,同时十分重视管道的管理、检查和维护工作,有些国家则把管道线路的腐蚀和泄漏检测纳入SCADA系统。 在役埋地管道的剩余寿命预测实际上是一个涵盖管道在线检测、安全状况评价、剩余寿命预测的一个系统工程。 与设计寿命密切相关的是埋地管道的诊断问题。所谓管道腐蚀剩余寿命的基本概念是管道个别地段的剩余使用寿命。对个别管道的持续运行寿命进行诊断,不仅可预防未来可能发生的故障,而且会对管道运行制度和预检修措施进行正确的规划。在很多情况下,还可使这段管道在降低负荷的条件下继续利用其有效期。为此,应将整个埋地管道线路划分成各自不同的典型地段(如按规则规定划分为四种地段),在此基础上进行危险区段的剩余寿命预测。 对管道内、外部结构进行早期诊断,可预测管道剩余使用寿命。埋地管道失效多数情况下是由管体外部腐蚀造成的,其主要机理是土壤的电化学腐蚀。根据管道失效的特点可将腐蚀缺陷分为均匀腐蚀、局部腐蚀和点腐蚀三大类,但因腐蚀影响因素具有极大不确定性,以及缺陷的发生和发展的不确定性(特别是对点蚀),需要从概率统计的角度出发对整条管线或整个管段的剩余寿命进行统计分析,找出其统计规律。 管道本体存在的裂纹也是影响管道使用寿命的重要因素,裂纹的扩展速度会严重影响管道的剩余寿命。所以管道剩余寿命预测中还包括低周疲劳裂纹扩展寿命评估方法,主要是规定当裂纹尺寸达到某一给定长度时的疲劳周次为疲劳裂纹的萌生寿命。但由于裂纹萌生过程中存在很大的随机性,即使同一材料在其相邻区域上截取不同的试样,同一裂纹长度指标对应的循环周期可能处于裂纹扩展的不同阶段。所以也需要利用恰当的物理模型与统计方法确定一种可靠的裂纹尺寸与寿命的关系。 研究表明,金属的老化效应和管道表面的腐蚀损伤会导致管材脆变,从而改变材料的塑

锂纽扣电池可靠性预测和地的应用寿命估算

锂纽扣电池可靠性预测和应用寿命估算 工业设备尤其是便携式设备均离不开嵌入的锂纽扣电池--系统的“源动力”。据此,锂纽扣电池的制造厂商及产品又是层出无穷、品种繁多,从而导致使许多最终用户在对其锂纽扣电池的使用寿命和选用上不是茫茫然就是束手无策。为此,如何解决这致关系统可靠安全的重要问题及如何寻找出新方案、新产品等新途径就成为其重中之重。目前国际上有不少著名制造厂商, 能提供有备用锂纽扣电池的非易失存储器(NVM—Non volatile MEMORY)或实时时钟(RTC)的应用产品,以确保当系统(微控制器、嵌入式等系统)掉电时保存数据或信息。这些产品的典型规格是在没有系统电源的条件下提供10年的使用寿命。因为最终应用是不确定的,所以对使用寿命的预测还是比较保守的。最终用户针对锂纽扣电池的具体应用, 应评估(电池结构/特征、电池测试/筛选、容量等)或预期出使用寿命,特别是对那些工作环境超出了典型范围或所需应用时间超过10年的用户来说。必须了解这电池可靠性模型,这将有助于用户单独选购电池控制器, 从而又将电池控制器与电池组装在一起构成性能价格比较高的锂纽扣电池,也就解决了不必购买包含电池控制器和电池在内的高成本模块问题。本文论述了备用锂纽扣电池应用寿命估算及寿命对IC集成电路(指SRAM--静态随机存取存储器或RTC)影响的有关问题。这儿指IC均属于是由系统电源供电或锂备用电池供电。为此,首先要说明为何选用备用电池?为何选用备用电池众所周知,系统断电时,有多种保存数据的方案,当对读写速度或周期数要求比较严格时,有备用电池的SRAM是一种较为可靠的替代方案。闪存或EEPROM同样提供NV(非易失)数据存储,但在简易性和速度指标上存在不足。而有备用电池的SRAM,其主要缺陷是电池是一个消耗品,产品选择必须慎重考虑电池容量并确定其产品最终的使用寿命。对于没有系统电源供电同时要保持信息或计时功能,并需要提供一定的电能才能维持晶振工作,则用电池提供电流是非常适合的.IC集成电路所需电流如果IC(SRAM或RTC)将由电池供电,则需要在IC工作时的电流、使用寿命与电池容量之间加以匹配。购买电池和IC时,其数据手册将提供与IC负载相对应的有关估算电池寿命的信息,如果购买集IC和电池于一体的模块,则最终用户应依靠模块厂商对模块产品的适当筛选来保证系统使用寿命的要求。半导体制造厂商为其所有电池供电产品制订了测试条件,以保证在电池容量的允许范围内为最终器件提供10年的使用时间。而Dallas Semiconductor公司对这种应用的IC进行优化设计并利用先进的处理工艺满足低电流的需求。对于其它供货商提供的高密度SRAM需作特殊的筛选才能满足模块使用寿命的要求。图1来自于由锂纽扣电池供货商-松下公司提供的电池容量报告,图中四条线代表最常用的电池尺寸(BRl225、BRl632、BR2330和BR3032)。电池供应商提供的额定电池容量(单位为mAH-毫安时)与电池尺寸相对应。电池结构/特征在其需要有备用电池的模块内选用一次性锂钮扣电池,这些电池的额定电压为3V,对系统典型工作电压为2.7V来说,则该锂钮扣电池作为备用电源非常合适。电池电压在放电状态下保持稳定平坦(见图2所示),电池放电接近终止时仍能提供与新电池几乎相同的电压。平坦的放电曲线对于备用电池而言是极为理想的特性,但它为估算电池的剩余电量增添了难度。一次性锂钮扣电池具有较好的可预测性,它的开路电压或内部阻抗等关键参数的离散性极小,极小的离散性使电池厂商筛选电池时很容易设置电池检测的条件,从而便于剔除有缺陷的电池,同时也有助于电池用户鉴别有故障的IC /电池系统。例如,电池电压离散性或电压与电池负载的对应关系是已知的,则电池加载后的电池电压可用以指示其电池的负载情况。如果电池负载与IC所需要的电流一致,则负载电压的离散性极小。根据从外部测得的负载电压可以检测异常IC或电池,从而排除潜在的可靠性风险。电池测试/筛选电池制造商经过100%的测试使产品性能极其一致,但是,任何用户为其系统选用电池时还需对电池作进一步测试,以确保最终产品选用工作正常的电池。经过适当的筛选可以检测出三种类型的缺陷:首先是那些被电池制造商的测试系统所遗漏的电池,这类电池最易检测;第二类缺陷是低水平的内部泄漏,这些电池可能经过一段时间后才能显现出它的内部故障,对于这类电池的检测不仅要了解其合适的测试电平,还要预先了解其测试结果的离散性;第三类缺陷是电池用户在处理或系统制造过程中产生的,由于电池容量是有限的,如果有意想不

