当前位置:文档之家› 各种原理耳机的优缺点

各种原理耳机的优缺点

各种原理耳机的优缺点

各种原理耳机的优缺点

newmaker

总的来说耳机分为5类:压电耳机、动铁耳机、动圈耳机、静电

耳机、气动耳机。 压电耳机:利用用压电陶瓷的压

电效应发声。效率高、频率高。

缺点:失真大、驱动电压高、低频响应差,抗冲击里差。此类耳

机多用于电报收发使用,现基本淘汰。少数耳机采用压电陶瓷作为高音发声单元。

动铁:利用了电磁铁产生交变磁场,振动部分是一个铁片悬浮在电磁铁前方,信号经过电磁铁的时候会使电磁铁磁场变化,从而使铁片振动发声。优点是使用寿命长、效率高。缺点是失真大,频响窄。常用于早期的电话机听筒。

动圈耳机:这是现在最普遍的耳机形式。是将线圈固定在振膜上,置于由永磁铁产生的固定磁场中,信号经过线圈切割磁力线,从而带动振膜一起振动发声。优点是制作相对容易,线性好、失真小、频响宽。缺点是效率低(算不上什么缺点)。

静电耳机:又称静电平面振膜,是将铝(或其它导电金属)线圈直接电镀或印刷在很薄的塑料膜上,将其置于强静电场中(通常由直流高压发生器和固定金属片(网)组成),信号通过线圈的时候切割电场,带动振膜振动发声。优点是线性好、失真小(电场比磁场均匀),瞬态响应好(振膜质量轻),高频响应好。缺点是低频响应不好、需要专门的驱动电路和静电发生器、价格昂贵。效率也不高。

气动耳机:采用气泵和气阀控制气流,直接控制气压和流量,使得空气发生振动。有时候气阀改用大功率扬声器来代替。飞机上常用这样的耳机,此耳机实际上只是个导气管。优点是无电驱动,无限制并联、效率高。缺点是失真大、频响窄,有噪音。

动圈式耳机:是现在生产应用最广泛的耳机,根据不同的使用目的,分成了很多类型,不同的厂家的耳机技术特点不同,各有特色。(end) 欢迎访问e 展厅 展厅 8

家庭影院/音响/耳机展厅

耳机, 音箱, 音响, 迷你音响, 扬声器, ...

种流量计、温度计、压力表、液位计优缺点

种流量计、温度计、压力表、液位计优缺点

————————————————————————————————作者: ————————————————————————————————日期:

24种化工仪表动画,流量计、温度计、压力表、液位计,优缺点 流量计(12种) 靶式流量计、孔板流量计、立式腰轮流量计、流量计的校正、喷嘴流量计、容积式流量计、椭圆齿轮流量计、文丘里流量计、双转子气体流量计、涡轮流量计、转子流量计、节流流量计、电磁流量计 温度计(3种) 固体膨胀式温度计、热电偶温度计、压力式温度计 压力表(5种) 弹簧管式压力仪表、电接点式压力仪表、电容式压力传感器、应变式压力传感器、U形管式压力计 液位计(4种) 差压式液位计、超声波测量液位原理、电容式液位计、双液位压差计 一、孔板流量计 孔板流量计是将标准孔板与多参量差压变送器(或差压变送、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及天然气的流量。广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。孔板流量计被广泛适用于煤炭、化工、交通、建筑、轻纺、食品、医药、农业、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具在国民经济中占有重要的地位。在过程自动化仪表与装置中,流量仪表有两大功用:作为过程自动化控制系统的检测仪表和测量物料数量的总量表。 特点: 优点: 1、标准节流件是全用的,并得到了国际标准组织的认可,无需实流校准,即可投用,在流量传感器中也是唯一的; 2、结构易于复制,简单、牢固、性能稳定可靠、价格低廉; 3、应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生产过程的管径、工作状态(温度、压力)皆可以测量; 4、检测件和差压显示仪表可分开不同厂家生产,便与专业化规模生产。 缺点: 1、测量的重复性、精确度在流量传感器中属于中等水平,由于众多因素的影响错综复杂,精确度难于提高; 2、范围度窄,由于流量系数与雷诺数有关,一般范围度仅3∶1~4∶1; 3、有较长的直管段长度要求,一般难于满足。尤其对较大管径,问题更加突出;

ANC、ENC、CVC、DSP四种降噪方式

ANC、ENC、CVC、DSP四种降噪方式 降噪功能对耳机的作用很重要,一是减少噪音,避免过度放大音量,从而减少对耳朵的损害。二是过滤噪音从而提高音质和通话质量。 降噪可分为被动式降噪和主动式降噪。 被动式降噪也就是物理降噪,被动式降噪是指利用物理特性将外部噪声与耳朵隔绝开,主要通过耳机的头梁设计得紧一些、耳罩腔体进行声学优化、耳罩内部放上吸声材料……等等来实现耳机的物理隔音。被动降噪对高频率声音(如人声)的隔绝非常有效,一般可使噪声降低大约为15-20dB。 主动式降噪就是商家在宣传耳机降噪功能时会主打的ANC、ENC、CVC、DSP等降噪技术,这四种降噪分别是什么原理,又有什么作用呢? ANC降噪

