当前位置:文档之家› 风速威布尔分布和ARMA预测模型matlab程序

风速威布尔分布和ARMA预测模型matlab程序

风速威布尔分布和ARMA预测模型matlab程序
风速威布尔分布和ARMA预测模型matlab程序

clc

clear

%% 1.计算风速weibull分布

% 数据处理

load data;

mu=mean(speed);%原始数据的统计参数

sigma=sqrt(var(speed));

% 计算威布尔分布参数

parmhat=wblfit(speed);

k=parmhat(2);

c=parmhat(1);

% k=(sigma/mu)^-1.086;

% c=mu/gamma(1+1/k);

% 威布尔分布拟合

[y,x]=hist(speed,ceil(max(speed)/0.5));%x是区间中心数,组距-1.5

prob1=y/8760/0.5;%计算原始数据概率密度,频数除以数据种数,除以组距prob2=(k/c)*(x/c).^(k-1).*exp(-(x/c).^k);%威布尔分布

figure(1)

title('Weibull分布拟合图');

bar(x,prob1,1)

hold on

plot(x,prob2,'r')

legend('历史数据','Weibull拟合结果')

% legend('Weibull拟合结果')

hold off

save('result_weibull.mat')

%% 2.ARMA模型预测风速

clc

clear

load data

y=speed(1:300);

Data=y; %共300个数据

SourceData=Data(1:250,1); %前250个训练集

step=50; %后50个测试

TempData=SourceData;

TempData=detrend(TempData);%去趋势线

TrendData=SourceData-TempData;%趋势函数

%--------差分,平稳化时间序列---------

H=adftest(TempData);

difftime=0;

SaveDiffData=[];

while ~H

SaveDiffData=[SaveDiffData,TempData(1,1)];

TempData=diff(TempData);%差分,平稳化时间序列

difftime=difftime+1;%差分次数

H=adftest(TempData);%adf检验,判断时间序列是否平稳化

end

%---------模型定阶或识别--------------

u = iddata(TempData);

test = [];

for p = 1:5 %自回归对应PACF,给定滞后长度上限p和q,一般取为T/10、ln(T)或T^(1/2),这里取T/10=12

for q = 1:5 %移动平均对应ACF

m = armax(u,[p q]);

AIC = aic(m); %armax(p,q),计算AIC

test = [test;p q AIC];

end

end

for k = 1:size(test,1)

if test(k,3) == min(test(:,3)) %选择AIC值最小的模型

p_test = test(k,1);

q_test = test(k,2);

break;

end

end

%------1阶预测-----------------

TempData=[TempData;zeros(step,1)];

n=iddata(TempData);

%m = armax(u(1:ls),[p_testq_test]); %armax(p,q),[p_testq_test]对应AIC值最小,自动回归滑动平均模型

m = armax(u,[p_testq_test]);

% -------------------------------------------

P1=predict(m,n,1);

PreR=P1.OutputData;

PreR=PreR';

Noise.std=sqrt(m.NoiseVariance);

e=normrnd(0,Noise.std,1,300);

fori=251:300

PreR(i)=-m.A(2:p_test+1)*PreR(i-1:-1:i-p_test)'+m.C(1:q_test+1)*e(i:-1:i-q_test)'; end

% -------------------------------------------

%----------还原差分-----------------

if size(SaveDiffData,2)~=0

for index=size(SaveDiffData,2):-1:1

PreR=cumsum([SaveDiffData(index),PreR]);

end

end

%-------------------预测趋势并返回结果----------------

mp1=polyfit([1:size(TrendData',2)],TrendData',1);

xt=[];

for j=1:step

xt=[xt,size(TrendData',2)+j];

end

TrendResult=polyval(mp1,xt);

PreData=TrendResult+PreR(size(SourceData',2)+1:size(PreR,2));

tempx=[TrendData',TrendResult]+PreR; % tempx为预测结果

plot(tempx,'r-.');

hold on

plot(Data,'b');

legend('ARMA拟合时序曲线','实际时序风速');

save('resultarma.mat');