建筑剩余经济寿命与土地使用权剩余期限不一致时的处理

建筑剩余经济寿命与土地使用权剩余期限不一致时的处理 一、住宅房地产 1、建筑物剩余经济寿命大于土地使用权剩余年限,根据《物权法》149条规定“住宅建设用地使用权期间届满的,自动续期。非住宅建设用地使用权期间届满后的续期,依照法律规定办理。该土地上的房屋及其他不动产的归属,有约定的,按照约定;没有约定或者约定不明确的,依照法律、行政法规的规定办理。”因此本次评估按建筑物 剩余经济寿命确定收益年限。 2、建筑物剩余经济寿命小于土地使用权剩余年限,参照非住宅房地 产同类情形确定。 二、非住宅房地产 1、建筑物剩余经济寿命大于土地使用权剩余年限 ①土地出让合同约定无偿收回建筑 根据《房地产估价规范》中采用收益法测算相关规定“建筑物剩余经济寿命超过土地使用权剩余期限,且出让合同等约定土地使用权期间届满后无偿收回土地使用权及地上建筑物的非住宅房地产,收益价值应为按收益期计算的价值”。 经查阅估价对象所在宗地《国有建设用地使用权出让合同》,合同中 约定土地使用权期间届满后无偿收回土地使用权及地上建筑物。因此,

本次评估按照土地使用剩余年限确定收益期限。 ②土地出让合同未约定无偿收回建筑 根据《房地产估价规范》中采用收益法测算相关规定“建筑物剩余经济寿命超过土地使用权剩余期限,且出让合同等未约定土地使用权期间届满后无偿收回土地使用权及地上建筑物的非住宅房地产,收益价值应为按收益期计算的价值,加建筑物在收益期结束时的价值折现到价值时点的价值”。 经查阅估价对象所在宗地《国有建设用地使用权出让合同》,合word 编辑版. 同中约定“由出让人收回地上建筑物、构筑物及其附属设施,并根据收回时地上建筑物、构筑物及其附属设施的残余价值,给予土地使用者相应补偿”。因此本次评估收益期限为土地使用剩余年限,收益价值应为按收益期计算的价值,加建筑物在收益期结束时的价值折现到价值时点的价值。收益期结束时建筑物剩余价值计算公式为: 建筑物在收益期结束时的价值=价值时点建筑完全重置价×(1+收益期年 限收益期年限建筑报酬率)(建筑物价指数)1+×建筑成新率/ 其中:建筑成新率=[1-(1-R)×t/N]×100% R=建筑残值率;t=收益期结束时实际已使用年限;N=建筑经济寿命 (设定商业用房,在价值时点建筑经济寿命50年,已使用8年,剩余42年;土地使用年限40年,已使用10年,剩余30年) 3030)(1+7.5%)×(1-38/50/=3500×(1+2.0%) =3500×1.8114×0.24/8.7550