ANC降噪(Active Noise Control,主动降噪)的工作原理是麦克风收集外部的环境噪音,然后系统变换为一个反相的声波加到喇叭端,最终人耳听到的声音是:环境噪音+反相的环境噪音,两种噪音叠加从而实现感官上的噪音降低,受益人是自己。 主动降噪根据拾音麦克风位置的不同,分为前馈式主动降噪与反馈式主动降噪。 (ANC降噪原理示意图) ENC降噪 ENC(Environmental Noise Cancellation,环境降噪技术),能有效抑制90%的反向环境噪声,由此降低环境噪声最高可达35dB以上,让游戏玩家可以更加自由的语音沟通。通过双麦克风阵列,精准计算通话者说话的方位,在保护主方向目标语音的同时,去除环境中的各种干扰噪声。

ENC降噪原理 DSP降噪 DSP是英文(digital signal processing)的简写。主要是针对高、低频噪声。工作原理是麦克风收集外部环境噪音,然后系统复制一个与外界环境噪音相等的反向声波,将噪音抵消,从而达到更好的降噪效果。DSP降噪的原理和ANC降噪相似。但DSP降噪正反向噪音直接在系统内部相互中和抵消。CVC降噪 CVC(Clear Voice Capture)是通话软件降噪技术。主要针对通话过程中产生的回声。通过全双工麦克风消噪软件,提供通话的回声和环境噪音消除功能,是目前蓝牙通话耳机中最先进的降噪技术。

如何选购蓝牙耳机细节耳机决定成败

不少用户都喜欢随手买一个便宜无品牌的蓝牙耳机,不过这种蓝牙耳机往往续航能力不强,使用的电池质量不是很稳定,长时间使用的话容易损坏,网友们还有应该多花一些资金去买有品牌保证的产品,在细节上会得到一定回报。 无线耳机已经由曾经的概念产品,发展成现在市场上的主力,而蓝牙耳机是无线耳机中最为热销的种类,其中手机用户的大大增加自然蓝牙耳机中最重要的原因,不过无线音乐和享受无线家居环境的用户也越来越多,所以选购蓝牙耳机的问题也越来越多,下面我们就几个比较常见的问题做出回答。 1. 关键一:买蓝牙耳机做什么 网友们买蓝牙耳机的时候首先要绝对自己用来做什么,最大用途是打电话,还是听音乐,还是玩游戏、看电影,蓝牙耳机不像一般耳机,虽然音乐耳机不擅长玩游戏,不过也能有点作用,但是单声道的蓝牙电话耳机,可绝对没法用来听音乐。本文摘自:https://www.doczj.com/doc/6516681299.html, 2. 这点在网上购买时最为重要,因为选购时不能直接试用,所以买时应该注意蓝牙耳 机是否双声道,当然有不少用户以为这种问题太弱智!谁会买个单耳的回来听音乐呢?不少低价通讯用蓝牙耳机也外接了双耳输出,不过音质根本无法达到享受音乐效果,请广大网友注意。 因此网友在购买蓝牙耳机时一定要明确使用目的,看清对耳机的外形和对声音的表现,无法试听的情况下也要关注下耳机的品牌,大多数手机厂商的低端产品都是以通讯为卖点。本文摘自:https://www.doczj.com/doc/6516681299.html,

3. 关键二:蓝牙耳机的兼容性 对于兼容性,我们首先要网友放心,目前大多数通讯用单声道蓝牙耳机兼容性都比较好,能和绝大多数手机搭配,很少出现不兼容现象,所以网友不必担心在购买时会出现无法连接使用的现象,诺基亚的手机不是专用诺基亚蓝牙耳机,而诺基亚品牌的蓝牙耳机也大多代工产品,不会因为搭配诺基亚手机而提升音质。 单声道蓝牙耳机的兼容性很好,但是传统音乐型蓝牙耳机却有不少问题,部分旧型号双声道蓝牙耳机和手机的兼容存在一定得问题,某些功能按键可能会失效,或者在使用时灵敏度小降,部分快捷键无法使用。本文摘自:https://www.doczj.com/doc/6516681299.html, 兼容问题从高端到低端都有可能出现,所以如果您计划购买一款音乐型蓝牙耳机,请先进行试用,保证功能的完整,因为兼容性问题难免完全不存在。 4. 关键三:注意主动降噪功能

各种流量计的优缺点及适合的介质

各种流量计的优缺点及适合的介质 一、电磁流量计 1、优点 (1)电磁流量计可用来测量工业导电液体或浆液。 (2)无压力损失。 (3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。 (4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。 2、缺点 (1)电磁流量计的应用有一定的局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。另外在高温条件 下其衬里需考虑。 (2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度, 不同流体介质具有不同的密度,而且随温度变化。如果电磁流量计转换器不 考虑流体密度,仅给出常温状态下的体积流量是不合适的。 (3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。在安装变送器时, 从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。 安装地点不能有振动,不能有强磁场。在安装时必须使变送器和管道有良好 的接触及良好的接地。变送器的电位与被测流体等电位。在使用时,必须排 尽测量管中存留的气体,否则会造成较大的测量误差。 (4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一 定厚度,可能导致仪表无法测量。 (5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。如100mm口径仪表内径变化1mm会带来约2%附加误差。 (6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。为了准确测量流量, 必须消除各种干扰信号,有效放大流量信号。应该提高流量转换器的性能, 最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择 励磁方式和频率,可以排除同相干扰和正交干扰。但改进的仪表结构复杂, 成本较高。 (7)价格较高。 二、超声波流量计 1、优点 (1)超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。它不会改变流体的流动状态,不会产生压力损失,且 便于安装。 (2)可以测量强腐蚀性介质和非导电介质的流量。

