当前位置:文档之家› 垃圾焚烧炉工艺

垃圾焚烧炉工艺

垃圾焚烧炉工艺
垃圾焚烧炉工艺

城市垃圾焚烧发电厂DCS控制系统

设计说明书

目录

1设计目的和工艺说明 (5)

1.1垃圾焚烧部分 (5)

1.1.1 焚烧炉工艺 (5)

1.1.2烟气污染物处理设备及技术 (6)

1.1.3 结论 (7)

1.2公共部分 (7)

1.3汽轮机部分 (8)

1.3.1 调节系统 (8)

1.3.2保安系统 (8)

1.3.3汽轮机工艺控制设计 (9)

1.4电力监控部分 (10)

1.4.1电力设备监控与操作 (11)

1.4.2 数据采集与监测 (12)

1.4.3事故追忆功能 (12)

2系统结构 (12)

2.1概述 (12)

2.2系统结构 (14)

2.2.1概述 (14)

2.3项目结构 (14)

2.3.1工厂层级定义 (14)

2.3.2项目控制区定义 (15)

2.3.3权限管理 (18)

2.3.4消息报警功能 (18)

2.3.5归档设置 (19)

2.3.6程序运行速率 (19)

3命名规则 ....................................................................................................................................... 错误!未定义书签。

3.1层级文件夹 .......................................................................................................................... 错误!未定义书签。

3.2CFC ....................................................................................................................................... 错误!未定义书签。

3.3位号(TAG)命名规则 ............................................................................................................. 错误!未定义书签。

3.4操作台和计算机命名........................................................................................................... 错误!未定义书签。

3.5AS站命名............................................................................................................................. 错误!未定义书签。

3.6机架DP地址定义................................................................................................................ 错误!未定义书签。

3.7I/O机架命名 ........................................................................................................................ 错误!未定义书签。

3.11网线电缆 .............................................................................................................................. 错误!未定义书签。

3.12终端总线计算机IP地址 ..................................................................................................... 错误!未定义书签。

3.13系统总线计算机IP地址 ..................................................................................................... 错误!未定义书签。

3.14MTA...................................................................................................................................... 错误!未定义书签。

3.15安全栅命名 .......................................................................................................................... 错误!未定义书签。

3.16安全继电器命名................................................................................................................... 错误!未定义书签。

3.17硬件通道符号名................................................................................................................... 错误!未定义书签。

3.18MAC地址定义..................................................................................................................... 错误!未定义书签。4操作界面 ....................................................................................................................................... 错误!未定义书签。

4.1总貌区域 .............................................................................................................................. 错误!未定义书签。

4.2工作区区域 .......................................................................................................................... 错误!未定义书签。

4.3系统功能栏 .......................................................................................................................... 错误!未定义书签。

4.4操作员通过以下按钮集来实现标准消息列表。............................................................... 错误!未定义书签。

4.5组显示 .................................................................................................................................. 错误!未定义书签。

4.6趋势图 .................................................................................................................................. 错误!未定义书签。

4.7趋势组 .................................................................................................................................. 错误!未定义书签。

4.8系统操作 .............................................................................................................................. 错误!未定义书签。5静态画面 ....................................................................................................................................... 错误!未定义书签。

5.1概述 ...................................................................................................................................... 错误!未定义书签。

5.2画面层级定义....................................................................................................................... 错误!未定义书签。

5.3颜色约定 .............................................................................................................................. 错误!未定义书签。

5.4线型约定 .............................................................................................................................. 错误!未定义书签。

5.5字体及颜色定义................................................................................................................... 错误!未定义书签。

5.6概论 ...................................................................................................................................... 错误!未定义书签。

5.7通用设置 .............................................................................................................................. 错误!未定义书签。

5.7.1PID 参数 .......................................................................................................................... 错误!未定义书签。

5.7.2监测块参数 - Measurement Parameters ..................................................................... 错误!未定义书签。

5.7.3Tool-Tip 文本 ................................................................................................................... 错误!未定义书签。

5.7.4流程画面动态元素刷新速率...................................................................................... 错误!未定义书签。

5.7.5工程单位...................................................................................................................... 错误!未定义书签。

5.7.6动态数据格式.............................................................................................................. 错误!未定义书签。

5.8项目库-控制回路的定义.................................................................................................... 错误!未定义书签。

5.9动态图标库 .......................................................................................................................... 错误!未定义书签。

5.9.4手动控制回路.............................................................................................................. 错误!未定义书签。

5.9.5数字量监测.................................................................................................................. 错误!未定义书签。

5.9.6数字量控制.................................................................................................................. 错误!未定义书签。

5.9.7阀.................................................................................................................................. 错误!未定义书签。

5.9.8马达/泵......................................................................................................................... 错误!未定义书签。

1 设计目的和工艺说明

众所周知,城市垃圾焚烧发电厂的建成和投入使用可极大地解决城市地区的垃圾堆积和环境污染问题,采用生活垃圾焚烧发电的方式既可有效解决生活垃圾污染问题,又可实现能源再生。本控制系统可靠有效的设计完全能满足垃圾焚烧发电的需要,保证垃圾焚烧发电厂的安全、稳定运行。本文主要介绍城市垃圾焚烧发电厂DCS控制系统在垃圾焚烧发电厂的应用,并对工艺流程和控制功能的设计思路进行详细的阐述。

1.1垃圾焚烧部分

锅炉出口烟气污染物的浓度,主要取决于生活垃圾的成分和焚烧工况的控制。在相同的焚烧工况下,生活垃圾中含有经焚烧能产生相应污染物的物质越多,则锅炉出口烟气污染物产生的浓度越高,例如含氯塑料的含量越高,则锅炉出口烟气中HCl气体的浓度越高。在生活垃圾未完全分类收集的情况下,.只有采取最佳的焚烧工况,尽量减小锅炉出口烟气污染物的浓度。影响锅炉出口烟气污染物浓度的焚烧工况包括炉膛负压、炉膛温度、空气过量系数,烟气在高温、低温区域停留的时间,炉内气体的湍流度等。

1.1.1 焚烧炉工艺

城市垃圾焚烧发电厂装备2条 300t/d生活垃圾焚烧生产线,日处理生活垃圾600t。2台垃圾焚烧炉都从日本荏原公司引进,采用液压控制的双列顺推阶梯式炉排系统,每列炉排又分成4个区,第一区为干燥区,第二、三区为焚烧区,第四区为燃尽区。每个区都是相互交叠的固定炉排与可移动炉排组成,一次风从炉排下方吹人提供垃圾焚烧需要的氧气并冷却炉排,这种炉排结构能使垃圾翻动、破碎并与氧气充分

接触。自动燃烧演算装置(ACC)能够根据焚烧炉内的焚烧工况,自动调整每个区的炉排速度与一次风量、一次风压达到最优比例,保证生活垃圾的完全燃烧,释放出大量的热量能使整个炉膛保持在较高温度(850℃以上),有效的减少 CO、有机污染物等各类污染物的生成。为了保证剧毒的有机污染物得到充分分解,日本荏原公司在焚烧炉的出口设计了很长的绝热水平烟道,使得烟气在850℃以上的停留时间超过2s,并且在这个烟道的人口处布置二次风(风温可调解)喷口,它能对烟气进行充分的扰动(3T控制法)。在二次风口的左右侧墙上方各布置一只助燃燃烧器,在垃圾发热量较低时,燃烧器自动投人使用保证烟气在焚烧炉的出口处能一直保持在850℃以上。通过采取上述措施,可以使在焚烧过程中生成的有机污染物绝大部分被破坏分解,最终锅炉出口烟气中有机污染物的浓度得到最大限度的降低。

1.1.2烟气污染物处理设备及技术

通过控制焚烧工况可以减少烟气污染物生成,但是还需要经过特殊的烟气净化处理才能达到排放标准。城市垃圾焚烧发电厂采用半干法除酸+活性炭喷射+滤袋除尘器的处理工艺,并且配备烟气净化处理自动控制系统及烟气在线监测仪。这样就可以保证烟气净化处理系统稳定、连续地运行,有效地去除烟气污染物。

在半干式洗涤塔中,雾状的Ca(OH)2与烟气中的酸性气体如SO2、HCI、HF等经过充分接触,发生酸碱中和反应,除去绝大部分酸性气体。酸性气体净化处理系统由石灰浆制备系统、雾化喷入系统、半干式洗涤塔、袋式除尘器等组成。石灰浆制备系统主要由石灰粉储罐、硝化器、储浆罐、浆泵组成,按照烟气中酸性气体浓度的大小连续提供合适浓度(根据烟气在线监测仪监测到的各酸性气体的浓度)的石灰浆。雾化喷人系统是利用压缩空气,将石灰浆雾化后在洗涤塔喉部喷人。石灰浆的喷人位置在半干式洗涤塔的喉部,此处烟气流速较高能与石灰浆雾滴充分混合、接触反应,并且一

起向下流动(下进气,反之则为上进气)。洗涤塔的高度决定了反应时间,它不但可以使石灰浆雾与酸性气体充分反应,达到极高的去除效率,而且还可以把反应产物(CaSO3、CaC12)中的水分蒸发,成为干燥的颗粒物,其中较大的颗粒从洗涤塔底部排出,较细小的颗粒随着烟气横向随烟气通过后续的滤袋除尘器时被捕集。这种半干式的烟气净化处理工艺除了反应效率高,石灰浆利用率高之外,还有反应时间短、可以获得干燥的反应产物的优点。