云模型matlab程序

1.绘制云图 Ex=18 En=2 He=0.2 hold on for i=1:1000 Enn=randn(1)*He+En; x(i)=randn(1)*Enn+Ex; y(i)=exp(-(x(i)-Ex)^2/(2*Enn^2)); plot(x(i),y(i),'*') end Ex=48.7 En=9.1 He=0.39 hold on for i=1:1000 Enn=randn(1)*He+En; x(i)=randn(1)*Enn+Ex; y(i)=exp(-(x(i)-Ex)^2/(2*Enn^2)); plot(x(i),y(i),'*')

end 2.求期望、熵及超熵 X1=[51.93 52.51 54.70 43.14 43.85 44.48 44.61 52.08]; Y1=[0.91169241573 0.921875 0.96032303371 0.75737359551 0.76983848315 0.7808988764 0.78318117978 0.9143258427]; m=8; Ex=mean(X1) En1=zeros(1,m); for i=1:m En1(1,i)=abs(X1(1,i)-Ex)/sqrt(-2*log(Y1(1,i))); end En=mean(En1); He=0; for i=1:m He=He+(En1(1,i)-En)^2; end En=mean(En1) He=sqrt(He/(m-1)) 3.平顶山so2环境: X1=[0.013 0.04 0.054 0.065 0.07 0.067 0.058 0.055 0.045]; Y1=[0.175675676 0.540540541 0.72972973 0.878378378

matlab源代码实例

1.硬币模拟试验 源代码: clear; clc; head_count=0; p1_hist= [0]; p2_hist= [0]; n = 1000; p1 = 0.3; p2=0.03; head = figure(1); rand('seed',sum(100*clock)); fori = 1:n tmp = rand(1); if(tmp<= p1) head_count = head_count + 1; end p1_hist (i) = head_count /i; end figure(head); subplot(2,1,1); plot(p1_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.3试验次数N与正面向上比率的函数图'); head_count=0; fori = 1:n tmp = rand(1); if(tmp<= p2) head_count = head_count + 1; end p2_hist (i) = head_count /i; end figure(head); subplot(2,1,2); plot(p2_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.03试验次数N与正面向上比率的函数图'); 实验结果:

2.不同次数的随机试验均值方差比较 源代码: clear ; clc; close; rand('seed',sum(100*clock)); Titles = ['n=5时' 'n=20时' 'n=25时' 'n=50时' 'n=100时']; Titlestr = cellstr(Titles); X_n_bar=[0]; %the samples of the X_n_bar X_n=[0]; %the samples of X_n N=[5,10,25,50,100]; j=1; num_X_n = 100; num_X_n_bar = 100; h_X_n_bar = figure(1);

DEA的Matlab程序(数据包络分析)

模型((P C2R)的MATLAB程序 clear X=[]; %用户输入多指标输入矩阵X Y=[]; %用户输入多指标输出矩阵Y n=size(X',1); m=size(X,1); s=size(Y,1); A=[-X' Y']; b=zeros(n, 1); LB=zeros(m+s,1); UB=[]; for i=1:n; f= [zeros(1,m) -Y(:,i)']; Aeq=[X(:,i)' zeros(1,s)]; beq=1; w(:,i)=LINPROG(f,A,b,Aeq,beq,LB,UB); %解线性规划,得DMU;的最佳权向量w; E(i, i)=Y(:,i)'*w(m+1:m+s,i); %求出DMU i的相对效率值E ii end w %输出最佳权向量 E %输出相对效率值E ii Omega=w(1:m,:) %输出投入权向量。 mu=w(m+1:m+s,:) %输出产出权向量。 模型(D C2R)的MATLAB程序 clear X=[]; %用户输入多指标输入矩阵X Y=[]; %用户输入多指标输出矩阵Y n=size(X',1); m=size(X,1); s=size(Y,1); epsilon=10^-10; %定义非阿基米德无穷小 =10-10 f=[zeros(1,n) -epsilon*ones(1,m+s) 1]; %目标函数的系数矩阵: 的系数为0,s-,s+的系数为- e, 的系数为1; A=zeros(1,n+m+s+1); b=0; %<=约束; LB=zeros(n+m+s+1,1); UB=[]; %变量约束; LB(n+m+s+1)= -Inf; %-Inf表示下限为负无穷大。 for i=1:n; Aeq=[X eye(m) zeros(m,s) -X(:,i) Y zeros(s,m) -eye(s) zeros(s,1)]; beq=[zeros(m, 1 ) Y(:,i)]; w(:,i)=LINPROG (f,A,b,Aeq,beq,LB,UB); %解线性规划,得DMU的最佳权向量w; end w %输出最佳权向量 lambda=w(1:n,:) %输出 s_minus=w(n+1:n+m,:) %输出s- s_plus=w(n+m+1:n+m+s,:) %输出s+ theta=w(n+m+s+1,:) %输出