蓝牙技术原理

蓝牙技术原理 1.蓝牙技术原理--简介 所谓蓝牙技术,实际上是一种短距离无线通信技术,利用“蓝牙”技术,能够有效地简化掌上电脑、笔记本电脑和移动电话手机等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与Internet之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽道路。说得通俗一点,就是蓝牙技术使得现代一些轻易携带的移动通信设备和电脑设备,不必借助电缆就能联网,并且能够实现无线上因特网。 2.蓝牙技术原理--主从关系 蓝牙技术规定每一对设备之间进行蓝牙通讯时,必须一个为主角色,另一为从角色,才能进行通信,通信时,必须由主端进行查找,发起配对,建链成功后,双方即可收发数据。理论上,一个蓝牙主端设备,可同时与7个蓝牙从端设备进行通讯。一个具备蓝牙通讯功能的设备,可以在两个角色间切换,平时工作在从模式,等待其它主设备来连接,需要时,转换为主模式,向其它设备发起呼叫。一个蓝牙设备以主模式发起呼叫时,需要知道对方的蓝牙地址,配对密码等信息,配对完成后,可直接发起呼叫。 3.蓝牙技术原理--呼叫过程 蓝牙主端设备发起呼叫,首先是查找,找出周围处于可被查找的蓝牙设备。主端设备找到从端蓝牙设备后,与从端蓝牙设备进行配对,此时需要输入从端设备的PIN码,也有设备不需要输入PIN码。配对完成后,从端蓝牙设备会记录主端设备的信任信息,此时主端即可向从端设备发起呼叫,已配对的设备在下次呼叫时,不再需要重新配对。已配对的设备,做为从端的蓝牙耳机也可以发起建链请求,但做数据通讯的蓝牙模块一般不发起呼叫。链路建立成功后,主从两端之间即可进行双向的数据或语音通讯。在通信状态下,主端和从端设备都可以发起断链,断开蓝牙链路。 4.蓝牙技术原理--数据传输 蓝牙数据传输应用中,一对一串口数据通讯是最常见的应用之一,蓝牙设备在出厂前即提前设好两个蓝牙设备之间的配对信息,主端预存有从端设备的PIN码、地址等,两端设备加电即自动建链,透明串口传输,无需外围电路干预。一对一应用中从端设备可以设为两种类型,一是静默状态,即只能与指定的主端通信,不被别的蓝牙设备查找;二是开发状态,既可被指定主端查找,也可以被别的蓝牙设备查找建链.

常见流量计的种类及特点

常见流量计的种类及特点 测量流体流量的仪表统称为流量计或流量表.流量计是工业测量中重要的仪表之一.随着工业生产的发展,对流量测量的准确度和范围的要求越来越高,流量测量技术日新月异.为了适应各种用途,各种类型的流量计相继问世。目前已投入使用的流量计已超过100种。从不同的角度出发,流量计有不同的分类方法。常用的分类方法有两种,一是按流量计采用的测量原理进行归纳分类:二是按流量计的结构原理进行分类。 一、按测量原理分类 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表. (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 二、按流量计结构原理分类 按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型: 1.容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等.2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量都采用这种表计。 4.变面积式流量计(等压降式流量计) 放在上大下小的锥形流道中的浮子受到自下而上流动的流体的作用力而移动。当此作用力与浮子的“显示重量”(浮子本身的重量减去它所受流体的浮力)相平衡时,俘子即静止。浮子静止的高度可作为流量大小的量度。由于流量计的通流截面积随浮子高度不同而异,而浮子稳定不动时上下部分的压力差相等,因此该型流量计称变面积式流量计或等压降式流量计。该式流量计的典型仪表是转子(浮子)流量计。 5.动量式流量计 利用测量流体的动量来反映流量大小的流量计称动量式流量计.由于流动流体的动量P与流体的密度

蓝牙基础:蓝牙的工作原理

蓝牙基础:蓝牙的工作原理 双击自动滚屏发布者:admin 发布时间:2008-1-27 10:01:53 【字体:大中小】 1、什么是蓝牙? 蓝牙(BlueTooth)是一种支持设备短距离通信的无线电技术,功率级别分CLASS1 100米距离和CLASS 2 10米距离两种。能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。蓝牙的标准是IEEE802.15,工作在2.4GHz 频带,带宽可达3Mb/s。 手机、PDA、GPS蓝牙、耳机、笔记本内置蓝牙等一般为CLASS2 10米功率级别,工业用蓝牙应用100米级的多一些,如GC-06,KC-03蓝牙模块。 蓝牙技术规范由SIG组织开发维护,目前具备蓝牙通讯功能的产品已经很多。 2、蓝牙通信的主从关系 蓝牙技术规定每一对设备之间进行蓝牙通讯时,必须一个为主角色,另一为从角色,才能进行通信,通信时,必须由主端进行查找,发起配对,建链成功后,双方即可收发数据。 理论上,一个蓝牙主端设备,可同时与7个蓝牙从端设备进行通讯。 一个具备蓝牙通讯功能的设备,可以在两个角色间切换,平时工作在从模式,等待其它主设备来连接,需要时,转换为主模式,向其它设备发起呼叫。 一个蓝牙设备以主模式发起呼叫时,需要知道对方的蓝牙地址,配对密码等信息,配对完成后,可直接发起呼叫。 3、蓝牙的呼叫过程 蓝牙主端设备发起呼叫,首先是查找,找出周围处于可被查找的蓝牙设备,此时从端设备需要处于可被查找状态,如:蓝牙耳机需要按键操作才能进入可被查找状态,我公司预装GCM-301、101等固件的模块始终处于可被查找状态。 主端设备找到从端蓝牙设备后,与从端蓝牙设备进行配对,此时需要输入从端设备的PIN码,一般蓝牙耳机默认为:1234或0000,立体声蓝牙耳机默认为:8888,也有设备不需要输入PIN码。 配对完成后,从端蓝牙设备会记录主端设备的信任信息,此时主端即可向从端设备发起呼叫,根据应用不同,可能是ACL数据链路呼叫或SCO语音链路呼叫,已配对的设备在下次呼叫时,不再需要重新配对。 已配对的设备,做为从端的蓝牙耳机也可以发起建链请求,但做数据通讯的蓝牙模块一般不发起呼叫。 链路建立成功后,主从两端之间即可进行双向的数据或语音通讯。 在通信状态下,主端和从端设备都可以发起断链,断开蓝牙链路。 4、蓝牙一对一的串口数据传输应用 蓝牙数据传输应用中,一对一串口数据通讯是最常见的应用之一,蓝牙设备在出厂前即提前设好两个蓝牙设备之间的配对信息,主端预存有从端设备的PIN码、地址等,两端设备加电即自动建链,透明串口传输,无需外围电路干预。 一对一应用中从端设备可以设为两种类型,一是静默状态,即只能与指定的主端通信,不被别的蓝牙设备查找;二是开发状态,既可被指定主端查找,也可以被别的蓝牙设备查找建链。