1.1.3 结论

采用了炉内控制焚烧与尾部烟气净化处理相结合的措施后,城市垃圾焚烧发电厂垃圾焚烧系统排放的烟气污染物浓度将可以控制在较低的水平。

1.2公共部分

生活垃圾焚烧厂渗滤液成分复杂,含有高浓度有机物和盐分,如果直接回喷至焚烧炉内焚烧处理,产生的成本折合成燃料计算成本将高达122m,相比之下,将垃圾渗滤液集中进行生化处理是一种经济有效的解决办法。据研究,生活垃圾在堆酵48h后,实际脱水率为12%左右,垃圾整体减重可达20%左右。焚烧厂垃圾渗滤液中氨氮含量高,可生化性较差,常给生化处理带来一定的难度,采用厌氧处理后,渗滤液中一些难降解有机物被酸化水解成易于生化的小分子化合物,氨氮含量随着苯胺类化合物等的分解还会有一定程度的升高。垃圾渗滤液中铁、铅、锌、钙的浓度均较高,采用一套合适的工艺对处理效果致关重要。

垃圾渗滤液经过细格栅后,除去渗滤液中的悬浮物及漂浮物,进入调节池,经泵提升至UASB上流式厌氧反应器进行厌氧发酵,产生的沼气接至垃圾焚烧炉助燃,污泥脱水后填埋或焚烧,出水加C a O调碱度后自流进入SBR反应器。SBR是一种具有较好的脱氮除磷功能的循环间歇处理工艺,整个系统经历进水期、反应期、沉淀期、排水期和待机期5个阶段,而SBR 反应器又分为三个区:一区为生物选择器,二区为兼氧区,三区为好氧区。出水流经生物选择器区,既可提高系统的稳定性,防止产生污泥膨涨,又可发生比较显著的反硝化作用。出水自生物选择器进入兼氧区和好氧区,该区主要完成降解有机物和硝化/反硝化过程。再经沉淀期后外排。

1.3汽轮机部分

汽轮机控制系统包括调节系统和保安系统。

1.3.1 调节系统

调节系统是为了保证汽轮机组稳定运行和获得运行所需的静态特性;保安系统的作用则是当机组出现危险工况时,保护机组的安全。

汽轮机的主要用途,是用来驱动发电机发电,向用户输送电能。发电用汽轮机分为凝汽式和中间再热凝汽式。另有一些型式的汽轮机,除驱动发电机发电外,还在其中某一级或一级以上抽汽,向热用户供热。这些汽轮机称为热电联供机组或称供热机组。发电用汽轮机具有转速调节系统,简称调节系统,用来维持机组等转速运行,以保证所提供的电能频率稳定。热电联供汽轮机,除具有调速系统外,还具有调压系统,用以维持供热抽汽压力的稳定。转速调节和抽汽压力调节是汽轮机的基本控制策略。调节系统由测速元件,给定机构放大器和执行机构等环节组成。根据这些环节功能不同,可将调节系统划分为两部分,即控制器和执行器。控制器的主要任务是完成控制策略运算,执行器的任务是根据调节器(控制器)的运算结果驱动和定位调节机构。

液压调速系统控制器,由调速器、同步器、放大器、信号分配器等环节组成,控制策略为转速有差调节。由调速器和同步器给出转速偏差信号,经过液压放大器放大,形成总阀位信号,经过信号分配器控制各执行器,即油动机,由油动机驱动和定位汽轮机的调节机构,即调节阀。单机运行时,同步器用来调整汽轮机转速;并网后,同步器用来调整分配给本机的负荷。

为了适应现代汽轮机控制系统复杂的控制策略,数字电液控制系统应运而生。数字电调称为纯电调或称全电调,简称DEH。DEH控制器由微机系统组成,执行器由多个油动机组成的液压执行系统。

1.3.2保安系统

保安系统是汽轮机控制系统不可分割的部分。各种汽轮机保安系统的组成大致相同,主要包括超速保护系统、危急遮断系统、挂闸系统和各种试验系统。其中遮断系统与汽轮机监视系统TSI (Turbine Supervisory Instrumentation System)的遮断信号和其它设备来的遮断信号接口。

1.3.3汽轮机工艺控制设计

本系统针对的汽轮发电机组采用抽凝式。它的热工检测及控制系统可以分为:模拟量控制系统(MCS)系统,顺序控制系统(SCS),数据采集系统(DAS)和紧急跳闸系统(ETS),这几个系统按照目前的计算机的安全系数,可以将这几个部分用一个集散控制系统来完成,通过一个系统将这几个部分有机的结合在一起,实现功能的统一,减少了维护人员的工作负担。

汽轮发电机组的工艺流程图如下所示。

1.3.3.1模拟量控制系统(MCS)

在汽轮发电机组中模拟量控制系统中,都是单回路调节控制,一般分为:除氧器水位和压力调节系统、高压减温减压器的温度和压力调节系统以及低压减温减压器的温度和压力调节系统。1.3.3.2除氧器压力调节系统

在除氧器压力调节系统中,机组启动期间使用的是减温减压器来的蒸汽,机组正常运行后使用的汽轮机的调整抽汽,这样来维持除氧器压力在预先的设定值;在正常运行工况,设定值跟踪除氧器压力。在除氧器压力调节系统中,除氧器压力测量值与给定值一起送入PID中进行运算,运算结果用来调整除氧器压力调节阀,维持除氧器压力在预先设定值。

1.3.3.3 除氧器水位调节系统

除氧器水位调节系统中使用的水是来自脱盐水,通过调节脱盐水管道上的调节阀来控制除氧器的水位。除氧器控制如图所示

1.3.3.4减温减压器调节系统

高温减温减压器系统和低温减温减压器系统的工作原理都是一样的,它们都是通过调节进入减温减压器的蒸汽量调节阀来控制减温减压器出口的蒸汽压力,同时通过调节进入减温减压器的减温水调节阀来控制减温减压器出口的温度。因为高温减温减压器和低温减温减压器都是相同的工

作原理,所以他们都是单回路控制,控制手段非常的简单。减温减压装置控制如下图所示

1.4电力监控部分

ECS监控系统(Electric Control System)主要对城市垃圾焚烧发电厂的电力设备包括发电机、

变压器、断路器以及隔离开关进行远程的状态监测和操作控制,并通过PROFIBUS总线通讯

技术实现与其他电力智能设备(例如UPS、直流屏、电度表、励磁装置、同期装置、快切装

置)通讯,从而对重要的电力参数进行监测、记录和管理, 实现四遥(遥测、遥信、遥控、遥

调)功能. 通过全厂电力设备的一体化管理,提高城市垃圾焚烧发电厂电力监控的自动化水平。

监控主画面

1.4.1电力设备监控与操作

操作员通过DCS监控画面可对电厂所有电力电气设备进行监视和控制,实现发电厂机组电气自动化,包括发电机保护、变压器保护、联络线保护、厂用电系统、发电机录波、励磁、同期、UPS、直流系统、电度表等的监控和管理。电厂监控系统可以实现不同对象的分区分权限管理功能。

发电机监控画面

1.4.2 数据采集与监测

信号类型有模拟量信号(电流、电压、有功功率、无功功率、频率、功率因数、温度等),开关量信号(位置及状态信号、事故信号、预告信号、BCD码、公用信号等)和智能接口数据(发电机励磁装置、微机保护数据、电度量采集数据、火灾报警系统数据、智能直流系统数据等)。ECS监控系统对采集的电力数据进行实时的显示,并保存在系统的数据库里,供操作员查询、分析。

1.4.3 事故追忆功能

当发电厂的线路、母线、主变发生短路或接地故障,主变、电容器、电抗器本体等出现故障,引起保护及自动装置动作,开关跳闸,产生事故总信号时,系统将把事件过程中各测点的动作顺序,以毫秒级的分辨率正确记录下来,进行显示、打印和存贮,供事故分析、处理和查询。每条信息包含发生的时间、描述及动作状态。系统可无限期保存事件顺序记录条文。SOE的分辨率为1ms。事故追忆功能可按用户需求自行配置事故前后的数据记录间隔和数据长度来分组记录事故时数据。系统同时存贮24个以上的事故追忆报告,

事故追忆的触发可以是开关的事故跳闸或人工触发。系统支持多重事故追忆。

2 系统结构

2.1概述

在城市垃圾焚烧发电厂中,电气项目为一套DCS系统。

在DCS系统中采用单站方式有,4个DCS客户机操作站, 2个工程师站,一个OPC服

务器,一个中央归档服务器,4台打印机。

在DCS中由SIEMENS工业级以太网交换机SCALANCE X216和X204-2构成两级数据传输速率为100Mbit/s环型网络,系统总线与终端总线。在环型网络的某一个节点出现故障时,环形网络会在0.3秒内重建通讯通道。

现场系统总线与DCS系统总线之间通过冗余光缆连接,通讯速率为100Mbit/s。一个为Standby Master, 一个为Standby Slave,当Master通讯中断时,系统自动切换到Slave通讯。DCS中的工程师站和操作员站提供大部分的工程操作和数据归档功能.