NBR加速老化试验预测橡胶使用寿命

加速老化预测NBR橡胶的使用寿命 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用,丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测NBR的使用寿命,对NBR橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度 k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 冷冻机中空压机部分所使用的橡胶组件的使用寿命是它的一项关键指标。在使用过程中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。

桥梁设计寿命研究进展简介

桥梁设计寿命研究进展简介 摘要:桥梁耐久性差、服务寿命短及全寿命经济性指标差等问题已成为世界性难题。我国正处于桥梁等基础设施建设的高峰时期,大量的待建桥梁面临着如何确保全寿命周期的耐久、安全和经济的严峻问题,关于桥梁耐久性问题的研究有十分紧迫和现实的意义。本文主要研究混凝上桥梁的耐久性问题,初步提出了不同使用条件下我国桥梁构件设计使用寿命的建议值。 关键词:桥梁;耐久性;极限状态;设计寿命 1 前言 在我国现行公路桥梁结构设计和施工规范中,有关耐久性及使用寿命的内容很少。国外许多国家的规范也没有明确规定结构的设计使用寿命,包括美国ACI 的现行规范在内。但是美国ACI制定了一些有关耐久性和使用寿命方面的指南、建议等,可供设计人员参考。美国的AASHTO规范虽然在1991年起规定了公路桥梁的设计寿命为75年,但主要是从钢筋疲劳的角度考虑的(例如车辆通行次数的影响)。相对而言,欧洲设计规范(Eurocode)对于设计寿命的要求比较明确,对多数建筑结构的要求为50年,桥梁等基础设施为100年。 对于桥梁结构,不同构件在使用过程中有不同的退化模式,在维护管理及更换方面也有明显的差异。因此,必须明确提出各个构件的耐久性、设计寿命及维护管理的标准与要求,才能使技术人员在桥梁规划、设计及施工阶段就有明确的概念和认识,从而做出有针对性的设计方案及应对措施。 2标准化组织设计寿命的建议 国际标准化组织[IS015686-1, 2000]把通常意义上的耐久性目标具体为建筑或建筑构件的功能要求和可接受水平,要求在设计阶段就予以确定。建筑物或建筑构件的功能要求和可接受水平可作为设计任务书的一部分由业主确定,也可根据当地建筑规范或规章的规定由设计者确定。无论由业主或是设计师确定,都应指明建筑构件或组件的属性(可更换或永久性),考虑其失效效果,进而确定建筑构件或组件的最小设计寿命。如某些构件或组件的失效后果十分严重,应考虑延长构件的使用寿命或加强检查和维护措施,以减少建筑物设计寿命期限内发生失效的风险。 我国建设部的《混凝土结构耐久性设计与施工指南》(CCESOI-2004)将设计工作寿命定义为“设计人用以向业主或用户说明,并据以进行设计的结构预定使用寿命。在结构设计工作寿命的整个期限内,结构应自始至终具有设计所需的安全性和适用性,因此设计工作寿命必须具有相应的保证率或安全度”,并建议设

产品使用寿命的预测因素及其使用寿命的规定

产品使用寿命的预测因素及其使用寿命的规定 1.裂解炉炉管 裂解炉炉管在材料设计上通常使用寿命为10万小时,但是,由于受到使用当中的工况情况,通常其使用寿命只能达到5~6年(约60000小时)。裂解炉管在使用时,炉内温度约1000~1100℃,炉管内部输送的材料(介质),管内压力小于1Mp。主要破坏因素是渗碳、物料的冲刷损伤及炉管的蠕变变形破坏。渗碳是由于炉管在高温状态及物料裂解反应产生渗碳,渗碳后的炉管,其塑性急剧下降、发生脆化,极易在外力的做用下产生脆断;物料的冲刷损伤减薄炉管的有效壁厚;蠕变变形会使炉管产生鼓胀、弯曲、伸长等状况,导致壁厚减薄、开裂等。其它如非正常加热升温、降温、超压等操作因素影响不作为正常使用寿命因素考虑。 2.转化炉炉管 转化炉炉管在材料设计上通常使用寿命为10万小时,通常其寿命可以达到10年甚至更长。转化炉炉管在使用中,炉内温度约950~1050℃,炉管内部输送物料(介质),管内正常压力约2.5Mp。主要破坏因素是物料的冲刷损伤、压力破坏及疲劳破坏。物料的冲刷损伤减薄炉管的有有效壁厚;压力破坏主要是受管内物料加压导致高温状态下炉管破损;炉管在长期高温下使用,可导致其产生疲劳,疲劳破坏后的炉管导致龟裂。同样,其它如非正常加热升温、降温、超压等操作因素影响不作为正常使用寿命因素考虑。 3.连退线、镀锌线、热处理线等炉辊、辐射管 3.1 炉内辊 炉内辊主要是在炉内传送钢板、钢卷,其破坏力主要是应力及表面磨损。在使用过程中,受到钢卷、钢板的拉力、重量压力,可以导致炉辊破断;炉辊表面受到钢卷钢带的摩擦,导致表面拉伤。通常每1~2年对炉辊表面进行一次