各种流量计工作原理及优缺点讲解

各种流量计工作原理及优缺点讲解 测量流体流量的仪表统称为流量计或流量表.流量计是工业测量中重要的仪表之一.随着工业生产的发展,对流量测量的准确度和范围的要求越来越高,流量测量技术日新月异.为了适应各种用途,各种类型的流量计相继问世。目前已投入使用的流量计已超过100种。 每种产品都有它特定的适用性,也都有它的局限性。按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 按流量计的结构原理进行分类。有容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计。 按测量对象划分就有封闭管道和明渠两大类;按测量目的又可 分为总量测量和流量测量,其仪表分别称作总量表和流量计。总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。因此,以严格意义来分流量计和总量表已无实际意义。

一、按测量原理分类 1.力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 2.电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 3.声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 4.热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 5.光学原理:激光式、光电式等是属于此类原理的仪表。 6.原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表.

蓝牙耳机的工作原理

蓝牙耳机的工作原理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

蓝牙及蓝牙耳机工作原理 1.蓝牙技术的特点 蓝牙协议体系结构 整个蓝牙协议体系结构可分为底层硬件模块、中间协议层和高端应用层三大部分。 链路管理层(LMP)、基带层(BBP)和蓝牙无线电信道构成蓝牙的底层模块。 BBP层负责跳频和蓝牙数据及信息帧的传输。LMP层负责连接的建立和拆除以及链路的安全和控制,它们为上层软件模块提供了不同的访问入口,但是两个模块接口之间的消息和数据传递必须通过蓝牙主机控制器接口的解释才能进行。 也就是说,中间协议层包括逻辑链路控制与适配协议(L2CAP)、服务发现协议(SDP)、串口仿真协议(RFCOMM)和电话控制协议规范(TCS)。L2CAP完成数据拆装、服务质量控制、协议复用和组提取等功能,是其他上层协议实现的基础,因此也是蓝牙协议栈的核心部分。SDP为上层应用程序提供一种机制来发现网络中可用的服务及其特性。 在蓝牙协议栈的最上部是高端应用层,它对应于各种应用模型的剖面,是剖面的一部分。 目前定义了13种剖面。 蓝牙底层模块 蓝牙的底层模块是蓝牙技术的核心,是任何蓝牙设备都必须包括的部分。 蓝牙工作在的ISM频段。采用了蓝牙结构的设备能够提供高达720kbit/s的数据交换速率。 蓝牙支持电路交换和分组交换两种技术,分别定义了两种链路类型,即面向连接的同步链路(SCO)和面向无连接的异步链路(ACL)。 为了在很低的功率状态下也能使蓝牙设备处于连接状态,蓝牙规定了三种节能状态,即停等(Park)状态、保持(Hold)状态和呼吸(Sniff)状态。这几种工作模式按照节能效率以升序排依次是:Sniff模式、Hold模式、Park模式。 蓝牙采用三种纠错方案:1/3前向纠错(FEC)、2/3前向纠错和自动重发(ARQ)。前向纠错的目的是减少重发的可能性,但同时也增加了额外开销。然而在一个合理的无错误率环境中,多余的投标会减少输出,故分组定义本身也保持灵活的方式,因此,在软件中可定义是否采用FEC。 一般而言,在信道的噪声干扰比较大时,蓝牙系统会使用前向纠错方案,以保证通信质量:对于SCO链路,使用1/3前向纠错(FEC);对于ACL链路,使用2/3前向纠错。在无编号的自动请求重发方案中,一个时隙传送的数据必须在下一个时隙得到收到的确认。只有数据在收端通过了报头错误检测和循环冗余校验(CRC)后认为无错时,才向发端发回确认消息,否则返回一个错误消息。 蓝牙系统的移动性和开放性使得安全问题变得及其重要。虽然蓝牙系统所采用的调频技术就已经提供了一定的安全保障,但是蓝牙系统仍然需要链路层和应用层的安全管理。在链路层中,蓝牙系统提供了认证、加密和密匙管理等功能。每个用户都有一个个人标识码(PIN),它会被译成128bit的链路密匙(LinkKey)来进行单双向认证。一旦认证完毕,链路就会以不同长度的密码(EncryphonKey)来加密(此密码已shit为单位增减,最大的长度为128bit)链路层安全机制提供了大量的认证方案和一个灵活的加密方案(即允许协商密码的长度)。当来自不同国家的设备互相通信时,这种机制是及其重要的,因为某些国家会指定最大密码长度。蓝牙系统会选取微微网中各个设备的最小的最大允许密码长度。例如,美

