当前位置:文档之家› 管材内高压成形技术

管材内高压成形技术

管材内高压成形技术
管材内高压成形技术

目录

第一章绪论 (1)

1.1研究背景 (1)

1.2管材内高压成形基本原理 (1)

1.3管材内高压成形的适用领域 (3)

第二章管材内高压成形的影响因素 (4)

2.1轴向应力的影响 (4)

2.2内压力大小的影响 (4)

2.3摩擦系数的影响 (5)

2.4起皱的影响 (6)

第三章管材内高压成形的设备关键技术 (7)

第五章管材内高压成形的工程研发案例 (9)

第六章管材内高压成形的展望 (11)

第一章绪论

1.1研究背景

近年来,汽车轻量化是汽车制造业的重要发展趋势。由于世界能源的紧张和环保问题的日趋严重,汽车工业面临着严峻的挑战:减轻汽车自身重量,提高行驶速度,降低能耗。除了采用轻体材料以外,汽车轻量化的另一个主要途径是以“空代实”。这就求促使人们不得不改进传统工艺,创造出适应新经济时代要求的新工艺。通过合理的结构设计,许多零部件都能采用标准的管材,通过液压成形技术成形结构很复杂的单一整体结构件,代替承受弯曲和扭转载荷的构件,既节省了材料,又发挥了材料的最大效能。在汽车工业中管材液压成形作为一个非常重要的成形技术已得到了广泛应用,主要用于生产汽车动力系统、排气系统、汽车底盘以及一些结构件。汽车用排气管件大多为形状比较复杂、轴线有很大变化的零件。传统成形工艺除铸造成形外,主要采用冲压两个半壳而后组焊成形,或采用管坯进行数控弯曲、扩管、缩管加工而后组焊成形。这样制造的零件模具费用高、生产周期长、成本高,不适应当前汽车行业在减轻自重、降低成本、提高市场竞争力等方面的要求。而采用内高压技术制造排气管件可以较精确地控制零件的尺寸精度,便于在后续工序中与其他零件进行装配,且能够进一步减轻系统重量,减少焊缝数量,内表面光滑,排气阻力小,使成形后的产品质量和寿命得到进一步提高。

1.2管材内高压成形基本原理

内高压成形(Internal High Pressure Forming)是以管材作坯料,通过管材内部施加超高压液体和轴向进给补料把管坯压入到模具型腔使其成形为所需工件。而对于轴线为曲线的零件,先在数控弯管机上弯曲到要求的形状,经过预成形后再放到模具内加压成形出零件,这种工艺适用于制造沿构件轴线具有不同截面形状的空心构件,截面形状可以为圆形、矩形或异型截面。由于所使用的压力高达400MPa~ 600MPa,在德国称为内高压成形IHPF ( Internal High Pressure Forming) ;根据使用的坯料和成形介质,在美国又称为管材液力成形THF (Tube Hydroforming) 。

按成形零件的种类,内高压成形分为三类:(1)变径管内高压成形;(2)弯曲轴线构件内高压成形;(3)多通管内高压成形。图1.1为内高压成形技术生产的汽车零部件。

(a)发动机支架

(b)汽车排气管

图1.1 内高压成形的典型零部件

内高压技术成形(图 2.1)一个产品,一般完整的工艺路线为:管坯下料→叶预弯机加工端部→清清洗→喷涂润滑剂→预成形→分液压成形→后续加工(如激光切割、焊接、热处理、清洗、喷漆等)。

图2.1 内高压成形过程

1.3管材内高压成形的适用领域

管材内高压成形的优点:减轻质量,节约材料;减少零件和模具数量,降低模具费用;可减少后续机械加工和组装焊接量;提高强度与刚度,尤其是疲劳强度;降低生产成本。

而其工艺方面的不足是:成形过程中坯料变形不均匀,金属流动情况复杂,变形规律较难掌握;内高压成形专用设备的设计尚无标准可言,工艺设计及参数的正确选取比较困难;成形过程中容易产生破裂、起皱、折叠、弯曲等缺陷。

管料的内高压成形适用于汽车等行业的沿构件轴线变化的圆形、矩形或异型截面空心构件,如汽车的排气系统异型管件、非圆截面空心框架如副车架、仪表盘支架、车身框架(约占汽车总重量的11%~15%)、空心轴类件和复杂管件等。

适用材料包括碳钢、不锈钢、铝合金、铜合金及镍合金等,原则上适用于冷成形的材料均适用于内高压成形工艺。

第二章管材内高压成形的影响因素

2.1轴向应力的影响

内高压成形是在内压和轴向力联合作用下的复杂成形过程。当轴向力过大,管坯将发生塑性失稳起皱;当内压过高,管坯将发生破裂;轴向力和内压都过大,起皱和开裂同时发生。无内压作用时,管坯产生塑性失稳起皱的条件可以用经典欧拉公式。