整个系统的结构可以分为2层:

控制器层:通过现场总线层实现对现场仪表的监测和输出控制;

系统网络层:所有现场控制器,工程师站,操作员单站通过系统网络连接到一起。

2.2 系统结构 2.2.1 概述

如下的是关于系统结构总貌。

图2-1:系统结构总貌

2.3 项目结构

2.3.1 工厂层级定义

通常来说,建议在项目中定义清晰的工厂层级结构,如下图所示。一个工厂有若干过程区域,一个过程区域分为若干单元,一个单元分为若干子单元,最多可以扩展8级。在每个子单元下可以定义若干现场回路,与这些现场回路相关的流程画面与这些回路逻辑定义在相同的子单元目录下。

ES Redundant ISO 100Mbps Fiber Ring System Bus

Redundancy Server

City Garbage DCS Project

Fiber-Optic Cable for Ethernet Twist Cable for Ethernet Profibus DP

100Mbps Terminal Bus

Pr ofi …Pr ofi …Pr ofi …

ET200M

电气系统

414H

Pr ofi bu

s

D P …

...

ET200M

公用系统

414H

Pr

ofi

bu

s

D

P

…...

SIS 接口机

DLP

Laser

Prt 1 Laser

Prt 2

此项目层级结构原则如下:

表2-1: 层级结构定义

2.3.2项目控制区定义

控制系统分为1个操作区,12个控制区,如下表2-1

相同控制区(Ctrl No.)的单元属于同一操作区,同属同一控制区的操作员站可以控制同一区内的所有单元数据,同时对同属同一操作区的其它单元只有监视权限。

表2-2: 操作控制区定义表

2.3.3权限管理

对每个装置设置三个不同级别的操作用户组,即操作员,工艺工程师和仪表工程师级别。

表2-3: 功能/权限分类

根据如上所示权限定义,对于PCS 7的权限设置具体如下:

表2-4: 权限分配

2.3.4消息报警功能

操作记录信息

操作员站会生成包括所有的操作员命令的操作记录信息。每次当操作员给出命令或通过面板改变参数的时候,操作信息会被记录。

过程报警消息记录

WINCC从现场控制器中获取报警或消息,并且按顺序将它们输入消息记录中。

在PCS7 系统中消息/报警分为以下七类,对每类消息&报警可以定义优先级,从1到16,数值越大优先级越高,优先级缺省设置均为1 。对于抚顺项目的消息优先级设置定义如下

表2-5: 消息优先级定义

2.3.5归档设置

对于所有模拟量和消息归档设置,分为短期归档和长期归档。

所有短期归档数据都存在于现场单站中,长期归档数据存在于中央归档服务器中。在操作员站或服务器中已包括一个高性能归档系统,基于Microsoft SQL Server,带有用于短期保存过程值(通常1至4个星期)和消息/事件(通常2个月)的循环档案。短期档案数据可以通过时间控制或事件控制方式导出到中央归档服务器中

抚顺项目数据归档速率设置如下:

表2-6: 数据归档速率定义

2.3.6程序运行速率

现场控制器中所有的程序都是以循环的方式在运行,对于417H冗余控制器,有不同的中断循环块,因此可以将更为重要的控制程序放到中断优先级较高,中断循环时间更短的中断循环块中。通过这种方式,可以优化程序的执行效率,提高过程控制的性能。具体的设置如下:

表2-7: DCS中断循环块定义

垃圾焚烧和焚烧炉除尘技术_百度文库(精)

垃圾焚烧和焚烧炉除尘技术 蔡益臣钱怡松顾李定 一:概述 近年来随着生活水平的提高,而使得城市垃圾排出量增加,它的处理问题成为了社会性问题。对一般城市垃圾,固态物质的减容、无害化,尽可能的由焚烧炉处理已成为主流,但是,对于城市垃圾焚烧处理,不仅排气中的烟尘、NOX 、SOX 、HCL 等去除技术是必要的,而且有烟尘中含有二恶英类和重金属类物的减低技术也是重要的。此外,从最近地球的环境问题,特别从温室效应气体的抑制的观点出发,把垃圾焚烧时产生的热有效地利用。(杭州、深圳等地已建成垃圾发电厂,利用垃圾焚烧时产生的热来发电)。 二:城市垃圾焚烧生成气体和飞灰的特性 1.垃圾焚烧生成气体的特性 从垃圾处理焚烧设施排出的气体含灰尘、NOX 、SOX 、HCL 、CO 和二恶英等成份,对这些物质的排放国家也制定了一些相应的标准和法规。限制排放物质的排放标准。 为了遵守这一类的规定,各种环境环保技术在垃圾焚烧设施中使用,为了减少NOX ,使用了二段燃烧法(把燃烧空气的一部分在火炉中间加入,控制氧化气氛及减少NOX 产生量的方法),排气再循环法(把燃气混和到燃烧用空气中,减弱氧化气氛,同时减低NOX 的发生量的方法)等控制产生NOX 技术和加入氛而使NOX 分解、减少的脱硝技术。 烟气中的硫,通常由于垃圾中含有硫成份少,浓度较低,如后所述的那样,随着在除去HCL 时被去除,酸性气体的去除有湿式、半干式、干式等各种方法,在湿式中,通过碱液进行吸收,但存在由于吸收液的腐蚀,选定装置材料较难,并有废水处理问题,最近多采用半干式、干式,一般采用向炉内注入CaCO3及向烟道

喷雾消石灰粉末或泥浆的洗涤器等,以往的半干式、干式提高SOX 的去除率较难,但在存在HCL 情况下,注入消石灰,显示了较高的脱硫效率。反应中产生的反应生成物可在后面的除尘器进行回收。 以前,对于在燃料中含有的重金属、hg 、pb 、cd 等,人们但心由于低沸点、易形成气态物,以及具有浓缩成重金属难以捕集的微粒子倾向的物质排放,但由于现在的除尘器对微粒子的捕集性能的提高,近年这已不作主要的问题考虑。在废弃物中,除上述物质外,HCL 和二恶英被关注,HCL 的去除和SOX 的去除相同,通过向烟道进行喷消石灰粉末和泥浆。在气流中进行反应,或在过滤器上堆积了的粉尘层内通过吸收反应,充分显示去除性能。 二恶英以气体状或附着在粒子上被排出,为了抑制在燃烧炉中的产生,可使用促进空气完全燃烧,提高燃烧温度,增加在燃烧器内滞留的时间等措施,但因为在300℃附近的排气中,会再生成,故不长时间运行这个温度域是最有效的。对于垃圾焚烧设施,为了防止设备腐蚀及氯化物的吸湿,多在300℃左右运行除尘器,但是由于在此温度会产生近二恶英物质及以飞灰中的重金属等作为催化剂在除尘器内产生二恶英的情况,所以可采用降低除尘器运行温度及提高除尘器性能等措施。 2.焚烧炉生成飞灰的特性 在除尘器入口的由焚烧生成飞灰的浓度,随由垃圾的值、燃烧方式而不同,从数g/Nm3至20g/Nm3左右,平均粒径是10~40μm 左右,但也含有亚微米领域的灰尘,在这个领域里含有重金属等被浓缩,因此有必要可采电除尘或袋除尘。对于电除器的除尘效率有很大影响的由焚烧炉产生的灰尘的比电阻,几乎在范围为108~1011Ω.cm, 的电除器适用范围内。通常垃圾焚烧炉灰尘,从灰尘的比电阻方面,较容易把电除尘器作为除尘适用对象。 三:焚烧炉的除尘 除尘器有旋风除尘器、洗涤器、颗粒层除尘器、电除尘器、袋除尘器等各种方法,它的选定,有设备费,运行费、维修、所需动力,除尘效率、大型化的适应

B1 (2)《环境保护产品认定技术要求 生活垃圾焚烧炉》HBC 334

《生活垃圾焚烧炉》 (HBC 33-2004) 1 范围 本技术要求规定了生活垃圾焚烧炉的分类与命名、技术要求、检验方法、抽样和检验规则等。本技术要求适用于处理能力≥50t/d的各种型式的生活垃圾焚烧炉。 2 规范性引用文件 下列文件中的条款通过本技术要求的引用而成为本技术要求的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版本均不适用于本技术要求,然而,鼓励根据本技术要求达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本技术要求。 GB1576 低压锅炉水质 GB/T1921 工业蒸汽锅炉参数系列 GB/T3166 热水锅炉参数系列 GB 8978 污水综合排放标准 GB/T9222 水管锅炉受压元件强度计算 GB 9989.1 工业产品使用说明总则 GB/T12145 火力发电机组及蒸汽动力设备水汽质量 GB 12348 工业企业厂界噪声标准 GB/T 14436 工业产品保证文件总则 GB/T16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法 GB18485 生活垃圾焚烧污染控制标准 CJJ90-2002 生活垃圾焚烧处理工程技术规范 CJ/T3039 城市生活垃圾采样和物理分析方法 HJ/T 20-1998 工业固体废物采样制样技术规范 JB/T6503 烟道式余热锅炉通用技术条件 JB/T10249 垃圾焚烧锅炉技术条件 蒸汽锅炉安全技术监察规程(1996年版) 热水锅炉安全技术监察规程(1997年修订版) 3 定义 本技术要求采用下列定义。 3.1 生活垃圾 指人们在日常生活中或为日常生活提供服务的活动中产生的固体废物,主要包括居民生活垃圾、集市贸易与商业垃圾、公共场所垃圾、街道清扫垃圾及企事业单位垃圾等(以下简称垃