机械加工,消除表面的拉伤和损伤。每件炉辊进行一次机械加工将去除约3mm的金属,通常每件炉辊进行3~5次表面加工后,其有效壁厚已经不能满足强度要求,即行更换,寿命终止。如此计算每件炉辊的正常使用寿命在4~5,设计方通常设计在第4年开始陆续更换新辊。同样,其它非正常加热升温、降温、超压等操作因素影响不作为正常使用寿命因素考虑。 3.2辐射管 辐射管在上述生产线上使用时,利用内加热将热量辐射至钢卷钢带,对钢卷钢带进行加热。设计方对辐射管的设计使用寿命是三年,第三年开始至第四年陆续更换新的辐射管。辐射管的主要破坏形式是受热变形、泄漏烧损、疲劳损坏、应力破坏等。辐射管内部加热干烧,无介质冷却通常设备相对于石化炉管的停炉周期要短很多,每季度甚至每月都会停炉检修,其频繁升温、降温过程,加剧辐射管的变形、疲劳。另外,辐射管的内壁是铸态的,未进行内孔机械加工去除内表面的非致密金属,其相对强度不如石化的炉管。辐射管的安装也是一个很重要的环节,由于不断的升温降温,其热胀冷缩产生的应力很大,如果安装的伸缩余量预留不符合规范,将会导致应力破坏,此时,往往使用3~6个月后就会产生应力破坏,表现的方式是在应力集中的位臵发生断裂。同样,其它非正常加热升温、降温、烧嘴失控误操作等操作因素影响不作为正常影响寿命的考虑。 3.3 耐热垫块 耐热垫块用在步进梁式加热炉的水梁上,作为支撑大型钢坯、钢板与水梁之间的过渡材料工件,起到隔热、高温耐磨的作用。主要破坏形式是磨损。使用温度在600~1200℃不等,根据炉子不同温度段选择不同的材料,设臵不同的使用温度。步进梁式加热炉通常包括预热段、加热段、均热段,依次使用的耐热垫块材料分别为