云模型简介及个人理解matlab程序

云模型简介及个人理解m a t l a b程序 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

随着不确定性研究的深入,越来越多的科学家相信,不确定性是这个世界的魅力所在,只有不确定性本身才是确定的。在众多的不确定性中,和是最基本的。针对和在处理不确定性方面的不足,1995年我国工程院院士教授在概率论和模糊数学的基础上提出了云的概念,并研究了模糊性和随机性及两者之间的关联性。自李德毅院士等人提出云模型至今,云模型已成功的应用到、、、智能控制、等众多领域. 设是一个普通集合。 , 称为论域。关于论域中的模糊集合,是指对于任意元素都存在一个有稳定倾向的随机数,叫做对的隶属度。如果论域中的元素是简单有序的,则可以看作是基础变量,隶属度在上的分布叫做隶属云;如果论域中的元素不是简单有序的,而根据某个法则,可将映射到另一个有序的论域上,中的一个且只有一个和对应,则为基础变量,隶属度在上的分布叫做隶属云[1] 。 数字特征

云模型表示自然语言中的基元——语言值,用云的数字特征——期望Ex,熵En和超熵He表示语言值的数学性质 [3] 。 期望 Ex:云滴在论域空间分布的期望,是最能够代表定性概念的点,是这个概念量化的最典型样本。 熵 En:“熵”这一概念最初是作为描述热力学的一个状态参量,此后又被引入统计物理学、信息论、复杂系统等,用以度量不确定的程度。在云模型中,熵代表定性概念的可度量粒度,熵越大,通常概念越宏观,也是定性概念不确定性的度量,由概念的随机性和模糊性共同决定。一方面, En是定性概念随机性的度量,反映了能够代表这个定性概念的云滴的离散程度;另一方面,又是定性概念亦此亦彼性的度量,反映了在论域空间可被概念接受的云滴的取值范围。用同一个数字特征来反映随机性和模糊性,也必然反映他们之间的关联性。 超熵 He:熵的不确定性度量,即熵的熵,由熵的随机性和模糊性共同决定。反映了每个数值隶属这个语言值程度的凝聚性,即云滴的凝聚程度。超熵越大,云的离散程度越大,隶属度的随机性也随之增大,云的厚度也越大。

matlab经典编程例题

以下各题均要求编程实现,并将程序贴在题目下方。 1.从键盘输入任意个正整数,以0结束,输出那些正整数中的素数。 clc;clear; zzs(1)=input('请输入正整数:');k=1; n=0;%素数个数 while zzs(k)~=0 flag=0;%是否是素数,是则为1 for yz=2:sqrt(zzs(k))%因子从2至此数平方根 if mod(zzs(k),yz)==0 flag=1;break;%非素数跳出循环 end end if flag==0&zzs(k)>1%忽略0和1的素数 n=n+1;sus(n)=zzs(k); end k=k+1; zzs(k)=input('请输入正整数:'); end disp(['你共输入了' num2str(k-1) '个正整数。它们是:']) disp(zzs(1:k-1))%不显示最后一个数0 if n==0 disp('这些数中没有素数!')%无素数时显示 else disp('其中的素数是:') disp(sus) end 2.若某数等于其所有因子(不含这个数本身)的和,则称其为完全数。编程求10000以内所有的完全数。 clc;clear;

wq=[];%完全数赋空数组 for ii=2:10000 yz=[];%ii的因子赋空数组 for jj=2:ii/2 %从2到ii/2考察是否为ii的因子 if mod(ii,jj)==0 yz=[yz jj];%因子数组扩展,加上jj end end if ii==sum(yz)+1 wq=[wq ii];%完全数数组扩展,加上ii end end disp(['10000以内的完全数为:' num2str(wq)])%输出 3.下列这组数据是美国1900—2000年人口的近似值(单位:百万)。 (1)若. 2c + = y+ 与试编写程序计算出上式中的a、b、c; 的经验公式为 t at bt y (2)若.bt 的经验公式为 y= 与试编写程序计算出上式中的a、b; y ae t (3)在一个坐标系下,画出数表中的散点图(红色五角星),c + =2中 ax bx y+拟合曲线图(蓝色实心线),以及.bt y=(黑色点划线)。 ae (4)图形标注要求:无网格线,横标注“时间t”,纵标注“人口数(百万)”,图形标题“美国1900—2000年的人口数据”。 (5)程序中要有注释,将你的程序和作好的图粘贴到这里。 clf;clc;clear %清除图形窗、屏幕、工作空间 t=1900:10:2000; y=[76 92 106 123 132 151 179 203 227 250 281]; p1=polyfit(t,y,2);%二次多项式拟合