垃圾发电厂焚烧系统和主要设备的选用

垃圾发电厂焚烧系统和主要设备的选用 摘要:对垃圾焚烧发电厂设计中主要设备与系统的选用进行了讨论,主要设备为焚烧锅炉与汽轮机,主要系统为垃圾进料与前处理系统、烟气净化系统等。最后,给出了本类电厂目前的发电效率与供电效率的水平。 关键词:垃圾焚烧;发电厂设计;主要设备;选用 1概述 随着经济迅速发展,人民生活水平的提高,城市生活垃圾量增长迅速,我国每年以6%~8%的速度增长2000年全国城市垃圾产出量达14亿t。因此,如何有效地对城市生活垃圾进行净化处理,己成为人们广泛关注的问题。 用焚烧方式并回收其中能量的垃圾处理技术在近20年得到了迅速发展,美国、欧洲、日本等发达国家己开始大量应用,并产生了良好的环保效益与经济效益。焚烧垃圾,回收能源,以实现城市生活垃圾的减容化、无害化和资源化,被认为是我国处理城市生活垃圾的一个重要方向。 城市生活垃圾焚烧发电厂由于有自己的特点,发电效率比现代化火电厂低得多,本文对其主要设备(焚烧锅炉、汽轮机)及主要系统(垃圾进料及前处理系统、烟气净化系统)的选用进行讨论,做到在避免和控制二次污染的前提下,在技术和经济可行的情况下,提高发电效率。 2焚烧锅炉的选用 焚烧锅炉包括焚烧炉及余热锅炉两大部分。按我国生活垃圾焚烧污染控制标准(GWKB3-2000)要求:垃圾应在焚烧炉内充分燃烧,烟气在后燃室应在不低于850℃的条件下停留不少于2s。 2.1选型 目前,适合我国高水分、低热值城市生活垃圾并经过运行考验的焚烧锅炉有引进三菱重工技术的炉排式焚烧锅炉和浙江大学开发的异重循环流化床焚烧锅炉。前者1997年己在深圳投入运行,日处理垃圾150t,但设备为部分国产化,价格昂贵,垃圾能源化利用程度不高。后者1998年8月在杭州余杭锦江热电有限公司建成投产,蒸发量35t/h,日处理垃圾150t,最大日处理超过216t,应用与煤助燃方式,运行一直稳定。浙江省电力设计院设计的山东菏泽、杭州乔司等垃圾焚烧发电厂均采用后者。 2.2容量 作为垃圾发电产业的首批电厂,焚烧锅炉蒸发量采用与示范电厂一样为35t/h。在流化床焚烧锅炉中垃圾焚烧处理采用与煤助燃方式,这样有利于燃烧稳定,提高了炉内燃烧温度从而可降低有害排放,并有利于蒸汽参数的提高。目前由浙江大学和杭州锅炉厂共同研制生产的异重循环流化床垃圾焚烧锅炉单炉垃圾处理量为200t/d,辅助燃煤与垃圾量重量比为3:7;在相同的蒸发量(35t/h)下,今后单炉垃圾处理量可提高为300t/d,此时辅助燃煤与垃圾量重量比为2:8。 2.3蒸汽参数 垃圾焚烧锅炉生产的蒸汽其参数偏低,原因如下:(1)焚烧锅炉的热功率较小,在同容量的小型火电厂中也同样不会应用高压蒸汽参数;(2)焚烧锅炉燃烧气体中含有的氯化物盐类会引起过热器的高温腐蚀。在日本通常将焚烧锅炉的蒸汽参数设计为2.94MPa,300℃以下;在欧洲与美国,过热器管材应用低合金钢与高镍合金,蒸汽参数一般不超过4.5MPa,450℃。深圳市政环卫综合处理厂[1]是我国第一家采用焚烧工艺处理城市生活垃圾并用其热能进行发电与供热的工厂,安装进口的2台日本三菱重工炉排式焚烧锅炉,每台可供1.6MPa饱和蒸汽12t/h,后经技改后,每台可供1.4MPa,350℃过热蒸汽10.7t/h。同一工厂的3号焚烧

现代垃圾焚烧炉的主要型式和特点

现代垃圾焚烧炉的主要 型式和特点 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

现代垃圾焚烧炉的主要型式和特点垃圾焚烧技术已经经历了将近130年的发展过程,垃圾焚烧技术和设备已经日臻完善并得到了广泛的应用。西方发达国家目前通用的垃圾焚烧系统主要有以下几类: (1)垃圾层燃焚烧系统,如采用滚动炉排、水平往复推饲炉排和倾斜往复炉排(包括顺推和逆推倾斜往复炉排)等。层燃焚烧方式的主要特点是垃圾无需严格的预处理。滚动炉排和往复炉排的拨火作用强,比较适用于低热值、高灰分的城市垃圾的焚烧; (2)流化床式焚烧系统,其特点是垃圾的悬浮燃烧,空气与垃圾充分接触,燃烧效果好。但是流化床燃烧需要颗粒大小较均匀的燃料,同时也要求燃料给料均匀,故一般难以焚烧大块垃圾,因此流化床式焚烧系统对垃圾的预处理要求严格,由此限制了其在工业废弃物和城市垃圾焚烧领域的发展; (3)旋转筒式焚烧炉,其特点是将垃圾投入连续、缓慢转动的筒体内焚烧直到燃烬,故能够实现垃圾与空气的良好接触和均匀充分的燃烧。西方国家多将该类焚烧炉用于有毒、有害工业垃圾的处理。

在当今高度工业化的时代,城市垃圾焚烧技术面临着许多新情况和新问题: 1.在经济发达国家,城市垃圾堆积密度小、热值高且灰分和水分较低; 2.垃圾焚烧排放标准日益严格,特别是要求烟气中有害物质的排放得到有效的控制。除了烟尘之外,垃圾焚烧烟气中主要的有害物质有CO、SOx、NOx、有机碳以及二氧(杂)芑(二恶英,dioxins)和呋喃(furane)。通过对燃烧技术的改进和焚烧过程的调整,这些物质的产生和排放可以在一定程度上得到控制。相比较而言,在本世纪五十年代以前仅对垃圾焚烧炉的烟尘排放以及最低焚烧温度有过限制。规定最低焚烧温度(如800℃)目的在于将产生刺激性气味的有害物质在炉子中充分燃烬; 3.从焚烧炉投资和运行经济性的角度来看,其最低焚烧量应为3t/h到20~25t/h。因此,现代垃圾层燃焚烧系统应该满足以下要求: (1)拨火作用强,以保证整个炉排面上垃圾的均匀、充分燃烧并防止结渣。影响炉排拨火作用的主要因素有:①炉排的型式;②炉排运动的方式和强度;③炉排倾角和垃圾在炉排面上的移动方向等; (2)为了保证垃圾的及时引燃、充分燃烧和燃烬,炉排应分成干燥和引燃区、主焚烧区和灰渣燃烬区三个区域;

浅谈垃圾焚烧处理技术的现状及发展趋势

浅谈垃圾焚烧处理技术的现状及发展趋势 摘要:随着我国社会经济的发展,人们生活水平在普遍提高,但是社会发展是 一把双刃剑,在给人们带来便利的同时,也对人们生活造成一定的困扰,尤其是 生活垃圾对人们构成很大威胁,众所周知,生活垃圾存放时间过长就会产生一定 的有毒气体,对人们身心健康造成危害。随着我国科学技术的发展,把焚烧技术 应用到处理垃圾中,很好解决了这一问题。但是我国生活垃圾焚烧处理技术起步 比较晚,和很多发达国家相比还存在不小的差距。本文着重分析了生活垃圾焚烧 处理技术的现状和发展建议,希望能提高我国生活垃圾焚烧处理技术。 关键词:生活垃圾;焚烧处理技术;现状;发展 引言: 21世纪,我国经济迅猛发展,人民的生活水平日益上升,与此同时,城市生 活垃圾的产量也在不断增加。据统计,我国每年产生的城市生活垃圾达到了1.5 亿吨,并正在以每年10%的速度不断增长,历年产生的垃圾堆积量达到了60多 亿吨,直接占据土地面积达5000多平方千米。由此可见,日益增长的城市生活 垃圾已经成为制约我国经济发展的重要问题之一。因此,城市生活垃圾若不及时 处理,不仅会占据宝贵的土地资源,影响城市容貌和市民居住环境,更会因为容 易滋生蚊蝇、病原菌等原因,对居民的健康造成不可估量的危害。同时,国内管 理混乱、处理随意等问题无疑又会加重其负面影响。因此,对城市生活垃圾的合 理处理显得尤为重要。面对这种棘手的垃圾处理问题,焚烧技术作为一种可同时 实现城市垃圾减量化,无害化和资源化的垃圾处理技术,已成为我国大中型城市 处理城市垃圾的首选技术。 1、生活垃圾焚烧处理技术的应用现状 1.1 生活垃圾焚烧处理技术现状 我国生活垃圾焚烧处理是在上世纪80年代引入的,在90年代后期被广泛应 用到我国生活垃圾处理中,目前为止随着我国科学技术的发展,很多生活垃圾焚 烧的设备都是自主研发的,但是焚烧燃点高的生活垃圾还要依靠国外先进的垃圾 焚烧技术,目前我国生活垃圾具有堆存量大、焚烧燃点高、日产量比较大、焚烧 过程中产生很多有毒气体的情况。这就需要生活垃圾处理技术具有很强的适应性,需要焚烧处理技术具有减量性、无毒害、处理生活垃圾量大的特性。而且生活垃 圾产生的热量还可以发电,可以实现循环利用比较符合我国走可持续地方发展道路。但是我国生活垃圾焚烧处理技术还处于起步阶段,和很多发达国家相比还存 在不小的差距,还远远不能满足我国日益增长的垃圾产量,目前影响我国生活垃 圾焚烧处理技术提高的因素有:焚烧处理技术还不完善、引进外国技术成本太高、对焚烧产生的有毒气体缺少科学、合理、规范的检测和处理等等。 1.2 我国目前生活垃圾焚烧设备 垃圾焚烧技术起源于19世纪中期的英国。可以控制的焚烧技术出现在20世 纪末期。该技术把焚烧炉作为主要的技术核心。发展至今全世界出现的焚烧技术 已经超过200多种。我国引进的垃圾焚烧技术主要分为三种类型:一种是层燃式 的焚烧炉、一种是流化床式的焚烧炉,还有一种就是回转窑式的焚烧炉。其中层 燃式焚烧炉具有经济实用的特性,被广泛应用在我国生活垃圾焚烧处理技术中, 流化床式的焚烧炉主要应用在中小型企业产生的生活垃圾,回转窑式焚烧炉主要 应用在医疗垃圾和大型化工业的产生的垃圾中。 1.3 垃圾焚烧产量的热能利用