桥梁工程简答题

五、问答题 1)桥梁有哪些基本类型?按照结构体系分类,各种类型的受力特点是什么? 答:梁桥、拱桥、斜拉桥、悬索桥。按结构体系划分,有梁式桥、拱桥、钢架桥、缆索承重桥(即悬索桥、斜拉桥)等四种基本体系。梁式桥:梁作为承重结构是以它的抗弯能力来承受荷载的。拱桥:主要承重结构是拱肋或拱圈,以承压为主。刚架桥:由于梁与柱的刚性连接,梁因柱的抗弯刚度而得到卸载作用,整个体系是压弯构件,也是有推力的结构。缆索桥:它是以承压的塔、受拉的索与承弯的梁体组合起来的一种结构体系。 2)桥梁按哪两种指标划分桥梁的大小?具体有哪些规定? 答:按多孔跨径总L和单孔跨径划分。 3)各种体系桥梁的常用跨径范围是多少?各种桥梁目前最大跨径是多少,代表性的桥梁名称? 答:梁桥常用跨径在20米以下,采用预应力混凝土结构时跨度一般不超过40米。代表性的桥梁有丫髻沙。拱桥一般跨径在500米以内。目前最大跨径552米的重庆朝天门大桥。钢构桥一般跨径为40-50米之间。目前最大跨径为 4)桥梁的基本组成部分有哪些?各组成部分的作用如何? 答:有五大件和五小件组成。具体有桥跨结构、支座系统、桥墩、桥台、基础、桥面铺装、排水防水系统、栏杆、伸缩缝和灯光照明。桥跨结构是线路遇到障碍时,跨越这类障碍的主要承载结构。支座系统式支承上部结构并传递荷载于桥梁墩台上,应满足上部结构在荷载、温度或其他因素所预计的位移功能。桥墩是支承两侧桥跨上部结构的建筑物。桥台位于河道两岸,一端与路堤相接防止路堤滑塌,另一端支承桥跨上部结构。基础保证墩台安全并将荷载传至地基的结构部分。桥面铺装、排水防水系统、栏杆、伸缩缝、灯光照明与桥梁的服务功能有关。 5)桥梁规划设计的基本原则是什么? 答:桥梁工程建设必须遵照“安全、经济、适用、美观”的基本原则,设计时要充分考虑建造技术的先进性以及环境保护和可持续发展的要求。 6)桥梁设计必须考虑的基本要求有哪些?设计资料需勘测、调查哪些内容? 答:要考虑桥梁的具体任务,桥位,桥位附近的地形,桥位的地质情况,河流的水文情况。设计资料需勘测、调查河道性质,桥位处的河床断面,了解洪水位的多年历史资料,通过分析推算设计洪水位,测量河床比降,向航运部门了解和协商确定设计通航水位和通航净空,对于大型桥梁工程应调查桥址附近风向、风速,以及桥址附近有关的地震资料,调查了解当地的建筑材料来源情况。 7)大型桥梁的设计程序包括哪些内容? 答:分为前期工作及设计阶段。前期工作包括编制预可行性研究报告和可行性研究报告。设计阶段按“三阶段设计”,即初步设计、技术设计、与施工图设计。 8)桥梁的分孔考虑哪些因素?桥梁标高的确定要考虑哪些因素? 答:要考虑通航条件要求、地形和地质条件、水文情况以及经济技术和美观的要求。要考虑设计洪水位、桥下通航净空要求,结合桥型、跨径综合考虑,以确定合理的标高。 9)桥梁纵断面设计包括哪些内容? 答:包括桥梁总跨径的确定,桥梁额分孔、桥面标高与桥下净空、桥上及桥头的纵坡布置等。 10)桥梁横断面设计包括哪些内容? 答:桥梁的宽度,中间带宽度及路肩宽度,板上人行道和自行车道的设置桥梁的线性及桥头引道设置设计等。 11)为什么大、中跨桥梁的两端要设置桥头引道? 答:桥头引道起到连接道路与桥梁的结构,是道路与桥梁的显性协调。 12)什么是桥梁美学? 答:它是通过桥梁建筑实体与空间的形态美及相关因素的美学处理,形成一种实用与审美相结合的造型艺术。 13)桥梁墩台冲刷是一种什么现象?

基于某一产品的经济使用寿命的决策研究

1绪论 1.1 研究背景与意义 在市场经济条件下,具有竞争力的产品是企业持续发展的根本之一。一个企业只有开发出具有竞争力的产品,并能够及时根据市场需求的变化,不断更新产品,调整产品结构,企业才能在激烈的市场竞争中立于不败之地。然而,企业产品的更新和结构的调整又以企业产品经济使用寿命周期阶段的变化为前提。产品如同任何生物一样,也有诞生、发展、成熟和衰亡的过程。对于产品这种有规律性的发展过程,企业必须要有充分的认识。仍具市场开发价值的产品,企业理应继续生产,但对一些已经不适应市场需要的产品理应淘汰。可见,根据产品的市场表现,判别产品的经济使用寿命周期阶段,及时调整企业产品战略,直接决定企业未来的兴衰。对产品经济使用寿命周期阶段判别方法的研究,是企业管理和决策的重大理论问题。 传统产品经济使用寿命周期理论主要是利用周期的阶段特征对产品所处阶段进行定性的判别,无法具体地判别某个时点产品具体处于哪个阶段。尤其是在相邻两阶段的交界处,由于无法定量描述其模糊特性,它很难判断产品处于哪个阶段,所做出的阶段判定只是大致的经验判断,从而决策的针对性和有效性就会大打折扣。另外在实际市场中产品的发展很多时候不是完全按照传统产品经济使用寿命周期理论的阶段过程发展,会出现跳跃式发展或逆向循环发展。这使得企业管理者难以结合经济使用寿命周期阶段和发展趋势来选择经营策略。从而建立新的产品经济使用寿命周期理论来定量地判别产品的具体时点所处的阶段,并为企业描绘出比较准确和切合实际的产品经济使用寿命周期走向图成为企业准确决策的迫切需求。1.2 国内外研究现状 乔尔.迪安1950年在《新产品的价格战略》中提出了产品经济使用寿命周期的概念[1]。迪安提出在整个产品经济使用寿命周期中,不断变动的促销策略、价格弹性与不断变化的生产和分销的成本,应该与定价战略调整相配合。1957年,美国的波兹(Booz)、阿隆(A11en)和海米尔通(Hamilton)管理咨询公司出版的《新产品管理》一书,提出产品经济使用寿命周期依其进入市场后不同时期销售的变化,可分为投入期、成长期、成熟期和衰退期,形成了通过描述产品市场销售规律及竞争