处理主动降噪耳机设计

处理主动降噪耳机设计的两大挑战 耳机主动降噪(Active Noise Cancellation) 的基本概念并不复杂,但如何实现高品质的降噪效果却并不简单,特别是滤波电路的设计及生产过程控制更加关键。本文针对ANC耳机设计者所遇到的困难,针对性地讨论如何采用创新技术进行滤波器及量产时调节,设计及生产高性能的降噪耳机。 两种结构的ANC系统的选择 主动降噪,是指采集环境噪音,并产生与噪音反相的信号用耳机等装置回放,用以抵消噪音的技术。通常,主动降噪技术与被动降噪技术(采用吸音或隔音材料来降低进入耳朵声音的强度)相结合,以产生最佳的降噪效果。 典型的降噪系统由下列部份组成: ● 用以采集噪音的麦克风系统; ● 电子控制部份,用以处理声音信号,并生成降噪信号; ● 喇叭系统,用以产生降噪声音信号。 大部分ANC系统采用两种主要结构中的一种:前馈式或反馈式。在前馈式系统(如图1)中,采样麦克风位于耳机外部,用以采集进入耳机的噪音,喇叭用以播放反相信号,用以抵消噪音。前馈系统通常用于入耳式耳机设计。在反馈式系统(如图2)中,麦克风位于耳机内部,采集所谓“误差信号”,这就是说,麦克风采集了正常播放的音乐信号与残留噪音混合的信号,把正常播放的音乐信号减去后,就得到残留的噪音。通过恰当的反馈电路,可以使误差信号与正常音乐的差别尽可能的小,也就是说,降低了噪音。 在前馈系统中,由喇叭产生的用以抵消噪音的声音称之为反相声音(anti-phase sound),因为要实现两个声音最好的抵消效果,必须幅度相同,相位相差180度(反相)。

如图3所示,从麦克风到位置A,组成了降噪回路。这个降噪回路的传递函数必须被精确测量,因为在电声系统中,各种衰减及延时必须被考虑到。换句话说,噪音从被麦克风捕获并通过信号处理到喇叭回放再传到耳道必须与噪音从耳机外部穿过耳机再传入耳道保持一致。另外,因为耳机吸音材料所造成的被动降噪作用,麦克风在耳机外部捕获的噪音与真正穿过耳机传入耳道的的噪音并不完全一致。在此,电子处理电路G(W)必须这些在整个降噪回路中的衰减及延时进行补偿。 反馈式工作原理有些不一样。反馈式处理旨在衰减在A点(图4)的残留噪音。反馈式设计必须要非常小心,在相应的频率范围内,必须进行负反馈设计从而降低残留噪音。同时,必须小心过滤其余频率范围信号,特别是高频部份。这是因为由于延时引起的相们改变将会随着频率的升高而增大,一旦相位差大于60度,负反馈将会变成正反馈。这将引入严重的声学问题—高频噪音甚至是高频震荡引起啸叫。与前馈系统相同的是,精确的声学测量是非常重要的。测量结果将被计算并用于补偿降噪回路中的各种衰减与延时。 前馈式耳机设计 前面讨论了ANC系统在理想情况下如何工作。对设计人员来说,真正的目标是在现在世界里如何获得尽可能好的性能。以下为一个实际的例子,用以描述如何进行设计ANC耳机。

耳机喇叭的结构设计

龙源期刊网 https://www.doczj.com/doc/6516681299.html, 耳机喇叭的结构设计 作者:周磊 来源:《信息技术时代·下旬刊》2018年第01期 摘要:随着科学技术的进步,耳机的设计制造得到了长足的发展。然而耳机知名品牌都是国外品牌,如德国的Beyerdynamic(拜亚动力)和Sennheiser(森海塞尔),美国的Beats (节拍)和Bose(博士),奥地利的AKG(爱科技);中国的耳机制造企业还处于萌芽发展阶段,如Merry(美特科技)和欧仕达(AST),相信不久的将来,它们也会像华为一样发展壮大,走出国门,走向世界。 关键词:耳机;喇叭;结构设计 随着中国城市化进程的加快,越来越多的人们选择通过户外运动方式来缓解面临的各种压力,各种各样的运动耳机也越来越被人们所使用。下文讲解运动耳机中最重要的部件-喇叭,以及和喇叭相配合机构件的设计。 一、耳机的分类 耳机根据其换能方式分类,主要有:动圈方式、动铁方式、静电式。 1. 动圈式耳机是最普通、最常见的耳机,它的驱动单元基本上就是一只小型的动圈扬声器,由处于永磁场中的音圈驱动与之相连的振膜振动。动圈式耳机效率比较高,大多可为音响上的耳机输出驱动,且可靠耐用。通常而言驱动单元的直径越大,耳机的性能越出色,目前在消费级耳机中驱动单元最大直径为70mm,一般为旗舰级耳罩式耳机。 2.动铁式耳机是通过一个结构精密的连接棒传导到一个微型振膜的中心点,从而产生振动并发声的耳机。动铁式耳机由于单元体积小得多,所以可以轻易的放入耳道。这样的做法有效地降低了入耳部分的面积可以放入更深的耳道部分 3.静电耳机有轻而薄的振膜,由高直流电压极化,极化所需的电能由交流电转化,也有电池供电的。振膜悬挂在由两块固定的金属板(定子)形成的静电场中,静电耳机必须使用特殊的放大器将音频信号转化为数百伏的电压信号,驱动,所能到达的声压级也没有动圈式耳机大,但它的反应速度快,能够重放各种微小的细节,失真极低。 二、喇叭的工作原理及结构 喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。喇叭实际上是一个电声换能器。