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

云模型简介及个人理解matlab程序文件

随着不确定性研究的深入,越来越多的科学家相信,不确定性是这个世界的魅力所在,只有不确定性本身才是确定的。在众多的不确定性中,随机性和模糊性是最基本的。针对概率论和模糊数学在处理不确定性方面的不足,1995年我国工程院院士李德毅教授在概率论和模糊数学的基础上提出了云的概念,并研究了模糊性和随机性及两者之间的关联性。自李德毅院士等人提出云模型至今,云模型已成功的应用到自然语言处理、数据挖掘、 设是一个普通集合。 , 称为论域。关于论域中的模糊集合,是指对于任意元素都存在一个有稳定倾向的随机数,叫做对的隶属度。如果论域中的元素是简单有序的,则可以看作是基础变量,隶属度在上的分布叫做隶属云;如果论域中的元素不是简单有序的,而根据某个法则,可将映射到另一个有序的论域上,中的一个且只有一个和对应,则为基础变量,隶属度在上的分布叫做隶属云[1] 。 数字特征 云模型表示自然语言中的基元——语言值,用云的数字特征

——期望Ex,熵En和超熵He表示语言值的数学性质[3] 。 期望 Ex:云滴在论域空间分布的期望,是最能够代表定性概念的点,是这个概念量化的最典型样本。 熵 En:“熵”这一概念最初是作为描述热力学的一个状态参量,此后又被引入统计物理学、信息论、复杂系统等,用以度量不确定的程度。在云模型中,熵代表定性概念的可度量粒度,熵越大,通常概念越宏观,也是定性概念不确定性的度量,由概念的随机性和模糊性共同决定。一方面, En是定性概念随机性的度量,反映了能够代表这个定性概念的云滴的离散程度;另一方面,又是定性概念亦此亦彼性的度量,反映了在论域空间可被概念接受的云滴的取值范围。用同一个数字特征来反映随机性和模糊性,也必然反映他们之间的关联性。 超熵 He:熵的不确定性度量,即熵的熵,由熵的随机性和模糊性共同决定。反映了每个数值隶属这个语言值程度的凝聚性,即云滴的凝聚程度。超熵越大,云的离散程度越大,隶属度的随机性也随之增大,云的厚度也越大。 1.绘制云图 Ex=18

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点v 到源点v 1的最短距离,,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=U , 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v -L 是从1v 到 n v 的最 短路径,则 121 n v v v -L 也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表 示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma) %用Dijkstra 算法求单源最短路径 %输入参量ma 是距离矩阵 %输出参量是一个三行n 列矩阵,每列表示顶点号及顶点到源的最短距离和前顶点 n=size(ma,1);%得到距离矩阵的维数 s=ones(1,n);s(1)=0;%标记集合S 和S 的补 r=zeros(3,n);r(1,:)=1:n;r(2,2:end)=realmax;%初始化 for i=2:n;%控制循环次数 mm=realmax; for j=find(s==0);%集合S 中的顶点 for k=find(s==1);%集合S 补中的顶点

matlab程序设计实例

MATLAB 程序设计方法及若干程序实例 樊双喜 (河南大学数学与 信息科学学院开封475004) 摘要本文通过对 MATLAB 程序设计中的若干典型问题做简要的分析和总结,并在此基础上着重讨论了有关算法设计、程序的调试与测试、算法与程序的优化以及循环控制等方面的问题.还通过对一些程序实例做具体解析,来方便读者进行编程训练并掌握一些有关MATLAB 程序设计方面的基本概念、基本方法以及某些问题的处理技巧等.此外,在文章的最后还给出了几个常用数学方法的算法程序, 供读者参考使用.希望能对初学者进行 MATLAB 编程训练提供一些可供参考的材料,并起到一定的指导和激励作用,进而为MATLAB 编程入门打下好的基础. 关键字算法设计;程序调试与测试;程序优化;循环控制 1 算法与程序 1.1 算法与程序的关系算法被称为程序的灵魂,因此在介绍程序之前应先了 解什么是算法.所谓算 法就是对特定问题求解步骤的一种描述.对于一个较复杂的计算或是数据处理的问题,通常是先设计出在理论上可行的算法,即程序的操作步骤,然后再按照算法逐步翻译成相应的程序语言,即计算机可识别的语言. 所谓程序设计,就是使用在计算机上可执行的程序代码来有效的描述用于解决特定问题算法的过程.简单来说,程序就是指令的集合.结构化程序设计由于采用了模块分化与功能分解,自顶向下,即分而治之的方法,因而可将一个较复杂的问题分解为若干子问题,逐步求精.算法是操作的过程,而程序结构和程序流程则是算法的具体体现. 1.2MATLAB 语言的特点 MATLAB 语言简洁紧凑,使用方便灵活,库函数极其丰富,其语法规则与科技人员的思维和书写习惯相近,便于操作.MATLAB 程序书写形式自由,利用其丰富