当管坯有内压作用时,稳定性提高,起皱的轴向应力增大。图2.1所示为一个非线性弹塑性稳定性理论分析计算实例。由图2.1看出,随着内压力增加,起皱临界轴向力逐渐提高。

图2.1塑性失稳临界轴向力与内压的关系

2.2内压力大小的影响

内压力是能否成形符合需求产品的重要因素。内高压成形开裂压力可以用下式估算:

式中:

p i B————开裂压力 (MPa)

b————材料的抗拉强度

d————管材开裂前的直径

t ————管材开裂前的瞬时厚度

通过不同材料和不同壁厚管材实验获得的开裂压力与上式计算值吻合较好。

2.3摩擦系数的影响

摩擦力对内高压成形过程有着至关重要的影响。管坯与成型模腔有较大面积接触,且随内压力的加大,管坯与模腔之间的压力越来越大,使管坯两端材料很难流入。这样不但使中间胀形部分变薄、易胀裂、废品率高,而且需要两端的轴向力更大,即需要更高吨位的压力机才能进行胀形,增加了生产成本。

减小摩擦力改善润滑环境不仅可以提高产品质量,降低成形时所需的轴向力,还可以降低模具的磨损,延长模具使用寿命。为减小摩擦,管坯外表面及成型模腔要尽可能光滑,应在管坯和模腔之间添加合适的润滑剂。

2.4起皱的影响

以往的研究者大多认为起皱是一种缺陷,应避免皱纹的产生。通过大量试验研究和数值模拟表明并非所有的皱纹都是缺陷,可以利用起皱先在变形区聚料,然后再加压使皱纹胀平。关键问题是控制加载路径产生可以后续加压胀平的皱纹,称这类皱纹为有益皱纹(图2.2),不能加压展开的皱纹为死皱,利用有益皱纹可以扩大成形区间范围。对于铝合金管件,利用有益皱纹聚料膨胀量达到35%,最大减薄量小于10%;对于低碳钢管件,利用有益皱纹聚料膨胀量高达75%,而该管材延伸率仅为30%。

(a)有益皱纹

(b)零件

图2.2 利用有益皱纹成形的铝合金件

第三章管材内高压成形的设备关键技术

内高压成形设备由合模液压机、水平推缸、高压源、液压系统、水压系统及计算机控制系统组成。各系统主要功能为:合模液压机提供合模力,在加压成形期间将上下模具闭合锁死。对于直径65mm,长度为2m的零件,当成形压力达到250MPa时,需要合模力为32500kN;水平推缸用于轴向进给补料和管端密封。高压源产生和控制高压液体,核心部件是增压器,规格有 200MPa、400MPa和600MPa;液压动力系统提供水平缸、增压器和合模液压机驱动动力;水压系统提供工件成形乳化液快速充填、增压器高压腔补液、乳化液循环过滤;计算机控制系统控制水平缸进给与增压器内压,形成内压与位移加载曲线。目前合模液压机有长行程和两种短行程典型结构。长行程合模液压机是在现有拉深用液压机结构基础上进行改进,技术成熟、可靠。缺点是模具提升闭合使用主油缸,行程较长,模具开闭时间长,在合模期间内需要大流量泵和蓄能器维持压力,浪费大,成本高。短行程合模液压机合模系统由提升油缸(小油缸) ,机械垫块与液压垫组成,模具提升闭合由小油缸完成,时间短,液压垫( 大油缸) 仅在合模阶段提供压力,结构紧凑,成本低。

第四章管材内高压成形的发展现状

目前,世界范围内内高压成形工艺的研究与发展还很不平衡,在欧美发达国家,内高压成形工艺发展得比较成熟,已经进入了生产阶段。其中以德国的研究最为深人,德国的Paderborn大学是最早对内高压成形技术进行系统研究的。F.Dohmann教授在内高压成形过程影响因素、失效形式以及有限元模拟方面做了大量工作.系统阐述了内高压成形过程及其过程参数控制的基本原理,用实例说明了零件形状、模具结构设计、成形过程方案确定及实验结果之间的相互关系。

美国的研究也比较深入,俄亥俄州立大学的工程研究中心设有专门的部门,研究内高压成形工艺方向,并与企业合作成立了内高压成形工艺研究协会,向会员定期提供内高压成形工艺方面的技术资料及最新发展动态信息,并实时举办专门的液压成形技术会议。俄亥俄州立大学T.Altan教授等同人利用有限元模拟方法确定了不同管状结构件液压成形的最佳加载路径,并用实验验证了用有限元法得出的加载路径不仅能够减少实验量和实验中的误差,且能够明显提高生产率,增加了液压成形复杂管件工艺可能性。密歇根州迪尔伯恩大学G.T.Kridli等人对无缝钢管在方形模具型腔中的液压成形进行了研究,讨论了应变硬化指数、管坯原始壁厚、模具填充处圆角半径以及管材壁厚分布对成形的影响。