各种垃圾焚烧技术综合

各种垃圾焚烧技术整理(初稿) 一、流化床焚烧炉 1.原理 炉体是由多孔分布板组成,在炉膛内加入大量的石英砂,将石英砂加热到600℃以上,并在炉底鼓入200℃以上的热风,使热砂沸腾起来,再投入垃圾。 垃圾同热砂一起沸腾,垃圾很快被干燥、着火、燃烧。未燃尽的垃圾比重较轻,继续沸腾燃烧,燃尽的垃圾比重较大,落到炉底,经过水冷后,用分选设备将粗渣、细渣送到厂外,少量的中等炉渣和石英砂通过提升设备送回到炉中继续使用。 2.特点 ●需要石英砂作为辅料,需要掺煤才能焚烧垃圾,在煤价较低或上网电价 较高的情况下,掺煤越多,焚烧厂的经济效益就越好; ●可以混烧多种废物,但是进料越均匀越好,一般需要有前分选和破碎工 序; ●焚烧炉内垃圾处于悬浮流化状态,为瞬时燃烧,燃烧不完全,飞灰量大, 飞灰热酌减率高,二恶英产生量大,但是由于飞灰量是炉排炉的3~4 倍,所以飞灰中二恶英的浓度反而较低;此外,流化床焚烧的一个特点 是炉渣的热酌减率较低,仅为1%~2%; ●物料处于悬浮状态,烟气流速高,对焚烧炉的冲刷和磨损比较严重,设 备使用年限较短; ●流化床炉的检修相对较多,年运行时间较短,通常只有6000多个小时; ●流化床炉起炉和停炉较为方便。 3.优点 ●燃烧比较复杂、水分比较多的垃圾也能够把垃圾燃烧彻底,比较适合我

国的国情; ●流化床燃烧充分,炉内燃烧控制较好,燃烧温度也比较高; ●投资也比较低 4.缺点 ●烟气中灰尘量大, ●操作复杂, ●运行费用较高, ●对燃料粒度均匀性要求较高,需大功率的破碎装置, ●石英砂对设备磨损严重,设备维护量大 5.投资 每日吨投资: 进口设备:万元 引进技术:30-40万元 全国产:25-30万元; 6.运行费用 进口设备:100元/吨垃圾 7.自耗电力 ? 8、主要生产厂家 流化床焚烧炉采用国外进口技术的仅有三例,均是采用日本荏原制造所的内循环流化床技术,即哈尔滨垃圾焚烧厂(已建成)、太原市垃圾焚烧厂(已建成)和大连市垃圾焚烧厂(在建) 国产流化床焚烧技术主要有两家:北京中科通用能源环保有限责任公司和浙江大学的异重循环流化床技术。北京中科通用能源环保有限责任公司成立于1987年,是中科实业集团(控股)子公司 日本流化床焚烧技术曾经一度发展较快,主要是因为其可以非连续性运转(每天工作16小时),适应于日本中小城市的需求。但是10年前日本业界发现由于流化床炉为瞬间燃烧,速度快,难以控制,会导致二恶英大量产生,因而日本国内达成共识,逐步停止使用流化床焚烧炉。流化床焚烧炉生产厂商利用流化床焚烧炉的技术开发了流化床气化熔融炉,即将流化床炉温降到500℃~650℃,使其热解气化,然后将气化后的产物(炭和气化气等)输送到后续的焚烧熔融炉进行焚烧熔融

垃圾焚烧电厂二恶英减排技改实例

垃圾焚烧电厂二噁英减排工作实例 汪嘉涛1胡津烽2 1、2.杭州绿能环保发电有限公司,浙江杭州 310053 摘要:本文通过总结公司多年来在二噁英减排方面的一些工作经验,说明了二噁英减排工作的成效,为垃圾焚烧行业的二噁英减排提供参考。 关键词;垃圾焚烧、二噁英、减排 一.公司简介 杭州绿能环保发电项目于1999年开始筹建,工程按“一次规划、分期建设”的原则建设,一期工程设计日处理生活垃圾450吨。一期工程项目设置三台日本三菱重工制造的150吨/日马丁逆推式生活垃圾焚烧炉以及由杭州锅炉集团和日本三菱重工合作生产的相配套的余热锅炉,并且配置了一台7.5 MW的汽轮发电机组,烟气处理系统采用了循环流化反应+活性炭喷射+布袋除尘+尾气在线检测的半干式循环流化烟气处理装置。我公司(杭州绿能环保发电有限公司)于2002年9月接手项目工作,经过约两年的建设,一期工程项目于2004年10月建成投运,投运以来所有的环保排放指标均符合《生活垃圾焚烧污染控制标准GB18485-2001》的标准。 二.减排背景 2009年下半年广州市番禺垃圾焚烧项目的群体事件在全国范围内造成很大的影响,同时网络等媒介上对以焚烧方式处理垃圾的质疑越来越多,公众对垃圾焚烧日益关注,其焦点就集中于“二噁英”及其对环境的危害。2012年,国家环保部开始准备对生活垃圾焚烧污染控制标准进行修改,其中拟大幅度提高对烟气中二噁英排放限值的要求。 针对上述情况,也出于公司从事此行业应承担的社会责任,在国家相

关要求未改变时我们从2012年开始就着手开展了二噁英减排工作。 三.减排工作实施 (一)技术路线的确定 图1 减排技术路线图 工作开展初期,我们就二噁英的减排工作组织技术人员对国内外多种二噁英治理工艺进行了调研,结合公司的实际情况确定了减排的技术路线,如图1所示。 技术路线整体分两个部分:一是在二噁英生成阶段,通过控制生活垃圾焚烧过程中一氧化碳的含量,减少二噁英类物质的生成;二是在烟气处理阶段,通过技术改造来提高二噁英的去除效果,达到二噁英减排的目的。 由于我公司厂区布局的局限性,无法在焚烧线的烟气处理系统中新增加工艺设备,故我们最终选择了具有二噁英催化降解功能的滤袋作为烟气处理阶段二噁英减排的主要手段。这种新型滤袋上附有催化剂,可在165℃~260℃时对烟气中的二噁英类物质进行催化降解;同时根据多年的经验,我们认为细颗粒的粉末对二噁英类物质具有一定的吸附作用,因此决定对原半干法脱硫系统进行改造。 (二)运行管理的措施 城市生活垃圾焚烧过程中二噁英的生成量与燃烧的状态有直接关系,因此可以通过控制燃烧状态来抑制二噁英的生成。生活垃圾焚烧厂通常采

垃圾焚烧炉选型和垃圾焚烧炉原理

山东万青环保科技有限公司 焚烧炉是常用于医疗及生活废品、动物无害化处理方面的一种无害化处理设备。其原理是利用煤、燃油、燃气等燃料的燃烧,将要处理的物体进行高温的焚毁碳化,以达到消毒的目的。 中文名 垃圾焚烧炉 燃料 煤、燃油、燃气等燃料 用途 焚烧生活垃圾的设备 组成 处理,焚烧,烟雾除尘及煤气炉 适用范围 生活垃圾、医疗垃圾、工业垃圾 目录 . 1 简介

.?设备组成.?应用范围.?设备分类.?实例说明 . 2 发展早期 . 3 机械炉排.?工作原理.?特点 . 4 流化床.?工作原理.?特点 . 5 回转式.?工作原理.?特点 . 6 CAO .?工作原理.?特点 .7 脉冲抛式.?工作原理.?优点 .8 市场前景

简介 垃圾焚烧炉,是焚烧生活垃圾的设备,生活垃圾在炉膛内燃烧,变为废气进入二次燃烧室,在燃烧器的强制燃烧下燃烧完全,再进入喷淋式除尘器,除尘后经烟囱排入大气。 设备组成 垃圾焚烧炉由垃圾前处理系统,焚烧系统,烟雾生化除尘系统及煤气发生炉(辅助点火焚烧)四大系统组成,集自动送料、分筛、烘干、焚烧、清灰、除尘、自动化控制于一体。 应用范围 适用范围:生活垃圾、医疗垃圾、一般工业垃圾,一般工业垃圾采用高温燃烧,二次加氧,自动卸渣的高新技术措施,达到排污的监控要求。 设备分类 按照焚烧方式分为:机械炉排焚烧炉、流化床焚烧炉、回转式焚烧炉、CAO 焚烧炉、脉冲抛式炉排焚烧炉等。 实例说明 1、主要系统介绍 垃圾焚烧炉ZQYT 整套处理系统由下列几部分组成:助燃系统、焚烧系统、集尘器系统,电控系统。 2、进料方式 由于本焚烧炉属于特制,采用人工投料的方式。手动将动物尸体放入焚烧炉内。安全起见,投料应在火势微弱的时候进行。进料口设操作平台,方便投送物料操作及维修。