基于云模型的粒计算方法研究

第6章从云模型理解模糊集合的争论与发展

第1章基于云模型的粒计算方法应用 云模型是一个定性定量转换的双向认知模型,正向高斯云和逆向高斯云算法实现了一个基本概念与数据集合之间的转换关系;本文基于云模型和高斯变换提出的高斯云变换方法给出了一个通用的认知工具,不仅将数据集合转换为不同粒度的概念,而且可以实现不同粒度概念之间的柔性切换,构建泛概念树,解决了粒计算中的变粒度问题,有着广阔的应用前景。 视觉是人类最重要的感觉,人类所感知的外界信息至少有80%以上都来自于视觉[130]。图像分割[131]是一种最基本的计算机视觉技术,是图像分析与理解的基础,一直以来都受到人们的广泛关注。目前图像的分割算法有很多,包括大大小小的改进算法在内不下千种,但大致可以归纳为两类[132]。第一类是采用自顶向下的方式,从数学模型的选择入手,依靠先验知识假定图像中的部分属性特征符合某一模型,例如马尔科夫随机场、引力场等,利用模型描述图像的邻域相关关系,将图像低层的原始属性转换到高层的模型特征空间,进而建模优化求解所采用模型的参数,通常是一个复杂度非常高的非线性能量优化问题。在特征空间对图像建模,其描述具有结构性、分割结果也一般具有语义特征,但是由于对数据的未知性、缺乏足够先验知识的指导,导致模型的参数选择存在一定的困难。第二类是采用自底向上的方式,从底层原始数据入手,针对图像灰度、颜色等属性采用数据聚类的方法进行图像分割,聚类所采用的理论方法通常包括高斯变换、模糊集、粗糙集等;或者预先假设图像的统计特性符合一定的分类准则,通过优化准则产生分割结果,例如Otsu方法的最大方差准则[133][134]、Kapur方法的最大熵准则[135][136]等。这类方法虽然缺乏语义信息表达,但是直接在数据空间建模,方法更具普适性和鲁棒性。 随着计算机视觉研究的深入,简单的图像分割已经不能满足个性化的需求,有时候人们恰恰兴趣的是图像中亦此亦彼的那些不确定性区域,基于云模型的粒计算方法是一种不确定性计算方法,发现图像中存在的不确定性区域是它的一个重要能力。如何模拟人类自然视觉中的认知能力进行图像分割一直以来都是一个难点问题,而基于高斯云变换的可变粒计算正是用来模拟人类认知中的可变粒计算过程,因此可以利用高斯云变换对自然视觉认知能力中选择性注意能力进行形式化。武汉大学秦昆教授等曾基于云综合、云分解等云运算实现图像分割,正如第5章中的分析结果,基于内涵的概念计算方法随着层次的提升,概念脱离原始数据会增加误分率,甚至失效,而且无法实现自适应地概念数量和粒度优化。

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多,Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II)无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、数值例子 多目标优化问题 42422 11211122124224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤?二、Matlab 文件 1.适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2);2.调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄nvars=2; %变量个数lb=[-5,-5]; %下限ub=[5,5]; %上限A=[];b=[];%线性不等式约束 Aeq=[];beq=[];%线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); %最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, %停止代数stallGenLimit 为200,适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

