当前位置:文档之家› 传感器原理及典型应用

传感器原理及典型应用

传感器原理及典型应用
传感器原理及典型应用

传感器(原理及典型应用)

编稿:张金虎审稿:李勇康

【学习目标】

1.知道什么是传感器,常见的传感器有哪些。

2.了解一些传感器的工作原理和实际应用。

3.了解传感器的应用模式,能够运用这一模式去理解传感器的实际运用。

4.了解传感器在生活、科技中的运用和发挥的巨大作用。

【要点梳理】

要点一、传感器

1.现代技术中,传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转化为电路的通断。把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。

2.传感器原理

传感器感受的通常是非电学量,如压力、温度、位移、浓度、速度、酸碱度等,而它输出的通常是电学量,如电压值、电流值、电荷量等,这些输出信号是非常微弱的,通常要经过放大后,再送给控制系统产生各种控制动作。传感器原理如下图所示。

3.传感器的分类

常用传感器是利用某些物理、化学或生物效应进行工作的。根据测量目的不同,可将传感器分为物理型、化学型和生物型三类。

物理型传感器是利用被测量物质的某些物理性质(如电阻、电压、电容、磁场等)发生明显变化的特性制成的,如光电传感器、力学传感器等。

化学型传感器是利用能把化学物质的成分、浓度等化学量转换成为电学量的敏感元件制成的。

生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器,生物或生物物质主要是指各种酶、微生物、抗体等,分别对应酶传感器、微生物传感器、免疫传感器等等。

要点二、光敏电阻

光敏电阻能够把光照强弱这个光学量转换为电阻大小这个电学量,一般随光照的增强电阻值减小。

要点诠释:光敏电阻是用半导体材料制成的,硫化镉在无光时,载流子(导电电荷)极少,导电性能不好,随着光照的增强,载流子增多,导电性能变好。

要点三、热敏电阻和金属热电阻

1.热敏电阻

热敏电阻用半导体材料制成,其电阻值随温度变化明显。如图为某一热敏电阻的电阻—温度特性曲线。

要点诠释:

(1)在工作温度范围内,电阻值随温度上升而增加的是正温度系数(PTC)热敏电阻器;电阻值随温度上升而减小的是负温度系数(NTC)热敏电阻器。

(2)热敏电阻器的应用十分广泛,主要应用于:

①利用电阻—温度特性来测量温度、控制温度和元件、器件、电路的温度补偿。

②利用非线性特性完成稳压、限幅、开关、过流保护作用。

③利用不同媒质中热耗散特性的差异测量流量、流速、液面、热导、真空度等。

④利用热惯性作为时间延时器。

2.金属热电阻

有些金属的电阻率随温度的升高而增大,这样的金属也可以制作温度传感器,称为金属热电阻。

要点诠释:

热敏电阻或金属热电阻都能把温度这个热学量转换为电阻这个电学量,但相比而言,金属热电阻的化学稳定性好,测温范围大,而热敏电阻的灵敏度较高。

要点四、电容式传感器霍尔元件

1.电容式传感器

电容器的电容C决定于极板正对面积S、板间距离d以及极板间的电介质这几个因素,如果某一物理量(如角度θ、位移x、深度h等)的变化能引起上述某个因素的变化,从而引起电容的变化,那么,通过测定电容器的电容就可以确定上述物理量的变化,作这种用途的电容器称为电容式传感器。

如图甲所示是用来测定角度θ的电容式传感器。当动片和定片之间的角度θ发生变化时,引起极板正对面积S的变化,使电容C发生变化,知道C的变化,就可以知道θ的变化情况。

如图乙所示是测定液面高度h的电容式传感器。在导线芯的外面涂上一层绝缘物质,放入导电液体中。导线芯和导电液体构成电容器的两个极,导线芯外面的绝缘物质就是电介质。液面高度h发生变化时,引起正对面积发生变化,使电容C发生变化。知道C的变化,就可以知道h的变化情况。

如图丙所示是测定压力,的电容式传感器,待测压力F作用于可动膜片电极上的时候,膜片发生形变,使极板间距离d发生变化,引起电容C的变化。知道C的变化,就可以知道F的变化情况。

如图丁所示是测定位移x 的电容式传感器。随着电介质进入极板间的长度发生变

化,电容C 发生变化。知道C 的变化,就可以知道x 的变化情况。

2.霍尔元件

(1).如图所示,在一个很小的矩形导体(例如砷化铟)薄片上,制作四个电极

E F M N 、、、,就成为一个霍尔元件。

霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量。

(2).霍尔电压H

IB U k d

=,其中k 为比例系数,称为霍尔系数,其大小与薄片的材料有关。

(3).霍尔元件的工作原理

霍尔元件是利用霍尔效应来设计的。一个矩形半导体薄片,在其前、后、左、右分别引

出一个电极,如图所示,沿PQ 方向通入电流,,垂直于薄片加匀强磁场B ,则在MN 间会出现电势差U ,设薄片厚度为d ,PQ 方向长度为1l ,MN 方向长度为2l ,薄片中的带电粒