瑞典沃尔沃汽车零部件公司工程研究中心的N.Asnafi等人在板材、管材液压成形上作

了许多研究工作。重点从理论上分析了不锈钢厚板在V型模具弯曲过程中起皱及开裂的产生机理,并在实验上得到了很好的验证;从实验和理论两个方向上讨论了铝板拉伸时的破裂极限、成形法兰时的起皱极限。同时通过理论分析模型探讨了管材液压成形时的成形极限、不同材料和工艺参数对加载路径和成形结果的影响等一系列问题。

韩国也在液压成形方面做了一些研究,Kyungpook国际大学金英锡等人从理论上分析了加载路径、材料参数(如应变硬化指数n、各向异性指数r)对成形结果的影响,并将理论成形极限与实验结果进行了比较。

国内在此领域的研究,以哈尔滨工业大学王仲仁教授为代表的研究人员开展了管件高内压液压成形技术的成形理论、工艺和设备关键技术的研究,研制了国内首台150MPa内高压成形机,填补了国内管材液压成形机的空白。内高压成形机采用计算机控制,可以按照给定的液压加载路径严格控制内压和轴向进给,利于管件成形工艺参数匹配控制,工艺稳定性好,已经加工出一些飞机实用的铝合金变径管、不锈钢Ω接头、组合式凸轮轴等典型样件。同时,通过数值模拟进行预测分析,并对管件成形过程中各种缺陷形式及其与工艺参数之间的关系进行了系统研究,为推进汽车轻量化进程,促进内高压成形技术在我国航空航天的应用奠定良好的基础。北京科技大学苏岚等旧人应用动态显示有限元法,建立了T型管液压成形分析模型,对不同加载路径条件下模拟结果进行了对比分析,探讨了最佳载荷曲线确立原则。华大学雷丽萍等人对汽车副架液压胀形预成形工艺设计进行了数值模拟研究,应用Hydro FORM一3D软件与Oyane延性断裂准则相结合的数值模拟方法,确定了适合预成形工艺条件的管材初始尺寸。

第五章管材内高压成形的工程研发案例

(1)Ω接头管件(图5.1),Ω接头为运载火箭动力系统中构成补偿管的重要零件之一。采用内高压成形方法,解决了此类零件传统的先压半环、再焊接成整圆的工艺中存在的焊后变形严重、可靠性差和合格率低等问题。

图5.1 Ω接头管件

Ω接头管件内高压成形难点有三,一是径厚比(管材直径与厚度之比)达107,超薄管端密封困难;二是成形区与送料区之间无过渡区,送料时容易引起内凹;三是壁厚均匀性要求高,轴向进给控制难度大。通过研究解决了超薄管端部密封、大直径管轴向减力和轴向进给精确控制等关键技术,成功地研制了Ω接头,并批量应用于长征系列火箭。

(2)铝合金超薄三通管(图 5.2)材料为防锈铝合金,原工艺是采用二个半管对焊或插焊。

图5.2 铝合金整体三通管

铝合金超薄三通管成形难点有三,一是径厚比为40,管件超薄,轴向送料困难,易起皱;二是支管与主管非垂直,变形剧烈且不对称,支管顶部易破裂;三是铝合金与模具的摩

擦系数大,送料过程材料流动阻力大,管端易增厚。通过设计预制坯形状减小支管变形不均匀性,优化加载曲线控制轴向送料、支管冲头后退量和内压的匹配,以及模具表面处理和润滑,成功地研制了铝合金超薄整体三通管,解决了传统工艺存在焊缝及可靠性差的难题。

(3)组合式空心凸轮轴(图5.3)

图5.3 组合式空心凸轮轴零件

组合式空心凸轮轴成形难点有三,一是凸轮相位角控制;二是胀接强度均匀性控制;三是300MPa以上的超高压压力控制。

对所研制的凸轮轴进行静态扭转强度测试和全速全功率台架实验,表明胀接结构抗扭强度最小值达凸轮轴工作扭矩峰值的6倍以上,扭转疲劳强度也符合使用要求。与传统的整体凸轮轴相比,液力胀接的微型发动机凸轮轴质量减轻22%,液力胀接的柴油发动机凸轮轴质量减轻14.6%。

第六章管材内高压成形的展望

内高压成形技术近10年来在国外汽车工业得到广泛应用,汽车减轻质量和降低成本的需求又促进了内高压成形技术的不断改进。我国内高压成形技术研究虽然起步较晚,但发展很快。随着需求的增加,促使其技术不断改进。我国虽然开展研究相对较晚,但在工艺、装备等关键技术方面取得了长足的进步,但仍然需要对工艺基础等方面进行深入研究。根据目前技术水平和应用现状,内高压成形技术发展趋势可以概括为以下几个方面:( 1) 拼焊管内高压成形。将不同厚度或不同材料管材焊接成整体,然后再用内高压成形加工出结构件,可以进一步减轻结构质量。( 2) 锥形管件内高压成形。利用锥形管坯成形出截面差较大零件,简化了补料工艺。( 3) 双层管内高压成形。用于制造轿车双层排气管件,提高轿车尾气三元催化和净化效果。轿车碰撞时吸收能量结构,可以用内高压成形制造双层构件。( 4)脉动内压力成形。利用脉动内压力可以减少管端送进时的摩擦阻力,提高成形极限。( 5) 热态介质内高压成形。提高铝合金和镁合金等轻合金成形极限,加工出形状复杂零件。