遗传算法的MATLAB程序实例讲解学习

遗传算法的M A T L A B 程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

Matlab实现Zoutendijk编程例子

22 212312132312min f (x)x 2x 3x x x 2x x x x 4x 6x =+++-+-- . 123123x 2x x 4 x ,x ,x 0++≤≥ 取初始点(1)T x (0,0,0)=,通过Matlab 编程实现求解过程。 公用函数如下: 1、function [f,x]=func %设置目标函数 syms x1 x2 x3; f=x1^2+2*x2^2+3*x3^2+x1*x2-2*x1*x3+x2*x3-4*x1-6*x2; x=[x1,x2,x3]; end 2、function f_val=fval(x0) %求目标函数值 x0=transpose(x0); [f,x]=func; f_val=subs(f,x,x0); end 3、function s=diff_val(x0) %求目标函数梯度 [f,x]=func; grad=jacobian(f,x); s=subs(grad,x,x0); end 4、function h=fmin(x0,d0,vmax) %求函数最小值 [f,x]=func; syms h ; a=x0+h*d0; f_val=inline(subs(f,x,a)); if vmax==inf min_h=fminbnd(f_val,0,10000); else min_h=fminbnd(f_val,0,vmax); end h=min_h; end Zoutendijk 方法主函数 function [X0,f_val]=zoutendijk(A,b,x0,Aeq,beq) %自定义函数diff_val(x0)作用是求所给函数在x0出的偏导数

正向云发生器代码(matlab)

正向云发生器matlab代码 %正向云算法:由数字特征到定量数据表示 %直接在程序中固定EX/EN/HE的值 Ex=0; En=1; He=0.2; n=2000; X = zeros(1,n); %产生一个1*n型矩阵,其元素都为0 Y = zeros(1,n); X= normrnd ( En, He, 1, n); %产生一个1*n型正态随机数矩阵,EX为期望,ENN为方差for i=1:n Enn=X(1,i); X(1, i) = normrnd ( Ex, Enn, 1) ; %产生一个正态随机数,EX为期望,ENN为方差(1*1型) Y(1, i) = exp ( - (X(1, i) - Ex) ^2 / (2* Enn^2) ) ; end plot(X(1,:),Y(1,:),'r.'); %画图语句 %倘若X(1,i)是确定的随机数时,本代码是自己输入确定值 %保存为.m文件时,文件名要是字母名,不要中文名 disp('- - - - -云发生器程序开始- - - - -'); Ex = input('输入期望值Ex:'); En = input('输入熵值En:'); He = input('输入超熵值He:'); n = input('输入需重复计算次数:'); X = zeros(1,n); %产生一个1*n型矩阵,其元素都为0 Y = zeros(1,n); X= normrnd ( En, He, 1, n); %产生一个1*n型正态随机数矩阵,EX为期望,He为方差Xi = input('输入随机数X(1,i):'); %手动输入固定随机数X for i=1:n

云模型实现图形-MATLAB程序

一维云模型 程序: clc clear Ex=170;En=5;He=0.5; n=5000; for i=1:n Enn=randn(1)*He+En; x(i)=randn(1)*Enn+Ex; y(i)=exp(-(x(i)-Ex)^2/(2*Enn^2)); end plot(x,y,'.r') title('5000个男生身高的一维云图') ylabel('确定度'); xlabel('身高值'); axis([150,190,0,1]) grid on 一维: clear vars;clc;close all; Ex1=-8; En1=0.7; He1=0.2; n1=200; Ex2=2.2; En2=2; He2=0.5; n2=800; Ex3=18; En3=4; He3=0.7; n3=1500; En1_t = normrnd(En1,He1,n1,1); data1 = normrnd(Ex1,En1_t,n1,1);

mu1 = exp(-0.5*((data1-Ex1)./En1_t).^2); En2_t = normrnd(En2,He2,n2,1); data2 = normrnd(Ex2,En2_t,n2,1); mu2 = exp(-0.5*((data2-Ex2)./En2_t).^2); En3_t = normrnd(En3,He3,n3,1); data3 = normrnd(Ex3,En3_t,n3,1); mu3 = exp(-0.5*((data3-Ex3)./En3_t).^2); figure(1); plot(data1,mu1,'.b',data2,mu2,'*r',data3,mu3,'+k'); axis equal; 二维云模型 程序: clc clear Ex1=170;En1=5;He1=0.5; Ex2=65;En2=3;He2=0.2; n=5000; for i=1:n

Matlab100个实例程序

程序代码:(代码标记[code]...[/code] ) 1-32是:图形应用篇 33-66是:界面设计篇 67-84是:图形处理篇 85-100是:数值分析篇 实例1:三角函数曲线(1) function shili01 h0=figure('toolbar','none',... 'position',[198 56 350 300],... 'name','实例01'); h1=axes('parent',h0,... 'visible','off'); x=-pi:0.05:pi; y=sin(x); plot(x,y); xlabel('自变量X'); ylabel('函数值Y'); title('SIN( )函数曲线'); grid on 实例2:三角函数曲线(2) function shili02 h0=figure('toolbar','none',... 'position',[200 150 450 350],... 'name','实例02'); x=-pi:0.05:pi; y=sin(x)+cos(x); plot(x,y,'-*r','linewidth',1); grid on xlabel('自变量X'); ylabel('函数值Y'); title('三角函数');