生活垃圾焚烧处理工程技术要求规范

生活垃圾焚烧处理工程技术规范 CJJ90-2002 1 总则 1.0.1 为贯彻《中华人民共和国固体废物污染环境防治法》和国家有关生活垃圾处理法规,实现生活垃圾处理的资源化、减量化、无害化目标,规范生活垃圾焚烧处理工程规划、设计、施工及验收和运行管理,制定本规范。 1.0.2 本规范适用于以焚烧方法处理生活垃圾的新建工程。 本规范不适用于有毒、有害废物和危险废物的焚烧处理工程。 1.0.3 生活垃圾焚烧工程规模的确定和技术路线的选择,应根据城市社会经济发展、城市总体规划、环境卫生专业规划和垃圾收集与处置以及焚烧技术的适用性等合理确定。 1.0.4 生活垃圾焚烧工程建设,应采用成熟可靠的技术和设备,做到焚烧技术先进、运行可靠、维修方便、经济合理、管理科学、保护环境、安全卫生。垃圾焚烧热能应充分加以利用。 1.0.5 采用焚烧技术处理生活垃圾(以下简称“垃圾”)的工程建设,除应遵守本规范外,尚应符合国家现行的有关强制性标准的规定。 2 术语 2.0.1 生活垃圾municipal solid waste(MSW) 人们在日常生活中或为日常生活提供服务的活动中产生的固体废物,以及法律、行政法规规定视为城市生活垃圾的固体废物。生活垃圾主要包括居民生活垃圾、集市贸易与商业垃圾、公共场所垃圾、街道清扫垃圾及企事业单位垃圾等。 2.0.2 垃圾焚烧锅炉 waste incineration boiler 垃圾焚烧炉和利用垃圾焚烧释放的热能进行有效换热,并产生蒸汽或热水的热力设备的统称。 2.0.3 低位热值 low heat value (LHV)

单位质量垃圾完全燃烧时,当燃烧产物回复到反应前垃圾所处温度、压力状态,并扣除其中水分汽化吸热量后,放出的热量。 2.0.4 焚烧速率rate of burning 单位炉排面积、单位时间的垃圾焚烧量。又称炉排机械负荷。 2.0.5 炉排热负荷heat intensity per grate area 单位炉排面积、单位时间内焚烧垃圾的发热量。 2.0.6 连续焚烧方式continuous incineration 通过送料器连续运动,将垃圾投入垃圾焚烧炉内进行焚烧的作业方式。 2.0.7 焚烧线 incineration line 对垃圾进入垃圾焚烧装置,经过焚烧变成炉渣排出和垃圾热能的转换,以及产生烟气的净化等垃圾处理过程所需要的全部工程设施的总称。 2.0.8 燃烧室 combustion chamber 垃圾焚烧锅炉内的垃圾燃烧空间。包括垃圾在炉床上干燥、燃烧、燃尽过程和燃烧过程中生成的可燃气体与可燃颗粒物燃烧过程所占据的全部空间。 2.0.9 飞灰稳定化flyash stabilization 使飞灰转化为非危险废物的处理过程。 2.0.10 飞灰固化 flyash solidification 采用物理、化学等方法使飞灰稳定化的处理过程。 2.0.11 垃圾焚烧锅炉热效率 thermal efficiency of waste incineration boiler 垃圾焚烧锅炉输出的热量与输入的总热量之比。 2.0.12 炉渣热灼减率 loss of ignition 焚烧垃圾产生的炉渣在600±25℃保持3h条件下,经灼热减少的质量占烘干后的原始炉渣质量的百分比。 2.0.13 烟气净化系统 flue gas cleaning system 对烟气进行净化处理所采用的各种处理设施组成的系统。 2.0.14 二噁英类 dioxins 多氯代二苯并一对一二噁英(PCDDs)、多氯代二苯并呋喃 (PCDFs)等化学物质的总称。 2.0.15 渗沥液 leach ate

垃圾焚烧炉原理

垃圾焚烧炉原理 垃圾通过相关的控制和操作后,垃圾进入焚烧炉,必须经过干燥、燃烧和燃烬三个阶段,其中的有机物在高温下完全燃烧,生成二氧化碳气体,释放热量。但是,在实际的燃烧过程中,由于焚烧炉内的燃烧条件不可能达到理想效果,致使燃烧不完全。严重的情况下将会产生大量的黑烟,并且从焚烧炉排出的炉渣中还含有有机可燃物。生活垃圾焚烧的影响因素包括:生活垃圾的性质、停留时间、温度、湍流度、空气过量系数及其他因素。其中,停留时间、温度及湍流度称为“3T”要素,是反映焚烧炉运行性能的主要指标。针对垃圾的性质、停留时间、温度、湍流度和过量空气系数进行分析,并用于指导垃圾焚烧炉运行管理和操作。 一.生活垃圾的性质 生活垃圾的热值、组成成分及外形尺寸是影响生活垃圾焚烧的主要因素。热值越高,燃烧过程越易进行,焚烧效果也就越好。生活垃圾组成成分的尺寸越小,单位质量或体积生活垃圾效果越好,燃烧越完全;反之,传质及传热效果较差,易发生不完全燃烧。进厂垃圾在贮坑内停留一定的时间,通过自然压缩及部分发酵作用,以提高进炉垃圾的热值,改善垃圾的焚烧效果,同时亦是垃圾焚烧好坏的关键所在。 合理贮存让垃圾充分发酵和干燥 进厂生活垃圾并不是直接送入垃圾焚烧炉,而是必须经过贮存这一道工序。设置垃圾贮坑,一是贮存进厂垃圾,起到对垃圾数量的调节作用;二是对垃圾进行搅拌、混合、脱水等处理,起到对垃圾性质的调节作用。另外,进厂垃圾在贮坑内停留一定的时间,通过自然压缩及部分发酵作用,可以减低垃圾的含水量,以提高进炉垃圾的热值,改善垃圾的焚烧效果。生活垃圾在贮坑内停留时间为3~5天较为合适,气温低和湿度大的可以适当延长停留时间。 二.停留时间 停留时间有两方面的含义:一是生活垃圾在焚烧炉内的停留时间,它是指生活垃圾从进炉开始到焚烧结束,炉渣从炉中排出所需的时间;二是生活垃圾焚烧烟气在炉中的停留时间,它是指生活垃圾焚烧产生的烟气从生活垃圾中逸出到排出二燃室所需的时间。实际操作过程中,生活垃圾在炉中的停留时间必须大于理论上干燥、热分解及燃烧所需的总时间。同时,焚烧烟气在炉中的停留时间应保证烟气中气态可燃物达到完全燃烧。当其他条件保持不变时,停留时间越长,焚烧效果越好,但停留时间过长会使焚烧炉的处理量减少,停留时间过短会引起垃圾燃烧不完全。所以,停留时间的长短应由具体情况来定。 合理调整垃圾在炉内的停留时间 垃圾种类的不同,在炉内的停留时间也不一致。司炉必须根据垃圾的干燥程度、种类和焚烧效果,合理调整停留时间才能让垃圾稳定燃烧和彻底焚烧。垃圾进入锅炉后首先利用炉膛热量在第一级炉排上干燥,然后在第二、三级炉排上焚烧,最后在四级炉排上燃尽。各级炉排的停留时间太长影响垃圾处理量,太短又影响垃圾焚烧效果。经过笔者一年多生产经验

汨罗生活垃圾焚烧炉掺烧生活污泥及一般工业固体废物技改项目环境影响报告书

汨罗生活垃圾焚烧炉掺烧生活污泥及一般工业固体废物技改项目 环境影响报告书 (报批稿) 建设单位:光大现代环保能源(汨罗)有限公司环评单位:湖南道和环保科技有限公司 二〇二〇年八月

目录 1 概述 (1) 1.1项目由来 (1) 1.2建设项目特点 (2) 1.3环境影响评价工作过程 (2) 1.4产业政策、相关规划及环境功能区划 (3) 1.5关注的主要环境问题 (9) 1.6环境影响报告主要结论 (9) 2 总则 (10) 2.1编制依据 (10) 2.2环境影响识别与评价因子筛选 (13) 2.3环境影响评价标准 (16) 2.4评价工作等级和评价范围 (22) 2.5保护目标 (33) 3 现有项目概况 (36) 3.1现有项目基本情况 (36) 3.2生产工艺 (40) 3.3现有项目污染物治理/处置设施 (44) 3.4现有项目验收期间监测数据及污染物总量 (49) 3.5现有项目营运至今监测数据及污染物总量 (57) 3.6现有项目环评批复、验收意见的落实情况 (68) 3.7现有项目存在的问题、整改措施 (72) 4 建设项目工程分析 (73) 4.1建设项目情况介绍 (73) 4.2原辅材料消耗 (74) 4.3营运期污染源分析 (74) 4.4项目技改前后污染物“三本账” (74) 5 环境现状调查与评价 (74) 5.1自然环境现状调查 (74) 5.2地表水质量现状调查与评价 (74) 5.3环境空气现状调查与评价 (74) 5.4地下水环境质量现状调查与评价 (74) 5.5土壤环境质量现状调查与评价 (74) 5.6声环境质量现状调查与评价 (74) 6 环境影响预测与评价 (74) 6.1营运期大气环境影响预测与评价 (74) 6.2营运期地表水环境影响评价 (74) 6.3营运期地下水环境影响评价 (74) 6.4营运期固体废物环境影响评价 (74) 6.5营运期声环境影响评价 (74) 6.6营运期土壤环境影响评价 (74) 6.7环境风险评价 (74) 7 环境保护措施及其可行性论证 (74) 7.1营运期废水治理措施 (74) 7.2营运期废气治理措施 (74) 7.3运营期噪声污染防治措施 (74) 7.4营运期固体废物处置措施 (74) 8 环境影响经济损益分析 (74)