金属疲劳寿命预测

金属疲劳寿命的预测 摘要 当一个金属样品受到循环载荷时,大量的起始裂纹将在它的体内出现。样品形成了有初始裂纹的样本:样品越大,样本也越大。在作者先前的研究中表明,在极值统计的帮助下,通过估计最大预期裂纹深度能够预测疲劳极限。本来表明,在一个类似的方式下,疲劳极限以上的疲劳裂纹萌生时间是可以预测的。用最小的分布可得到最短预期初始时间的预测,代替了用最大分布估计最大裂纹尺寸,并以广泛的实验数据获得了好的赞同。 本文为构件的总的疲劳寿命估计提供了一种新的方法。当得知了预计的裂纹萌生寿命和临界裂纹尺寸时,稳定的裂纹扩展就能通过Paris law计算出来。总的疲劳寿命的估算值是裂纹萌生和裂纹扩展的总和。本文介绍的是:为发现任何一种材料裂纹萌生寿命而相应的构建设计曲线的方法。 1、介绍 估计金属构件疲劳寿命的最古老和最常用的方法是S-N曲线,尽管它的缺点众所周知。其中之一是,因观察试样缺口的光滑程度不同而使得疲劳寿命有很大的不同。有些手册尝试通过为不同的应力值浓度的因素单独设计曲线解决这个问题,如Buch。其被当时看作是避免这一问题的局部应变方法。在这种方法中,提出了无论试样的形状如何,相同的应变振幅总是相同的疲劳寿命。 一个构件的总疲劳寿命可以分为3个阶段:裂纹产生、裂纹稳定扩展和裂纹失稳生长。最后一个阶段很迅速,在估计总的疲劳寿命时可以在实际工作中忽略。利用LEFM可获得裂纹稳定生长的可靠样本。不同几何的应力强度因子和所收录例子的大量的公式都可在文献中找到,并且权函数的使用为扩展这种方法的使用提供了可能性。 用类似LEFM的方式对裂纹初始相位的建模,或裂纹的扩展做了很多的尝试,例如:Miller,Austen,Cameron and Smith。另一种方法是用局部应变方法仅对初始寿命进行估计,然后用LEFM和一个合适的计算机程序完成对总疲劳寿命的计算。 经Makkonen研究表明,统计方法能够用来预测金属构件的疲劳极限。当一个构件受到交变载荷时,大量的微裂纹将在它的内部产生,裂纹的数量取决于试样的大小。运用极值统计法来计算裂纹样品类型中的最大裂纹的估计值成为可

基于故障诊断的寿命预测方法

1.前言 寿命预测是一项研讨设备在规定的运行工况下能够安全运行多长时间的工作。可将寿命预测分为早期预测和中晚期预测。早期预测是确定设备的设计寿命或计算寿命,主要以计算方法进行的,是偏理论的。中晚期预测是指设备累计运行时间已超过或远超过设计寿命,通过对其运行历史的分析、无损探伤及金相检验等多种检验鉴定、断裂力学计算、其它直接和间接的寿命预测技术作为科学依据,评估设备还能够继续安全运行的时间,也就是设备的剩余寿命,这种预测是偏实践的,偏经验的。通常说的寿命预测主要是指剩余寿命预测,也称为剩余寿命评估评定,结构完整性评估。为了进行寿命预测,需要做大量的资料分析、实地检验、试验等工作,将这些技术称为剩余寿命预测技术,简称寿命预测。 从经济效益的角度希望设备能够长期继续运行,延长重大设备寿命已成为世界各国相关部门共同关心的研究课题,并已取得了很大成果。对于我国这样一个发展中国家,许多重大设备主要依赖于进口,如何能够做到物尽其用,这个课题更为重要。所以,需要有一套行之有效的,可靠的技术方法对设备进行寿命诊断、寿命管理,做好预测寿命及延长寿命工作。总的来说,寿命预测是处于确保设备安全运行、防止灾难性事故及延长使用寿命的需求而提出来的。 2.设备寿命预测方法 随着设备状态维修技术的发展,为了提高其可靠性,对于运行20-30年的重大设备的时数老化诊断,即寿命预测,越来越重要。各国对重大设备的寿命诊断都开展了研究工作,不断开发出新的寿命预测方法,有相当多的方法已经用于实际,也有一些尚处于实验预测阶段。诸多的寿命诊断方法归纳起来,大致可分为间接方法和直接方法。 间接寿命预测方法即应力解析法是以解析求出部件材料的应力及材料强度数据为基础,用计算机采用有限元计算出部件的损伤程度。间接寿命预测的关键在于正确搜集到部件运行时完整的、真实的资料,如部件内部介质的温度、压力、金属的壁温等。可评价任何部件和任何部位,不受诊断对象所处位置的制约,但若运行历史或材料数据不准确将导致计算误差,且没有考虑材料老化这一因素。 直接寿命预测方法分非破坏试验法和破坏试验法。破坏性试验法需要取得相同或类似的样本,然后通过破坏性试验得到需要的数据,进行加速蠕变断裂试验、