耳机构造讲解

一只耳机主要由四个部分组成:头带、左右发声单元、耳罩和引线。 头带的功能是固定左右发声单元,将其置于头的两侧,它的结构和它与单元的连接方式决定了头带和耳罩对头部的压力,影响着耳机佩带的舒适性。 耳罩是头部与发声单元接触的部件,它对于动圈式耳机是至关重要的,其功能是将低频反射回来,保证低频的重放。耳罩一般有两种样式,一种压在耳朵上,叫压耳式耳罩(Supra-aural),另一种耳罩呈杯状,环绕着耳朵,叫绕耳式耳罩(Circumnaural)。耳罩要尽量的柔软舒适,其内部一般填充海绵,外面蒙上皮革或绒布。耳罩使用的材料对中频和高频有吸收作用,它使耳朵与振膜形成一段距离,并在耳机和头部间形成一个腔室。大型的绕耳式耳罩内部空间大,声音可以作用于耳廓,形成较好的空间感。一只设计良好的耳机已经充分考虑了耳罩的作用,所以中高档耳机的耳罩是不可以损坏或随意更换的。 耳机的引线是耳机放大电路输出端与耳机音圈的连接线,优质耳机线常采用多支线芯的无氧铜(OFC)线,经过严格的绝缘和屏蔽处理,杜绝铜内杂质对信号传输的影响和外界杂波的干扰。耳机线的末端是插头,有两种规格:6.35mm和3.5mm,即平时所说的大小插头,6.35mm插头用于专业音频和民用音频设备,3.5mm插头用于便携设备。一般高保真耳机会提供插头转换器,保证耳机在各种设备上的使用。中高档耳机的插头是镀金的,这不是为了漂亮,主要是为了防止插头氧化影响声音,由于金光滑柔软,还可以提供尽量大的接触面积。低档耳机常采用镀镍插头,这样虽然也可以防止氧化,对声音却有一定的负面影响。

耳机的发声单元是耳机设计最复杂、技术含量最高的部分。动圈耳机的工作原理与动圈扬声器相同,音频信号输入音圈后,音圈产生的电磁场随信号的变化发生变化,变化的电磁场与磁路相互作用推动音圈和振膜的运动,振膜推动空气发声。动圈耳机发声单元主要由三个部分组成:磁路系统、振动系统、腔体和孔等声学结构。 磁路系统由恒磁体、极板和极靴组成,对耳机的性能和可靠性有直接的影响,恒磁体的一面是平板型的极板,另一面是呈“T”形的极靴,极板和极靴间形成一个尺寸较小的环形磁间隙,振动系统的音圈就悬挂在这个间隙内。通常高保真耳机使用的恒磁体为性能优良的钕铁磁体,较早的耳机型号有采用昂贵的钐钴磁体的,低档耳机一般采用铁氧磁体。磁路系统的设计比较复杂,象SENNHEISER HD580、HD600这样的高档耳机其磁路采用了计算机辅助设计。磁路的生产工艺也是影响其性能的一个方面。设计和制造优良的磁路系统能对振动系统进行有效的控制,得到较高的灵敏度、较小的失真、良好的瞬态和低频。 振动系统由音圈和振膜组成。振膜是声辐射元件,推动空气振动发声,直接影响频率响应和灵敏度。它的性能主要取决于制造材料、形状和制造工艺。制造振膜的材料要求单位面积质量尽量小、机械强度高、内阻尼大。机械强度越高、质量越轻有效的频率范围越宽广、输出声压级越高;内阻尼大,在大信号下失真小。现在振膜多使用易于热成型、质量轻、刚性好的聚酯薄膜,一些公司开发出了用于振膜的新材料,比如SONY公司用从醋酸杆菌中分离得到的纤维素制造的“生