明项目垃圾焚烧炉排技术协议

三明市金利亚环保科技投资有限公司 焚烧炉排设备 合同附件 合同号: 合同签字时间及地点: 合同生效日期: 合同双方:(三明市金利亚环保科技投资有限公司)(以下简称需方) (上海康恒环境股份有限公司)(以下简称供方)

附件1: 技术规范 1总则 1. 1本规范书适用于三明市(永安市、沙县)生活垃圾焚烧发电厂垃圾焚烧炉排_设备,它提出设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1. 2需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用 的标准,供方应提供一套满足本规范书和所列标准要求的高质量产品及其相应服务。对国家 有关安全、环保等强制性标准,必须满足其要求(如锅炉与压力容器、高电压设备等)。 1. 3如未对本规范书提出偏差,将认为供方提供的设备符合规范书和标准的要求。 1. 4供方须执行本规范书所列标准。有矛盾时,按较高标准执行。 1. 5合同签订后3个月,按本规范4. 6要求,供方提出合同设备的设计,制造、检验/试验、装配、安装、调试、试运、验收、试验、运行和维护等标准清单给需方,需方确认。 2工程概况 项目名称:三明市(永安市、沙县)生活垃圾焚烧发电厂 项目业主:三明市金利亚环保科技投资有限公司 项目地址:三明市三元区莘口镇黄砂村渡头坪 三明市(永安市、沙县)生活垃圾焚烧发电厂项目,负责处理三明市城区、沙县、永安三地的生活垃圾。项目拟建设总规模为900~1200吨/ 日,按照两炉两机配置。其中一期工程 为1台炉型为炉排炉500吨/日的焚烧生产线,配置一台12MW凝汽式汽轮机组。二期预留 一台500吨/日垃圾焚烧炉位置,今后根据三明市垃圾产量扩建一台300或500吨/日垃圾焚 烧炉,配置一台6MW凝汽式汽轮机组。烟气处理系统采用干法加活性炭喷射加布袋除尘工艺。 3设计和运行条件 3. 1系统概况和相关设备 厂家设备工艺情况描述。 3. 2工程主要原始资料 3.2.1气象特征与环境条件 福建省三明市属中亚热带季风气候,区内多年平均气温19.2 C,极端最高气温40.1 C, 最低气温-7.1 C。年平均降雨量为1656mm,降雨多集中在4?8月份。常年风向为 3.2.2厂区地质 建设地地貌单元属丘陵地貌单元。场地东、南、北侧为鱼塘溪,西侧为三明~明溪公路,场地总体上北高南低。本区域分布地层简单,主要为残积砂质粘性土,局部为冲积泥质砂砾卵石,下伏基岩为变质砂岩。抗震设防烈度为7度区。 3.2.3电力供应 垃圾焚烧炉一余热锅炉产生的蒸汽驱动汽轮发电机组发电。除自用电外,剩余的电力送

简述现代垃圾焚烧技术

第1章绪论 第1.1节焚烧技术的发展历史 垃圾焚烧技术作为一种以燃烧为手段的垃圾处理方法,其应用可以追溯至人类文明的早期,如刀耕火种时期的烧荒即可视为焚烧应用的一例。但焚烧作为一种处理生活垃圾的专用技术,其发展历史与其他垃圾处理方法相比要短很多,大致经历了三个阶段。 1.1.1萌芽阶段 萌芽阶段是从19世纪80年代开始到20世纪初期。1874年和1885年,英国诺丁汉和美国纽约先后建造了处理生活垃圾的焚烧炉,代表了生活垃圾焚烧技术的兴起。1896年和1898年,德国汉堡和法国巴黎先后建立了世界上最早的生活垃圾焚烧厂,开始了生活垃圾焚烧技术的工程应用。但是由于这一阶段的技术原始和垃圾中可燃物的比例较低,在垃圾焚烧过程中产生的浓烟和臭味,对环境的二次污染相当严重,因此这种方法曾一度为人们所抛弃。 1.1.2 发展阶段 从20世纪初到60年代末的约半个世纪,是垃圾焚烧技术的发展阶段。一次世界大战后,发达国家的经济得到了较大发展,城市居民生活水平的提高和生活垃圾成分的变化,给垃圾焚烧创造了条件,因此垃圾焚烧技术又逐渐发展起来。 这期间,欧洲、北美及日本都陆续建起了一些生活垃圾焚烧厂,其工艺与设施水平也在随着燃煤技术的发展而从固定炉排到机械炉排,从自然通风到机械供风而逐步得到发展。二次世界大战以后,发达国家的经济得到更大发展,城市居民的生活水平进一步提高,垃圾中的可燃物和易燃物也随之迅速上升,促进了垃圾焚烧技术的应用。特别是在20世纪60 年代的电子工业变革后,各种先进技术在垃圾焚烧炉上得到了应用,使垃圾焚烧炉得到了进一步完善。但总体来说,由于当时城市生活垃圾中的可燃物仍然少于非可燃物,产生量与消耗空间的矛盾尚不突出,对垃圾焚烧伴随的环境问题的认识仍肤浅等因素,直到20世纪70年代以前,生活垃圾焚烧技术的发展并不十分理想。 1.1.3 成熟阶段 从20世纪70年代初到90年代中期的20多年间,是生活垃圾焚烧技术的成熟阶段,也是生活垃圾焚烧技术发展最快的时期。这时期几乎所有的发达国家、中等发达国家都建设了不同规模、不同数量的垃圾焚烧发电厂,发展中国家建设的垃圾焚烧发电厂的也不在少数,垃圾焚烧技术的发展方兴未艾。表1-1所示的数据可以对生活垃圾焚烧技术的当代发展史作一代表性的注解。 综合分析发达国家生活垃圾焚烧技术在近二十年间迅速发展的原因,除了经济、技术、观念等因素外,还有一些其他方面的影响,比如:随着城市建设的发展和城市规模的扩大,城市人口数量骤增,生活垃圾产量也快速递增,使原有的垃圾填埋场日益饱和或已经饱和,而新的垃圾填埋场地又难于寻找,采取垃圾焚烧方法,可使生活垃圾减容85%以上,最大限度地延长现有垃圾填埋场的使用寿命。此外,随着人们生活水平的提

垃圾焚烧炉布袋除尘器技改探究

垃圾焚烧炉布袋除尘器技改探究 发表时间:2020-03-16T15:40:16.290Z 来源:《电力设备》2019年第21期作者:李德丰1 孟令涛2 邵明军3 汪明浩4 [导读] 摘要:光大环保能源(江阴)有限公司一期#1#2炉布袋除尘器于2007年12月使用至今,多次出现箱体、仓室盖板、喷吹管及灰斗钢板腐蚀穿孔等现象,除尘器漏风率达到5%,引风电流偏大且除尘器入口挡板积灰严重且不易清理。 (光大环保能源(江阴)有限公司江苏江阴 214400) 摘要:光大环保能源(江阴)有限公司一期#1#2炉布袋除尘器于2007年12月使用至今,多次出现箱体、仓室盖板、喷吹管及灰斗钢板腐蚀穿孔等现象,除尘器漏风率达到5%,引风电流偏大且除尘器入口挡板积灰严重且不易清理。针对上述情况,重新设计除尘器,进行消除除尘器旁路、使用双层盖板密封和进风挡板水平改垂直进风的改造。 关键词:除尘器(Clothe Bag Deduster) 1 前言 除尘器是把粉尘从烟气中分离出来的设备,已经运用到各行各业,它的工作原理十分简单:含尘气体由下部敞开式法兰进入过滤室,较粗颗粒直接落入灰仓,含尘气体经滤袋过滤,粉尘阻留于袋表,净气经袋口到净气室,由风机排入大气。当滤袋表面的粉尘不断增加,程控仪开始工作,逐个开启脉冲阀,使压缩空气通过喷口对滤袋进行喷吹清灰,使滤袋突然膨胀,在反向气流的作用下,赋予袋表的粉尘迅速脱离滤袋落入灰仓,粉尘由卸灰阀排出。 光大环保能源(江阴)有限公司即江阴市生活垃圾焚烧发电厂烟气排放全面执行欧盟2010标准,尾气处理系统使用的是脉冲除尘器,主要由上箱体、中箱体、灰斗、进风均流管、支架滤袋及喷吹装置、卸灰装置等组成。含尘气体从除尘器的进风均流管进入各分室灰斗,并在灰斗导流装置的导流下,大颗粒的粉尘被分离,直接落入灰斗,而较细粉尘均匀地进入中部箱体而吸附在滤袋的外表面上,干净气体透过滤袋进入上箱体,并经各离线阀和排风管排入大气。随着过滤工况的进行,滤袋上的粉尘越积越多,当设备阻力达到限定的阻力值(一般设定为1500Pa)时,由清灰控制装置按差压设定值或清灰时间设定值自动关闭一室离线阀后,按定程序打开电控脉冲阀,进行停风喷吹,利用压缩空气瞬间喷吹使滤袋内压力聚增,将滤袋上的粉尘进行抖落(即使粘细粉尘亦能较彻底地清灰)至灰斗中,由排灰机构排出。 2 研发背景 一期#1#2炉布袋除尘器于2007年12月使用至今,多次出现箱体、仓室盖板、喷吹管及灰斗钢板腐蚀穿孔等现象,除尘器漏风率达到5%,且除尘器入口挡板积灰严重且不易清理。针对上述情况,我司重新设计除尘器,在设计源头取消除尘器旁路、使用双层盖板密封和进风挡板水平改垂直进风的技改。 3 实施情况 3.1 布袋除尘器基本参数: 表1-1 除尘器设备型号:LM2440 3.2 技改方案: 针对#1#2炉除尘器仓室盖板、箱体、喷吹管及灰斗钢板腐蚀穿孔漏风率大、粉尘浓度偏高等问题,及考虑灰斗腐蚀速率过快,入口挡板容易积灰,多次考察同类改造单位与设备制造厂家沟通讨论改造方案如下: 3.2.1将仓室盖板改为双层盖板,可减缓盖板腐蚀除尘器漏风及喷吹管腐蚀; 3.2.2箱体内壁板材喷砂处理后进行有机硅喷涂; 3.2.3喷吹弯管至气包处更换为316L管,减缓喷吹管处露点腐蚀;