当前在成形机理、工艺、模具和设备关键技术研究等方面取得很大进展,研制了一批典型零件,并取得了初步应用。为了促进内高压成形技术在我国工业生产的广泛应用,还需要解决大吨位大台面内高压成形机及其高压系统和控制系统、预成形和内高压成形模具(包括液压冲孔)等关键技术。同时,希望还要在以下工艺基础方面,进行深入的研究。

1)管材力学性能直接测试方法。包括屈服极限和延伸率等常规力学性能、n值和r值等成形性能指数。目前在有限元模拟中使用的,n值和r值多为相应板材的数值,而由板材加工为管材性能要发生改变,使用板材n值和r值会带来误差。如何使用管材直接测试n值和r值等,迫切需要解决。

2)内高压成形极限图(FLD)。目前在实验和数值模拟中使用FLD均为相应板材的FLD,如何

确定适用于管材的内高压成形极限图,用于指导实际生产,是内高压成形领域的一个重要课题。

3)内高压成形摩擦测定。需要开发出合理装置测定内高压成形送料区、成形区和过渡区的摩擦系数,为制定工艺和数值模拟提供依据。

4)内高压成形件设计准则。通过实验和生产实践的总结,逐步形成内高压成形件设计准则,包括截面形状、最小圆角、最大膨胀量、最大减薄量、管材弯曲形状、预成形以及如何确定初始管材直径和厚度等。

材料成型技术基础复习重点

1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。 金属塑性成形指利用外力使金属材料产生塑性变形,使其改变形状、尺寸和改善性能,从而获得各种产品的加工方法。 主要应用: (1)生产各种金属型材、板材、线材等; (2)生产承受较大负荷的零件,如曲轴、连杆、各种工具等。 金属塑性成形特点

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

认识快速成型技术

教学难点与重点: 难点: 《产品逆向工程技术》教案 共 页 第 页 授课教师: 教研室: 备课日期: 年 月 日 课 题: 教 学 准 备: 教学目的与要求: 授 课 方 式: 项目四 快速成型技术认识 任务一 认识快速成型技术 PPT 掌握快速成型技术的原理、工作流程和特点。 讲授(90') 重点:快速成型技术的原理、工作流程和特点。 教 学 过 程: 上节课回顾→讲授课题→课堂小结

“ “ 张家界航院教案 第 页 上节课回顾: 讲授课题: 项目四 快速成型技术认识 通过前面的几节课我们学习了什么是逆向工程。通过逆向工程技术, 企业可以迅速的设计出符合当前流行趋势,以及符合人们消费需求的产品, 快速抢占市场。市场这块蛋糕就那么大,谁先抢到谁先吃,后来的就只能 看别人吃。现在的企业发展战略已经从以前的“如何做的更多、更好、更 便宜”转变成了“如何做的更快”。所以快速的响应市场需求,已经是制 造业发展的必经之路。 但是一件产品是不是设计出来就完事了?从设计到产品,中间还有一 个制造的过程,逆向工程解决了快速设计的问题,但是如果在制造加工阶 段耗费太长的时间,最后依然是无法快速的响应市场。尤其是在加工复杂 薄壁零件的时候,往往加工一件零件的周期要好几周,甚至几个月才能完 成,比如飞机发动机上的涡轮,加工周期要 90 天。 怎么解决这个问题呢?这就要用到今天我们这节课要讲的内容:快速 成型技术。快速成型技术就是在这种背景需求下发展起来的一种新型数字 化制造技术,利用这项技术可以快速的将设计思想转化为具有结构和功能 的原型或者是直接制造出零部件,以便可以对设计的产品进行快速评价、 修改。按照以往的技术,在生产一件样品的时候,要么开模、要么通过复 杂的机加工艺来生产,这样不管是从成本的角度还是时间的角度来讲,都 会带来成本的提高。而快速成型技术可以极大地缩短新产品的开发周期, 降低开发成本,最大程度避免产品研发失败的风险,提高了企业的竞争力。 任务一 认识快速成型技术 快速成型技术(Rapid Prototype ,简称 RP)有许多不同的叫法,比如 “3D 打印”( 3D printing)、分层制造”( layered manufacturing ,LM) 、增材制 造”( additive manufacturing ,AM) 等。同学们最熟悉的应该就是“3D 打 印”,其实刚开始的时候,3D 打印本是特指一种采用喷墨打印头的快速成 型技术,演变至今,3D 打印成了所有快速成型技术的通俗叫法,但是现在 在学术界被统一称为“增材制造”。 增材制造是一种能够不使用任何工具(模具、各种机床),直接从三 维模型快速地制作产品物理原型也就是样件的技术,可以使设计者在产品 的设计过程中很少甚至不需要考虑制造工艺技术的问题。使用传统机加的 方法来加工零件时,在设计阶段设计师就需要考虑到零件的工艺性,是不 是能够加工出来。对于快速成型技术来讲,任意复杂的结构都可以利用它 的三维设计数据快速而精确的制造出来,解决了许多过去难以制造的复杂 结构零件的成型问题,实现了“自由设计,快速制造”。 一、物体成型的方式 之所以叫“增材制造”很好理解就是通过“堆积”材料的方式进行制 造。与之相应的还有“减材制造”和“等材制造”。在现代成型学的观点 中,物体的成型方式可分以下几类:

工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

内高压成形的应用进展[1]

文章编号:1004-132Ⅹ(2002)09-0783-04 内高压成形的应用进展 苑世剑 教授 苑世剑 王仲仁 摘要:介绍了内高压成形原理、优点、应用范围、适用材料、国内外研究 现状和工业尤其在汽车工业的应用情况,并综述了内高压成形领域实验研 究、数值模拟、专用设备、模具结构和润滑等方面的情况。 关键词:液力成形;内高压成形;轻体构件;汽车零件中图分类号:T G53 文献标识码:A 收稿日期:1999—12—29 基金项目:国家自然科学基金资助项目(59975021) 液力成形(hydro fo rming )是利用液体压力使工件成形的一种塑性加工工艺。作为生产支叉管等管路配件的一种方法,可追溯到30年前,但成形压力一般小于30M Pa [1] 。近年来,由于超高压液压技术的成熟,德国和美国已将该成形技术用于机器零件的制造,其成形压力一般大于400M Pa,有时超过1000M Pa 。目前,已用于汽车等机器制造领域的实际生产。 在飞机、航天器和汽车等领域,减轻质量是人们长期追求的目标,也是现代先进制造技术发展的趋势之一。进入20世纪90年代,由于燃料和原材料成本原因及环保法规对废气排放的严格限制,使汽车结构的轻量化显得日益重要。除了采用轻体材料外,减重的另一个主要途经就是在结构上采用“以空代实”,即对于承受以弯曲或扭转载荷为主的构件,采用空心结构既可以减轻质量节约材料又可以充分利用材料的强度和刚度。内高压成形正是在这样的背景下,开发出来的一种空心轻体构件的先进制造技术。 1 成形原理和工艺分类 内高压成形原理是通过内部加压和轴向加力补料把管坯压入到模具型腔使其成形。基本工艺过程是,首先将管坯放入下模(图1a 下部),闭合上模,然后在管坯内充满液体,并开始加压,在加压的同时管端的冲头按与内压一定的匹配关系向内送料使管坯成形(图1a 上部)。对于轴线为曲线的构件,需要把管坯预弯成接近零件形状,然后加压成形。 根据模具的分模方式和工件的形状,内高压成形可分为水平分模(见图1a )、垂直分模(见图 1b )和带凸台或支叉零件成形(见图1c )3种基本类型[1,2] 。 (a )水平分膜 (b )垂直分模 (c)带凸台或支叉零件成形 图1 成形原理和工艺分类 2 优点 与传统的冲压焊接工艺相比,内高压成形主要优点如下[2~4]: (1)减轻质量,节约材料 对于图2所示空心轴类零件可以减轻40%~50%,有些件可达75%。汽车上部分采用冲压工艺与内高压成形的产品结构质量对比见表1 。 (a )机械加工(b)内高压成形 图2 阶梯轴 表1 汽车上部分冲压件与内高压成形件的重量对比名称冲压件(kg )内高压成形件 (kg )减重(%)散热器支架16.5011.5024副车架12.007.9034仪表盘支梁 2.72 1.36 50 (2)减少零件和模具数量,降低模具费用 内高压件通常仅需要一套模具,而冲压件大多需要 ? 783?内高压成形的应用进展——苑世剑 王仲仁

材料与成形技术历年试卷1

上海大学 材料与成形技术基础(二)试卷A 2002.1 一、改错题(将下表不合适结构改为合适结构,并写出改进理 1.铸件 2.铸件 4.自由锻件

6.拉深件 7.手弧焊 8.点焊 9.手弧焊 10.焊接 合适的毛坯成形或连接方法。(每空1分,共16分)