实例3:图形的叠加 function shili03 h0=figure('toolbar','none',... 'position',[200 150 450 350],... 'name','实例03'); x=-pi:0.05:pi; y1=sin(x); y2=cos(x); plot(x,y1,... '-*r',... x,y2,... '--og'); grid on xlabel('自变量X'); ylabel('函数值Y'); title('三角函数'); 实例4:双y轴图形的绘制 function shili04 h0=figure('toolbar','none',... 'position',[200 150 450 250],... 'name','实例04'); x=0:900;a=1000;b=0.005; y1=2*x; y2=cos(b*x); [haxes,hline1,hline2]=plotyy(x,y1,x,y2,'semilogy','plot'); axes(haxes(1)) ylabel('semilog plot'); axes(haxes(2)) ylabel('linear plot'); 实例5:单个轴窗口显示多个图形 function shili05 h0=figure('toolbar','none',... 'position',[200 150 450 250],... 'name','实例05'); t=0:pi/10:2*pi;

灰色系统预测GM(1,1)模型及其Matlab实现

灰色系统预测GM(1,1)模型及其Matlab 实现 预备知识 (1)灰色系统 白色系统是指系统内部特征是完全已知的;黑色系统是指系统内部信息完全未知的;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。 (2)灰色预测 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行 预测。尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此得到的数据集合具备潜在的规律。灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。 目前使用最广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM(1,1)模型。它是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。经证明,经一阶线性微分方程的解逼近所揭示的原始时间序列呈指数变化规律。因此,当原始时间序列隐含着指数变化规律时,灰色模型GM(1,1)的预测是非常成功的。 1 灰色系统的模型GM(1,1) 1.1 GM(1,1)的一般形式 设有变量X (0)={X (0)(i),i=1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X (0)进行一次累加(1—AGO, Acumulated Generating Operator)生成一次累加序列: X (1)={X (1)(k ),k =1,2,…,n} 其中 X (1) (k )= ∑ =k i 1 X (0)(i) =X (1)(k -1)+ X (0)(k ) (1) 对X (1)可建立下述白化形式的微分方程: dt dX )1(十) 1(aX =u (2) 即GM(1,1)模型。 上述白化微分方程的解为(离散响应): ∧ X (1)(k +1)=(X (0)(1)- a u )ak e -+a u (3) 或 ∧ X (1)(k )=(X (0)(1)- a u ))1(--k a e +a u (4)