流量计的选型与优缺点分析

流量计的选型与优缺点分析 流量计是少数几种使用比制造艰难的仪表之一。这是因为流量是一个动态量,处于运动状态的液体内部不仅存在着粘性摩擦作用,还会产生不稳定的旋涡和二次流等复杂流动现象。测量仪表本身受到众多因素,如:管道、口径大小、形状(圆形、矩形)、边界条件、介质的物性(温度、压力、密度、粘度、脏污性、腐蚀性等)、流体的流动状态(紊流状态、速度分布等)以及安装条件与水平的影响。 面对国内外十几类、上百个品种的流量仪表(先后发展起来的容积式、差压式、涡轮式、面积式、电磁式、超声波式和热式流量计等类型),如何根据流量、流态、安装要求与环境条件、经济性等因素合理选型,是应用好流量仪表的前提和基础。除了仪表自身质量要得到保证,工艺数据的提供和仪表的安装、使用、维护是否合理也相当重要。 没有一种流量计是完美的,对任何流体、工况都完全适应的,每种流量计都有自己的特点,有着其适应的条件,因此在对各种测量方法和仪表特性作比较全面了解的前提下,选择出最适合、最稳定可靠的最佳形式。本文介绍了几种流量计的特点和适用环境。 1、电磁流量计 电磁流量计自20世纪50年代末国内首次工业应用以来,七八十年代在流量测量中运用和发展很快。电磁流量计的工作原理是基于法拉第电磁感应定律,即被测介质垂直于磁力线方向流动,因而在与介质流动和磁力线都垂直的方向上产生一感应电动势EX,当磁场强度B与两极间距离d一定时,则感应电动势EX与被测介质流量(流速)成正比。电磁流量计不受温度、压力、粘度、重度等外界因素的影响,测量管内部无收缩或凸出部分的压力损失,另外,流量元件检测出的最初信号,是一个与流体平均流速成精确线性变化的电压,它与流体的其他性质无关,具有很大的优越性。根据污水具有流量变化大、含杂质、腐蚀性小、有一定的导电能力等特性,测量污水的流量,电磁流量计是一个很好的选择。它结构紧凑、体积小,安装、操作、维护方便,如测量系统采用智能化设计,整体密封加强,能在较恶劣的环境下正常工作。 选型时要注意以下几点: ①被测量液体必须是导电的液体或浆液; ②口径与量程,最好是正常量程超过满量程的一半(一般为正常流量的4~8倍),流速在2-4m/s之间; ③使用压力必须小于流量计耐压; ④不同温度及腐蚀性介质选用不同内衬材料和电极材料。 优点:无节流部件,因此压力损失小。不受流体的温度、压力、密度和粘度的影响;只与被测流体的平均速度有关,测量范围宽;只需经水标定后即可测量其他介质,无须修正,最适合作为结算用计量设备使用。由于技术及工艺材料的不断改进,稳定性、线性度、精度和寿命的不断提高和管径的不断扩大,对于固液两相的介质的测量采用了可更换电极以及刮刀电极的方式,解决了高压(32MPa)、耐腐蚀(防强酸、碱衬里)介质的测量问题,

主动降噪技术概述

主动降噪技术概述 目前,在降噪耳机领域,比较流行的有被动式噪音控制(Passive Noise Control, PNC)和主动式噪音控制(Active Noise Control, ANC)两种。 被动式噪音控制,也称物理噪音控制,即物理降噪。物理降噪耳机指的是物理隔离,通过好的外形设计或者入耳式紧贴耳道,创造一个密闭的空间将外界的声音阻挡在耳朵外面,以此来达到消减噪音的效果。 物理降噪原理:利用外部硬质材质和内部的填充材质以堵塞声音进入人耳,能起到一定的隔离与吸收噪音的作用。 这种物理降噪的方式,简单常见,易于实现。只是物理降噪针对高频段噪音的屏蔽效果明显,对于中低频噪音则显得有点束手无策。在800Hz或更低频率的噪音范围,物理降噪则发挥不了好的作用。另一方面,物理降噪耳机在隔离外界环境噪音的同时,把人声部分的声音同时阻隔掉,使用被动式的耳塞来降噪存在一定的危险性。 主动式噪音控制,也称主动降噪,这种降噪方式是相对于被动式降噪而言的。主动降噪耳机运用了高灵敏度的声学麦克风采集周围的噪音,然后通过内置的处理器实时运算出一个与噪音完全相反的声波来抵消噪音,从而达到抵消噪音的效果。 主动降噪基础原理:所有声音都由一定的频谱组成,主动降噪技术的基本原理是对已经存在的噪声进行主动对抗和消除,与传统被动防御降噪不同,主动降噪技术通过技术手段,生成一组与所要消除的噪声相位相等的反相声波,将噪音中和,达到降噪的目的。 主动降噪耳机分类: 1.前馈式主动降噪:将麦克风暴露在噪声中,与喇叭隔离 2.反馈式主动降噪:将麦克风放置在尽可能接近喇叭的地方 3.前馈与反馈结合式:同时有两个麦克风,一个与喇叭隔离,另一个与喇叭接近 主动降噪耳机原理主要分为三步: 1.运用高灵敏麦克风为传感器,对外界环境噪音(主要为高频噪音)进行采集及分析; 2.实时运算采集到的噪音声波的波频,生成反向的声波,呈180度的两种声波结合之后,互相抵消; 3.声音进入人耳时,由于噪音和反向声波的相互抵消,达到消除噪音效果。