生活垃圾焚烧的十个主要问题

1、技术的主要特点 一是项目用地省。同样的量,需要的用地面积只是垃圾卫生填埋场的1/20-1/15; 二是处理速度快。垃圾在卫生填埋场中的分解时间通常需要7到30年,而焚烧处理只要垃圾的熔点低于850℃,2小时左右就能处理完毕; 三是减容效果好。同等量的垃圾,通过填埋约可减容30%,通过堆肥约可减容60%,而通过焚烧约可减容90%; 四是污染排放低。据德国权威环境研究机构研测,如采用同样严格的欧盟污染控制标准,垃圾焚烧产生的污染仅为垃圾卫生填埋的1/50左右; 五是能源利用高。每吨垃圾可焚烧发电300多度,大约每5个人产生的生活垃圾,通过焚烧发电可满足1个人的日常用电需求。 通常来说,对于人口密集、经济发达、土地资源稀缺的大中城市,应该优先选择垃圾焚烧方式。 2、垃圾分类是否垃圾焚烧的前提 从焚烧技术原理分析,尽管垃圾分类有利于垃圾焚烧,但并不能认为垃圾分类是垃圾焚烧的必要条件。 实际上,焚烧技术是一种能够适应处理混合垃圾的典型技术,目前世界上大部分采用垃圾焚烧的城市并没有做到也没有必要做到垃圾完全分类。 但垃圾分类是垃圾焚烧的充分条件,因为垃圾分类能助力焚烧处理做得更好,可起到减量(减少垃圾处理量)、减排(减少污染排放量)、提质(改善燃烧工况)、提效(提高发电效率)等作用。 对于高标准垃圾焚烧厂来说,不但应该在合理的成本下安全和有效地处理垃圾,而且应该努力做到最大限度的降低污染排放,所以它理应同时满足必要条件和充分条件。从这个角度考虑,可以认为垃圾分类是垃圾焚烧的前提。 3、垃圾焚烧厂的建设要求 一是每条焚烧生产线的年运行时间应在8000小时以上,垃圾焚烧系统的设计服务期限不应低于25年。

危废焚烧技术要求

危险废物集中焚烧处置工程建设 技术要求(试行) 前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国固体废物污染环境防治法》,规范危险废物集中焚烧处置工程建设,防治危险废物焚烧对环境的污染,保护环境,保障人体健康,制定本技术要求。 本技术要求由国家环境保护总局科技标准司提出。 本技术要求由沈阳环境科学研究院负责起草,武汉安全环保研究院和中国环境科学研究院参与完成。 本技术要求由国家环境保护总局负责解释。

目录 1 总则 (1) 2 编制依据 (1) 3 术语 (2) 4 焚烧厂总体设计 (4) 4.1 建设规模 (4) 4.2 厂址选择 (4) 4.3 总图设计 (4) 4.4 总平面布置 (5) 4.5 厂区道路 (5) 5 危险废物接收、分析鉴别和贮存 (6) 5.1 接收 (6) 5.2分析鉴别 (6) 5.3贮存 (6) 6 危险废物焚烧处置系统 (7) 6.1 一般要求 (7) 6.2 预处理及进料系统 (7) 6.3 焚烧炉 (8) 6.4 热能利用系统 (9) 6.5 烟气净化系统 (9) 6.6 残渣处理系统 (11) 6.7 自动控制及在线监测系统 (11) 7 公用工程 (13) 7.1 电气系统 (13) 7.2 给水、排水和消防 (13) 7.3 采暖通风与空调 (14) 7.4 建筑与结构 (15) 7.5其它辅助设施 (15)

8 环境保护与劳动卫生 (16) 8.1 一般规定 (16) 8.2 环境保护 (16) 8.3 职业卫生与劳动安全 (17) 9 工程施工及验收 (18) 10 运营管理基本要求 (19) 10.1 运营管理总则 (19) 10.2 运营条件 (19) 10.3 机构设置与劳动定员 (20) 10.4 人员培训 (20) 10.5危险废物接收 (21) 10.6 交接班及运行登记制度 (21) 10.7安全生产和劳动保护 (22) 10.8 检测、评价及评估制度 (24) 本技术要求用词说明 (25)

多角度分析比较国内市场上主流垃圾焚烧炉特点

多角度分析比较国内市场上主流垃圾焚烧炉特点摘要:为了新建垃圾焚烧发电厂焚烧炉设备选择的需要,及现有垃圾焚烧发电厂技术改造的需要,对市场上的主流垃圾焚烧炉进行深入研究,通过对炉排运动方式、炉排片间运动形式、炉排片制造工艺、炉排热应力释放形式、炉排横纵向布置方式、炉排片通风形式、炉膛形式、给料溜槽支撑方式、推料器形式、使垃圾在炉排上充分搅拌措施等方面的对比分析,得出不同项目情况下焚烧炉设备选型和技术改造的主要参考依。 引言 随着国内经济的飞速发展,垃圾产生量逐年增加,垃圾围城问题日益突出,深刻影响城市的发展,资源化无害化处理生活垃圾刻不容缓。机械炉排炉是目前处理生活垃圾的主流炉型,国外主要的焚烧炉技术有 MATIN、VONROLL、VONLUND、WINDMER+EMST、 DBA、FBE、 SEGHERS、 ALSTOM、JFE、STEIN-MULLER、TAKUMA 等。近些年来焚烧炉技术发展迅猛,引进吸收或自主研发焚烧炉产品,主要技术有光大环保、重庆三丰、上海康恒、杭州新世纪、天楹环保等。不同的焚烧炉技术迥异,本文从多角度分析不同类型的焚烧炉特点,以便在工程实践中选择最适合项目情况的技术。 1 国内市场上一些常见的焚烧炉 国内垃圾焚烧产业发展较晚,已运行垃圾焚烧炉电厂前期以欧洲和日本焚烧炉为主,随着国内该领域的蓬勃发展,引进技术或自主研发炉排炉产品比重逐渐加大,图1是国内市场上主要的焚烧炉。

上述焚烧炉产品中,光大顺推焚烧炉、康恒焚烧炉、三峰焚烧炉占据国内市场 80%左右的份额。3种产品适用范围广,从中国最北方的寒冷地区,到中国最南方的炎热地区,以及西部高海拔地区都有应用的业绩。光大逆推焚烧炉、新世纪焚烧炉、天楹焚烧炉在国内应用也较多,产品使用以国内东部地区为主。国内市场的这些焚烧炉产品以自主研发或引进国外技术消化吸收为主,基本上都已经实现了产品的国产化。其产品的设计充分考虑了中国高水分、高灰分、低热值的垃圾特性,更适合国内垃圾物料的焚烧。 除了上述焚烧炉产品外,国内还使用着为数众多的其他厂商焚烧炉,如丹麦韦伦、日本JFE、日本荏蒝、意大利英波基洛、德国马丁、三菱马丁、日立造船、德国诺尔、比利时西格斯、德国斯坦米勒、绿色动力、浙江伟明、深能源、无锡华光等焚烧炉,广泛应用于中国的各大垃圾焚烧发电厂。由于采购成本和市场开拓力度等原因,上述产品应用面较窄,仅在个别公司或项目上应用。 2 炉排运动方式 炉排运动方式主要有逆推方式和顺推方式。逆推式炉排片的移动方向与垃圾流动方向相反,在重力的作用下垃圾向炉排末端流动。顺推式炉排片的移动方向与垃圾流动方向相同,在机械推力的作用下垃圾向炉排末端流动。 逆推方式的主要优点是炉排片上方始终保持有一定厚度的炉渣,可以有效减少炉膛高温辐射对炉排片的影响,因而对炉排片品质要求低些。缺点是垃圾靠重力向下流动,垃圾向前运动速度无法精确控制。 顺推方式的主要优点是通过机械方式推动垃圾,可以较准确控制垃圾向前运动速度。缺点是活动炉排片容易直接暴露在炉膛的高温热辐射下,炉排片瞬时温度容易过高,因而对炉排片的品质要求较高。 2 种炉排运动方式示意见图2所示。

相关主题
文本预览
相关文档 最新文档