8. 大口径管环缝对接

三、单项选择题(每题1分,共10分) 1. 今有青铜仿古铜像须按普通人尺寸的十分之一大小进行仿形 铸造,应采用() (1) 金属型铸造 (2) 压力铸造 (3) 熔模铸造 (4) 普通砂型铸造 2. 对于高熔点合金精密铸件的成批生产,常采用() (1) 压力铸造 (2) 低压铸造 (3) 熔模铸造 (4) 金属型铸造 3. 助动车发动机缸体,材料ZL202,100万件,其毛坯成形工艺为 () (1) 低压铸造 (2) 压力铸造 (3) 离心铸造 (4) 熔模铸造 4. 下列模锻设备中最适宜进行拔长工步的是() (1) 模锻锤 (2) 机械锻压机 (3) 摩擦压力机 (4) 平锻机

5. 模锻时,当要求坯料某部分横截面减少,以增加该部分的长度时 一般选用() (1) 滚压模膛 (2) 拔长模膛 (3) 弯曲模膛 (4) 切断模膛 6. 当凸模和凹模之间间隙大于板料厚度,凸模又有圆角时,此冲压模 为() (1) 冲孔模 (2) 落料模 (3) 切断模 (4) 拉深模 7. 结构钢焊接时焊条选择的主要原则是焊缝与母材在下列哪一方面 应相等() (1) 化学成份 (2) 结晶组织 (3) 强度等级 (4) 抗腐蚀性能 8. 轿车油箱生产时既经济合理又生产效率高的焊接方法是() (1) 二氧化碳焊 (2) 点焊 (3) 缝焊 (4) 埋弧焊 9. 大批生产ABS小齿轮的成形方法应是() (1) 粉末冶金 (2) 压力铸造 (3) 注塑 (4) 机械切削 10. 最便宜的快速成形方法是() (1) FDM (2) SLA (3) LOM (4) SLS 四、多项选择题(每题2分,共20分) 1.可采用金属铸型的铸造方法有:()()()()() (1) 压力铸造 (2) 离心铸造 (3) 低压铸造 (4) 机器造型 (5) 熔模铸造 2. 为提高铸铁件的强度,尽量选用:()()()()() (1) 增大壁厚 (2) 改进结构 (3) 增设加强筋 (4) 增设补缩冒口 (5) 改善结晶条件

几种常见的快速成型技术

几种常见的快速成型技术 一、FDM 丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、PC、PPSF等。 FDM快速原型技术的缺点是: 1、精度相对国外SLA工艺较低,最高精度0.127mm。 2、速度较慢。 二、SLA 光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、需要专门实验室环境,维护费用高昂。 2、系统工作相对稳定。 3、尺寸精度较高,可确保工件的尺寸精度在0.1mm(但,国内SLA精度在0.1——0.3mm之间,并且存在一定的波动性)。 4、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。 5、系统分辨率较高。

内高压成形技术潜力巨大

内高压成形是一项于20世纪70年代首次用于批量生产的技术。内高压成形起初主要应用于非汽车领域,如为卫生洁具部门制造铜的管接头。在20世纪90年代初,汽车工业开始对这种方法感兴趣。首批零件大多数仅限于排气系统。用Y形管接头取代较重的铸造件。汽车底盘零件,接着是形状复杂的发动机架无需再制成两半结构,而是可以用内高压成形整体制造。 这种方法的的巨大潜力,如减轻重量和更有利的生产成本(因加工步骤较少),很快引起更广泛领域的兴趣,如应用到汽车底盘和结构上。此外,内高压成形在设计组件的制造方面开辟了新的前景,如车顶栏杆或家俱行业的门把手。舒勒与其客户密切合作,研发所有这些零件,以及所需的制造系统。 汽车工业用的完美成形 目前,汽车工业是内高压成形批量生产的主要用户。内高压成形为这一领域开辟全新的生产途径,并提供各种各样新的应用可能性。我们正与我们的客户紧密合作并研发排气、车架/底盘、结构件,发动机和设计组件等等。 内高压成形可用于各种各样尺寸的零件 管接头的制造是内高压成形的许多应用之一。舒勒早在20世纪80年代就已经为钢质管接头和铜质管接头的制造设计出和提供了第一台压力机。

现今,舒勒的内高压成形生产线即能用在小到几毫米的管接头的生产上,如用于暖卫及安装技术,也能用于石化工业的,直径大到600mm的管接头。 各种规格的铜质管接头(零件规格: 材质: 钢,精炼钢,铜; 直径: 12 –324 (600) mm; 壁厚: 1.0 - 20 (30)mm) 内高压成形多年来已经广泛应用于排气零件的制造,其中绝大部分涉及极其复杂的形状。与用传统方法生产的同样零件相比,用内高压成形零件的显著特点是:使用寿命更长、重量较轻、材料的使用成本-效益比更高,开发时间更短。在强调高效能的今天,这些特点尤为重要。 由数个单个内高压成形件组成的排气系统 (零件规格: 材质: 1.4301 / 1.4828 / 1.4893 / 1.4509 / 1.4512; 直径: 25 –60 mm; 壁厚: 1.0 - 2.5 mm; 初始管长: 250 –1250 mm)