混凝土耐久性与寿命预测

土木工程材料结课论文题目:混凝土耐久性与寿命预测

摘要 摘要:实现混凝土工程的高耐久和长寿命是效益巨大的节能减排和可持续发展之举措, 混凝土的耐久性成为影响混凝土技术未来发展的关键技术已成为共识。混凝土结构的耐久性问题是一个十分复杂的工程问题,不仅影响到结构的使用寿命,更加影响到整个社会的经济效益。本文介绍了混凝土结构耐久性的研究现状,详细阐述了混凝土结构耐久性的影响因素、研究方法以及耐久寿命的定义,重点介绍了混凝土结构材料耐久寿命预测的研究方法,最后提出了混凝土结构耐久性需进一步研究的问题。 关键词:混凝土;耐久性;研究现状;寿命预测 水泥混凝土以其原材料易得、易浇注成型、适应性强、性价比高、综合能耗低等优点而成为当今世界上应用最广泛、用量最大的建筑材料。尽管现代材料科学发展日新月异, 但仍然没有科学家能预言可替代水泥混凝土的建筑材料新品种。从20 世纪30 —40 年代开始,西方国家出于战后重建、工业化、城市化以及能源开发的需要, 用混凝土修建了大量的基础设施, 混凝土用量持续增长。之后, 发展中国家经济的强劲增长进一步助推了混凝土用量的迅猛增长。1987 年, 美国国家材料顾问委员会提交的调查研究报告使混凝土结构的耐久性在美国

乃至世界范围内引起轰动。该报告指出, 大约25.3 万座混凝土桥梁的桥面板, 其中部分仅使用不到20 年就已经发生不同程度地损坏, 使用年限远低于40 ~50 年的设计寿命。大量混凝土结构过早出现严重劣化引起了世界范围内对混凝土耐久性的高度关注, 不仅是因为需要花费巨资修补加固甚至重建, 还在于当今世界人口膨胀、能源供应紧张、环境污染、温室效应导致的气候变暖和生态恶化对可持续发展的迫切需要。混凝土耐久性成为关注焦点促进了世界范围内混凝土理论和技术的快速发展和进步, “混凝土耐久性的整体论模型”、“混凝土结构的寿命预测”、“混凝土结构寿命周期评价(影响评价、成本分析)”等新认识、新方法的出现, 将会为克服混凝土结构在服役过程中的过早劣化问题、实现混凝土技术的可持续发展提供强有力支撑。 混凝土结构的耐久性是一个十分复杂的工程问题。目前的研究主要集中在混凝土腐蚀机理研究、在役结构的健康状况评价和剩余寿命预测、结构性能的防护措施研究等方面,对在役建筑物如何评估其耐久性和剩余使用寿命,也尚无统一方法。事实表明,混凝土结构耐久性的研究滞后于工程实践的需要,因此,积极开展混凝土结构耐久性研究对国民经济建设具有重要意义。本文介绍了工程混凝土结构耐久性的研究现状、影响因素和研究方法,并对混凝土结构材料的寿命预测方法进行了总结和详述。 1 混凝土结构耐久性研究现状 混凝土结构的耐久性,是指混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持其安全、使用功能和外观要求的能力。混凝土结构的耐久性研究应考虑环