支持向量机Matlab示例程序

2008-10-31 19:32 支持向量机Matlab示例程序 四种支持向量机用于函数拟合与模式识别的Matlab示例程序 [1]模式识别基本概念 模式识别的方法有很多,常用有:贝叶斯决策、神经网络、支持向量机等等。特别说明的是,本文所谈及的模式识别是指“有老师分类”,即事先知道训练样本所属的类别,然后设计分类器,再用该分类器对测试样本进行识别,比较测试样本的实际所属类别与分类器输出的类别,进而统计正确识别率。正确识别率是反映分类器性能的主要指标。 分类器的设计虽然是模式识别重要一环,但是样本的特征提取才是模式识别最关键的环节。试想如果特征矢量不能有效地描述原样本,那么即使分类设计得再好也无法实现正确分类。工程中我们所遇到的样本一般是一维矢量,如:语音信号,或者是二维矩阵,如:图片等。特征提取就是将一维矢量或二维矩阵转化成一个维数比较低的特征矢量,该特征矢量用于分类器的输入。关于特征提取,在各专业领域中也是一个重要的研究方向,如语音信号的谐振峰特征提取,图片的PCA特征提取等等。 [2]神经网络模式识别 神经网络模式识别的基本原理是,神经网络可以任意逼近一个多维输入输出函数。以三类分类:I、II、III为例,神经网络输入是样本的特征矢量,三类样本的神经网络输出可以是[1;0;0]、[0;1;0]、[0;0;1],也可以是[1;-1;-1]、[-1;1;-1]、[-1;-1;1]。将所有样本中一部分用来训练网络,另外一部分用于测试输出。通常情况下,正确分类的第I类样本的测试输出并不是[1;0;0]或是[1;-1;-1],而是如[;0;]的输出。也是就说,认为输出矢量中最大的一个分量是1,其它分量是0或是-1就可以了。 [3]支持向量机的多类分类 支持向量机的基本理论是从二类分类问题提出的。我想绝大部分网友仅着重于理解二类分类问题上了,我当初也是这样,认识事物都有一个过程。二类分类的基本原理固然重要,我在这里也不再赘述,很多文章和书籍都有提及。我觉得对于工具箱的使用而言,理解如何实现从二类分类到多类分类的过渡才是最核心的内容。下面我仅以1-a-r算法为例,解释如何由二类分类器构造多类分类器。 二类支持向量机分类器的输出为[1,-1],当面对多类情况时,就需要把多类分类器分解成多个二类分类器。在第一种工具箱LS_SVMlab中,文件中实现了三类分类。训练与测试样本分别为n1、n2,它们是3 x 15的矩阵,即特征矢量是三维,训练与测试样本数目均是15;由于是三类分类,所以训练与测试目标x1、x2的每一分量可以是1、2或是3,分别对应三类,如下所示: n1 = [rand(3,5),rand(3,5)+1,rand(3,5)+2]; x1 = [1*ones(1,5),2*ones(1,5),3*ones(1,5)];???? n2 = [rand(3,5),rand(3,5)+1,rand(3,5)+2]; x2 = [1*ones(1,5),2*ones(1,5),3*ones(1,5)];???? 1-a-r算法定义:对于N类问题,构造N个两类分类器,第i个分类器用第i类训练样本作为正的训练样本,将其它类的训练样本作为负的训练样本,此时分类器的判决函数不取符号函数sign,最后的输出是N个两类分类器输出中最大的那一类。

__一个实例搞定MATLAB界面编程

一个实例搞定MATLAB界面编程 作者:彭军 邮件:pjun9@https://www.doczj.com/doc/658965280.html, 博客:https://www.doczj.com/doc/658965280.html,/pengjun 下面请跟我一步一步做一个图像处理的程序,如果您坚持做完这个实例,我想MATLAB界面编程对您而言,就没有什么难度了。当然,我这里说的是,您首先要有一定的MATLAB 编程基础。还有,我的MATLAB版本是2008a。在2008a以前的版本中没有工具栏编辑器,如果需要工具栏要手动写程序,这个我就不多讲了。好了,废话少说,跟我来吧! 在MATLAB的命令窗口(Command Window)中运行guide命令,来打开GUIDE界面,如下: 然后,选择空模板(Blang GUI),点击OK,即可打开GUIDE的设计界面,如下:

点击工具栏上的菜单编辑器(Menu Editor),打开菜单编辑器,如下: 在Menu Bar中新建一个菜单项,名字为“文件”,其他设置请看下图: 在“文件”菜单下添加菜单项:“打开”,“保存”,“退出”。见下图:

如果需要在菜单项“退出”上面添加一个分割线的话,选中“Separator above this item”就行了。

保存我的界面为pjimage.fig.保存完毕之后,会自动打开pjimage.m 文件,而我们所有的程序都是要写在这个M 文件里面的。在编程中,我们的每一个鼠标动作都对应一个Callback 函数。那么我们的菜单项也是如此的。 在界面上,单击鼠标右键选择“Property Inspector ”,即可打开属性窗口。当我们点击不同的 然后,点击工具栏的保存按钮。之后,点击工具栏的运行按钮(Run Figure)。注意,工具栏的图标都会有提示的,像运行按钮的提示就是Run Figure.我们会看到如下的界面: 那说明,我们保存的.fig 文件的目录不是当前目录,但是没关系啊,我们只要点击“Change Directory ”来改变当前目录。当然,如果你想把当前目录添加到MATLAB 路径也可以,那就点击“Add to Path ”就OK 了。我在这里推荐点击“Change Directory ”,因为没有什么太大必要把其添加到MATLAB 路径中,一般是工具箱需要添加或者我们的函数或程序写完了,而在MATLAB 的命令窗口找不到我们的函数的时候,我们可以将函数或程序所在的目录添加到MATLAB 路径。 总之吧,点那个按钮,要看个人的爱好了。不管点击两个按钮的那一个按钮,都会正确的运行程序的。 我们的程序运行时的样子,是这样的:

相关主题
文本预览
相关文档 最新文档