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

材料成形技术基础试题

材料成形技术基础复习题 一、填空题 1、熔模铸造的主要生产过程有压制蜡模,结壳,脱模,造型,焙烧和浇注。 2、焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 3、接的主要缺陷有气孔,固体夹杂,裂纹,未熔合,未焊透,形状缺陷等。 4、影响陶瓷坯料成形性因素主要有胚料的可塑性,泥浆流动性,泥浆的稳定性。 5、焊条药皮由稳弧剂、造渣剂、造气剂、脱氧剂、合金剂和粘结剂组成。 6、常用的特种铸造方法有:熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造和陶瓷型铸造等。 7、根据石墨的形态特征不同,可以将铸铁分为普通灰口铸铁、可锻铸铁和球墨铸铁等。 二、单项选择题 1.在机械性能指标中,δ是指( B )。 A.强度 B.塑性 C.韧性 D.硬度 2.与埋弧自动焊相比,手工电弧焊的优点在于( C )。 A.焊接后的变形小 B.适用的焊件厚 C.可焊的空间位置多 D.焊接热影响区小 3.A3钢常用来制造( D )。 A.弹簧 B.刀具 C.量块 D.容器 4.金属材料在结晶过程中发生共晶转变就是指( B )。 A.从一种液相结晶出一种固相 B.从一种液相结晶出两种不同的固相 C.从一种固相转变成另一种固相 D.从一种固相转变成另两种不同的固相 5.用T10钢制刀具其最终热处理为( C )。 A.球化退火 B.调质 C.淬火加低温回火 D.表面淬火 6.引起锻件晶粒粗大的主要原因之一是( A )。 A.过热 B.过烧 C.变形抗力大 D.塑性差 7.从灰口铁的牌号可看出它的( D )指标。 A.硬度 B.韧性 C.塑性 D.强度 8.“16Mn”是指( D )。 A.渗碳钢 B.调质钢 C.工具钢 D.结构钢 9.在铸造生产中,流动性较好的铸造合金( A )。 A.结晶温度范围较小 B.结晶温度范围较大 C.结晶温度较高 D.结晶温度较低 10.适合制造齿轮刀具的材料是( B )。 A.碳素工具钢 B.高速钢 C.硬质合金 D.陶瓷材料 11.在车床上加工细花轴时的主偏角应选( C )。 A.30° B.60° C.90° D.任意角度 12.用麻花钻加工孔时,钻头轴线应与被加工面( B )。 A.平行 B.垂直 C.相交45° D.成任意角度 三、名词解释 1、液态成型液态成型是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成型方法。金属的液体成型也称为铸造。 2、焊缝熔合比熔焊时,被熔化的母材金属部分在焊道金属中所占的比例,叫焊缝的熔合比。 3、自由锻造利用冲击力或压力使金属在上下砧面间各个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,简称自由锻 4、焊接裂纹在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏,形成新的界面所产生的缝隙称为焊接裂纹。 5、金属型铸造用重力浇注将熔融金属浇入金属铸型(即金属型)中获得铸件的方法。 四、判断题: 1、铸造的实质使液态金属在铸型中凝固成形。(√) 2、纤维组织使金属在性能上具有了方向性。(√) 3、离心铸造铸件内孔直径尺寸不准确,内表面光滑,加工余量大。(×)

四种常见快速成型技术

四种常见快速成型技术 FDM 丝状材料选择性熔覆(Fus ed Dep osi tion Mod eling)快速原型工艺是一种不依*激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78m m的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(M AB S)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FD M快速原型技术的优点是: 1、操作环境干净、安全可在办公室环境下进行。 2、工艺干净、简单、易于材作且不产生垃圾。 3、尺寸精度较高,表面质量较好,易于装配。可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、材料利用率高。 6、可选用多种材料,如可染色的A BS和医用A BS、PC、PP SF等。 FDM快速原型技术的缺点是: 1、做小件或精细件时精度不如SLA,最高精度0.127mm。 2、速度较慢。 SL A 敏树脂选择性固化是采用立体雕刻(Stereo litho gra phy)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SL A快速原型技术的优点是: 1、成形速度较快。 2、系统工作相对稳定。 3、尺寸精度较高,可确保工件的尺寸精度在0.1m m(但,国内SL A精度在——0.3mm之间,

材料成型理论-内高压成形

特种塑性成形—内高压成 形 (塑性成形工艺大作业)

目录 1内高压成形工艺简介及应用实例 (1) 1.1内高压成形技术 (1) 1.2应用实例 (2) 1.2.1汽车工业 (2) 1.2.2航空航天 (3) 2应力、应变特点及变形规律分析 (3) 2.1 内高压成形工艺流程 (3) 2.2应力、应变特点 (4) 2.2.1充形阶段 (5) 2.2.2成形阶段 (5) 2.2.3整形阶段 (6) 2.3 成形区间及加载路线 (6) 3成形设备 (8) 4常见缺陷形式及预防措施 (9) 4.1 屈曲 (9) 4.2 起皱 (9) 4.3 开裂 (10) 4.3.1弯曲管壁厚分布规律 (10) 4.3.2 过渡区开裂的应力分析 (11) 5内高压成形的特点 (12) 6. 研究现状、发展趋势及主要研究机构 (13) 6.1 研究现状 (13) 6.2 发展趋势 (14) 6.3国内主要研究机构 (14) 参考文献 (15)