论桥梁设计的使用寿命

缩短桥梁设计使用寿命理由 摘要:本文通过对工程存在的历史总结,从钱塘江大桥占当时国民财政收入比重,高速铁路更新而废弃原有线路,用新技术、时代财力变迁说明不需要特别长寿命的桥梁。较短桥梁寿 命以减低投资,用于更广泛的急需投资项目。 关键词:桥梁寿命淘汰依据 100年 出于责任、(此词被过滤)、公共形象、从众等原因,在当前的公用基础工程建设中,政府和项目建设单位为了表示对人民负责,对工程质量负责,普遍提出百年寿命大桥、工程。如杭州湾跨海大桥、东海大桥等使用寿命100年。新建的港珠澳大桥甚至提出120年使用寿命。 对于其它一些机械、电器等产品出厂时寿命普遍有说明,如空调、冰箱、机械设备。普遍通过拆旧、维护成本等经济分析确定合理寿命。 对于如何达到100年寿命工程措施,总有严密论证,但为什么要100年寿命,却没有任何论证。大桥和工程使用寿命延长到100年及以上是不是科学呢? 我下面分析主要讨论100年寿命科学性。提出100年寿命,必须在建设的时候采取工程措施,增加投资。如桥梁建设时采用耐久混凝土,增加钢材厚度,采取钢材防腐措施、可更换支座等等。并且在使用过程中采取相应的养护措施,如阴极保护更新,电流保护,表面涂装。所以100年寿命是用各期投资取得的,这个投资是否合理,可以用一系列的方法来分析。同时各项工程具体设计寿命,应该增加寿命可行性分析。 以下分别从技术更新、养护成本、历史经验等多方面说明,100年使用寿命桥梁并无科学论证为依据。 1、技术更新造成自然淘汰 下面的图片有三座铁路桥梁,她们的历史如下: 浙赣铁路1926年建成,抗战时破坏。1935年开始逐段修复,至37年12月才全线修复通车。单线浙赣铁路浦阳江大桥1937年~1991年老桥使用寿命55年。 我在1990年参加了浙赣铁路浦阳江大桥施工,铁路桥双线32+128钢梁,用于替换原来浙赣铁路单线老桥,新桥位于老桥下游约50m。1991年~2006年双线桥使用寿命15年。 2006年浙赣铁路电气化改造新线70%新建,原双线铁路32+128m桥就荒废了。 目前客运专线建设速度200~350公里/小时,电气化改造铁路200公里/小时,我个人估计,50年以后的铁路速度会更高,以上提到的新建铁路线路又会淘汰。超过50年以上的铁路寿命就没多大意义。 如杭州湾跨海大桥设计行车速度100公里/小时。如果汽车工业发展后更加智能化、速度标准提高到限速200公里/小时。那么现在大桥的坡度、曲线就不能满足要求成为废桥或部分改建利用。

桥梁工程全寿命设计理论与方法研究

桥梁工程全寿命设计理论与方法研究 报告简本 1 概述 1.1 桥梁全寿命设计研究背景及意义 传统的桥梁设计中未明确桥梁整体及主要构件的设计寿命,桥梁设计寿命的确定也缺乏技术支撑和具体的设计方法;桥梁对周围生态环境的影响、桥梁景观与周围环境和谐统一等因素考虑较少等。因此,传统的桥梁设计理念越来越不符合桥梁工程科学发展的要求,导致了现有桥梁存在使用性能差、使用寿命短、全寿命经济性指标差等问题,已经严重影响了桥梁正常服务功能的发挥,并且给养护、维修等后期运营管理带来巨大的经济和社会负担。 为了可持续发展,需要把传统设计方法拓展到桥梁的整个使用寿命期,考虑桥梁建设的全过程,从规划、设计、施工和使用期管理,一直到拆除和材料的回收再利用,进行桥梁全寿命设计。 2004年本研究项目的批准和启动,标志着我国向桥梁全寿命设计的全面研究和应用迈出了扎实的一步。本项目首先从我国现有桥梁状况调查分析入手,全面展开了以下十个专题的研究,在大量工作的基础上分别获得了预期的成果,提出了《桥梁全寿命设计指南》,成为我国实现桥梁全寿命设计的良好开端,为以后开展进一步的桥梁全寿命设计研究奠定了坚实的基础。 (1)国内外桥梁全寿命设计方法研究现状调研 (2)桥梁典型病害调查及桥梁正常使用寿命确定 (3)桥梁全寿命周期成本计算模型研究 (4)桥梁各设计阶段全寿命设计方法研究 (5)全寿命桥梁风险评估与保险策略研究 (6)桥梁混凝土构件全寿命设计研究 (7)桥梁钢结构构件及缆索系统全寿命设计研究 (8)桥梁附属设施全寿命设计研究

(9)桥梁全寿命设计示例 (10)桥梁全寿命设计指南 1.2 我国现有桥梁调查分析 项目组对全国沿海和内地16个省、市、自治区、1968年到2008年我国不同时期建成的、不同桥型、有代表性的38座桥梁(包括悬索桥、斜拉桥、悬吊斜拉组合桥、拱桥、混凝土连续刚构桥、混凝土连续梁桥等我国不同时期修建的各种桥型)进行了调查,调研的内容包括设计资料、施工信息、环境信息、使用条件、管养资料、桥梁的主要病害及治理措施等。 1.3 桥梁全寿命设计的基本概念 研究确定了桥梁全寿命设计(Bridge life cycle design, BLCD)有关基本概念以及桥梁实际使用寿命、桥梁正常使用寿命、桥梁目标使用寿命、桥梁设计使用寿命、桥梁构件使用寿命、桥梁构件设计使用寿命、桥梁全寿命等基本术语的定义。 1.4 桥梁全寿命设计理念 1.桥梁全寿命设计(Bridge life cycle design)的概念 在桥梁设计中,针对规划、设计、施工、运营、管养、拆除或回收再利用的全过程,实现桥梁全寿命周期内总体性能(功能、成本、人文、环境等)最优的设计。 2.桥梁全寿命设计的设计阶段 图1.1 桥梁全寿命设计的主要阶段

相关主题
文本预览
相关文档 最新文档