索爱k800i使用技巧

1.如何进入k790/k800的测试模式? 答:在待机画面下输入右*左左*左*(左右为左右方向键),输入过程中不用理会屏幕出现了什么,输入完即可进入测试模式 2.k790/k800的氙气闪光灯能作为电筒来使用吗? 答:不能.氙气闪光灯的工作原理是电容瞬间放电时产生的高压电流激发氙气发光达到闪光效果,氙气闪光灯不能像k750的闪光灯那样长时间工作. 3.K790/k800支持哪些视频格式?视频文件应放在哪里? 答:K790/k800支持的视频格式有rm,mp4,3gp.视频文件需放入文件管理器的video(视频)文件夹里 4.GPRS,彩信,电子邮件设置 全自动索尼爱立信手机网络参数设定方法(准确可用)(适用所有机型) 手动设置上网参数: 第一步:主菜单->手机设定—> 连接->数据通信->数据账户->添加账户->GPRS 数据->随便建立一个名称->APN:cmwap,用户名 和密码不用填写! 第二步:再到“数据通信”下面的“互联网设定”—> 添加模式—> 随便建立一个名称(建议与第一步所建立的帐户同名)—> 连接方式—> 选 择第一步的那个帐户—> 保存! 第三步:然后在刚才第二部建立的模式按更多—> 设置—> 连接方式(不用理会,其实就是刚才第二部建立的那个)—> 使用代理:是—> 代 理地址:010.000.000.172或者10.0.0.172(其实没分别)—> 端口号:80—> 用户名,密码不用填写—> 保存! 彩信设置:前提是开通GPRS ,能上网 主菜单--信息功能--设定--彩信--彩信模式--随便建立一个名称(建议与上网设置中建立的帐户名相同)--更多--编辑--信息服务器: https://www.doczj.com/doc/6516681299.html, 电子邮件设置:前提是开通中国移动的无线上网(一般都是20元/月) 目前手机的屏幕、内存都不适合,不建议使用手机收发Mail 第一步:主菜单->手机设定—> 连接->数据通信->数据账户->添加账户->GPRS 数据->随便建立一个名称->APN:cmnet,用户名 和密码不用填写! 第二步:再到“数据通信”下面的“互联网设定”—> 添加模式—> 随便建立一个名称(建议与第一步所建立的帐户同名)—> 连接方式—> 选 择第一步的那个帐户—> 保存! 第三步:信息功能---- 电子邮件----设定----帐户设定----添加帐户----输入帐户名称(比如我的xxx@https://www.doczj.com/doc/6516681299.html,)----确定,然后你选上你 刚才建立的互联网模式,进入。 {第四步:在我刚才选定的xxx@https://www.doczj.com/doc/6516681299.html,下连接方式----选GPRS连接互联网协议:

TWS蓝牙耳机及其全产业链介绍

TWS蓝牙耳机及其全产业链介绍 来源:ittbank 一、TWS蓝牙耳机——定义 二、TWS蓝牙耳机——主要组成结构 TWS耳机主要由充电盒部分与无线耳机部分组成,其中充电盒包括锂电池包、电源PCB组件、电池管理IC、LED充电指示灯模块等器件,无线耳机部分包括芯片(如蓝牙芯片、电源管理芯片等)、传感器(如加速度传感器、距离传感器等)、电池、麦克风及其他电子器件。

三、TWS蓝牙耳机——主要特点 TWS耳机具有真正无线与可实现单双耳佩戴、智能化、主动降噪、交互方式多样化等特点,与传统有线蓝牙耳机相比,具有设计简单、解放双手、佩戴便利性更高等优势 四、传统有线蓝牙耳机与TWS蓝牙耳机对比 以下表格分别从传输方式、声控体验、音质、续航、优势等方面对传统有线蓝牙耳机与TWS 耳机进行比较: 五、TWS蓝牙耳机——核心技术 TWS耳机主要涉及主动降噪技术、传感交互技术以及新一代蓝牙音频技术,分别为用户提供了降噪功能、多样化交互方式及更优的音频体验 六、TWS蓝牙耳机相关技术——主动降噪技术 七、TWS蓝牙耳机的三种ANC主动降噪技术

在TWS耳机的三种ANC主动降噪技术中,前馈与后馈结合式降噪方案结合前两者的优势,降噪性能更为优越,是大部分高端TWS耳机厂商首选方案。 八、TWS耳机相关技术——传感交互技术 随着芯片、传感器与AI算法技术的成熟,多样化的交互方式,如开盒即连、触控交互、语音唤醒、入耳检测、离线热词逐步应用于TWS耳机中。 基于不同芯片、传感器与AI算法等多种技术的融合,TWS耳机具有多样化的交互方式,如开盒即连、触控交互、语音唤醒、入耳检测、离线热词等。 九、TWS蓝牙耳机相关技术——BLE Audio蓝牙技术 广播音频技术可实现基于人或位置进行音频分享功能,有利于拓展TWS耳机的应用场景;低复杂性通信编解码器有助于TWS耳机实现更高音质和更低功耗。 广播音频(Broadcast Audio)技术:可实现基于人或位置进行音频分享功能,突破当前“一音频源对应一音频接受设备”的单一应用场景,有利于拓展TWS耳机的应用场景。

天然气流量计量各种方法和其优缺点简介

天然气流量计量各种方法和其优缺点介绍 天然气流量计量的方法非常多的,有很多种流量计都可以测量天然气。那么我们就仔细的研究一下每一种方法,每一种流量计的优点及缺点。 一、电磁流量计 1、优点 (1)电磁流量计可用来测量工业导电液体或浆液。 (2)无压力损失。 (3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。 (4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。 2、缺点 (1)电磁流量计的应用有一定局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。另外在高温条件下其衬里需考虑。 (2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。 (3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。安装地点不能有振动,不能有强磁场。在安装时必须使变送器和管道有良好的接触及良好的接地。变送器的电位与被测流体等电位。在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。 (4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。 (5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。如100mm口径仪表内径变化1mm会带来约https://www.doczj.com/doc/6516681299.html,2%附加误差。 (6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。但改进的仪表结构复杂,成本较高。 (7)价格较高 二、超声波流量计 1、优点 (1)超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。它不会改变流体的流动状态,不会产生压力损失,且便于安装。 (2)可以测量强腐蚀性介质和非导电介质的流量。 (3)超声波流量计的测量范围大,管径范围从20mm~5m. (4)超声波流量计可以测量各种液体和污水流量。 (5)超声波流量计测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。可以做成固定式和便携式两种形式。 2、缺点 (1)超声波流量计的温度测量范围不高,一般只能测量温度低于200℃的流体。

相关主题
文本预览
相关文档 最新文档