1内高压成形工艺简介及应用实例 在节能减排的大形势下,汽车和飞机等运输工具结构轻量化设计的概念应运而生。实现结构轻量化有两条主要途径,即材料和结构途径。材料途径:采用铝合金、镁合金、钛合金和复合材料等轻质材料;结构途径:采用空心变截面、变厚度薄壁壳体、整体等结构。根据统计,对于一定的减重目标,在航天航空领域,采用轻质材料减重的贡献大约为2/3,结构减重的贡献大约为1/3;而在汽车领域,则主要采用结构减重的途径。然而,内高压成形是适应结构轻量化发展起来的一种先进制造技术。 1.1内高压成形技术 内高压成形(Internal High Pressure Forming)是以管材作坯料,通过管材内部施加高压液体和轴向补料把管材压入到模具型腔使其成形为所需形状的工件。由于使用乳化液(在水中添加少量的防腐剂等组成)作为水传力介质,又称为管材液压成形(Tube Hydroforming)或水压成形。 按成形零件的种类,内高压成形分为三类:(1)变径管内高压成形;(2)弯曲轴线构件内高压成形;(3)多通管内高压成形。 (1)变径管内高压成形:变径管是指管件中间一处或几处的管径或周长大于二端管径。其中,如图1.1所示的非对称大截面差管件成形困难,通过轴向进给和内压匹配,以及贴模顺序控制,实现截面差120%构件内高压成形,突破100%膨胀率的极限值。 图1.1 大膨胀率双锥管件

《材料成形技术基础》习题集答案

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

工程材料及其成形技术基础课作业参考答案

工程材料及其成形技术基础课作业参考答案 1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用? 答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。 2-9 从铁-碳相图的分析中回答: ⑴随碳质量百分数的增加,硬度、塑性是增加还是减小? ⑵过共析钢中网状渗碳体对强度、塑性的影响怎样? ⑶为何钢有塑性而白口铁几乎无塑性? ⑷哪个区域熔点最低?哪个区域塑性最好? ⑸哪个成分结晶间隔最小?哪个成分结晶间隔最大? 答:⑴随碳质量百分数的增加,硬度、增加塑性减小。 ⑵过共析钢中网状渗碳体对强度、塑性均降低。 ⑶塑性主要与铁-碳合金中的铁素体相含量多少有关,铁素体相含量越多塑性越好。钢含碳量低(ωc<2.11%)铁素体相含量多为基体而有塑性,白口铁含碳量高(ωc>2.11%),渗碳体相含量高为基体而几乎没有塑性。 ⑷共晶点熔点最低,奥氏体区塑性最好。 ⑸ C点共晶成分(ωc=4.3%)结晶间隔最小(为零),E点(ωc=2.11%)成分结晶间隔最大。 3-1 什么是珠光体、贝氏体、马氏体?它们的组织及性能有何特点? 答:珠光体(P)—铁碳合金平衡状态下,在PSK线(727℃)发生共析转变的转变产物,即铁素体片和渗碳体片交替排列的机械混合物组织。强度比铁素体和渗碳体都高,塑性、韧性和硬度介于铁素体和渗碳体之间。热处理后可得到在铁素体基体上分布着粒状渗碳体的粒状珠光体,综合性能更好。 贝氏体(B)—从550℃到Ms范围内中温转变、半扩散型转变的非平衡组织,即含过饱和碳的铁素体和渗碳体的非片层状混合物组织。按组织形态不同分羽毛状的上贝氏体(B上)和针片状的下贝氏体(B下)。上贝氏体脆性大无实用价值,下贝氏体的铁素体针细小,过饱和度大,碳化物弥散度大,综合性能好。 马氏体(M)—Ms-Mf之间低温转变、非扩散型转变的非平衡组织,即过饱和碳的α固溶体。体心正方晶格,分板条马氏体(低碳马氏体ωc<0.20%,位错马氏体),强韧性较好;针状马氏体(高碳马氏体ωc>1.0%,孪晶马氏体),大多硬而脆;ωc在0.2%~1.0%之间为两者的混合组织。马氏体的含碳量越多,硬度越高,马氏体有弱磁性。A→M,体积要膨胀,产生较大的内应力。 3-12 钢淬火后为什么一定要回火?说明回火的种类及主要应用范围。 答:钢淬火后一般不能直接使用,因为:①零件处于高应力状态(>300~500MPa),放置或使用时很容易变形和开裂;②淬火态的组织(M+A)是极端非平衡的亚稳定状态,有向稳

相关主题
文本预览
相关文档 最新文档