子受到磁场力发生偏转,使N 侧电势高于M 侧,造成半导体内部出现电场。带电粒子同时

受到磁场力和电场力作用,当磁场力与电场力平衡时,MN 间电势差达到恒定,此时有

2

U q qvB l ==。 根据电流的微观解释

I nqSv =,

整理后得

IB U nqd

=。 令1k nq

=,因为n 为材料单位体积内的带电粒子个数,q 为单个带电粒子的电荷量,它们均为常数,所以

IB

U k

d

U与B成正比,这就是霍尔元件能把磁学量转换成电学量的原因。

要点五、力传感器

1.应变式力传感器

(1)组成:由金属梁和应变片组成。

(2)工作原理:如图所示,弹簧钢制成的梁形元件右端固定,在梁的上下表面各贴一个应变片,左梁的自由端施力F,则梁发生弯曲,上表面拉伸,下表面压缩,上表面应变片的电阻变大,下表面电阻变小。F越大,弯曲形变越大,应变片的阻值变化越大。如果让应变片中通过的电流保持恒定,那么上面应变片两端的电压变大,下面应变片两端的电压变小。传感器把这两个电压的差值输出。外力越大,输出的电压差值也就越大。

2.测定压力的电容式传感器

如图所示,当待测压力F作用于可动膜片电极上时,可使膜片产生形变,从而引起电容的变化,如果将电容器与灵敏电流表、电源串联,组成闭合电路,当F向上压膜片电极时,电容器的电容将增大,电流表有示数。

要点六、声传感器的应用——话筒

1.话筒的作用

把声音信号转换为电信号。

2.电容式话筒

(1)原理:如图所示,Q是绝缘支架,薄金属膜M和固定电极N形成一个电容器,被直流电源充电。当声波使膜片振动时,电容发生变化,电路中形成变化的电流,于是电阻R两端就输出了与声音变化规律相同的电压。

(2)优点:保真度好。

3.驻极体话筒

(1)极化现象:将电介质放人电场中,在前后两个表面上会分别出现正电荷与负电荷的现象。

(2)驻极体:某些电介质在电场中被极化后,去掉外加电场,仍然会长期保持被极化的状态,这种材料称为驻极体。

(3)原理:同电容式话筒,只是内部感受声波的是驻极体塑料薄膜。

(4)特点:体积小,重量轻,价格便宜,灵敏度高,工作电压低。

要点七、温度传感器的应用——电熨斗

1.温度传感器:

由半导体材料制成的热敏电阻和金属热电阻均可制成温度传感器,它可以把热信号转换为电信号进行自动控制。

2.电熨斗的构造

如图所示。

3.电熨斗的自动控温原理

内部装有双金属片温度传感器,如图所示,其作用是控制电路的通断。

常温下,上、下触头应是接触的,但温度过高时,由于双金属片受热膨胀系数不同,上部金属膨胀大,下部金属膨胀小,双金属片向下弯曲,使触点分离,从而切断电源,停止加热。温度降低后,双金属片恢复原状,重新接通电路加热,这样循环进行,起到自动控制温度的作用。

注意:熨烫棉麻衣物和熨烫丝绸衣物需要设定不同的温度,此时可通过调温旋钮调节升降螺丝,升降螺丝带动弹性铜片升降,从而改变触点接触的难易,达到控制在不同温度的目的。

4.传感器应用的一般模式

5.动圈式话筒的工作原理

如图所示是动圈式话筒的构造原理图,它是利用电磁感应现象制成的。当声波使金属膜

片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动。音圈在永磁铁的磁场里振动,

其中就产生感应电流(电信号)。感应电流的大小和方向都变化,振幅和频率的变化由声波

决定,这个电信号经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。

【典型例题】

类型一、热敏电阻的特性 例1.如图所示,1R 为定值电阻,2R 为负温度系数热敏电阻,L 为小灯泡,当温度降

低时( )

A .1R 两端的电压增大

B .电流表的示数增大

C .小灯泡的亮度变强

D .小灯泡的亮度变弱

【思路点拨】运用热敏电阻特性解决问题。

【答案】C

【解析】本题考查了负温度系数热敏电阻的特性以及电路的动态分析。2R 与灯L 并联

后与1R 串联,与电源构成闭合电路,当热敏电阻温度降低时,电阻2R 增大,外电路电阻增

大,电流表读数变小,灯L 两端电压增大,灯泡亮度变强,1R 两端电压减小,故C 正确,

其余各项均错。

【总结升华】牢记热敏电阻特性是解决此题的关键。热敏电阻的阻值随温度的升高不一

定减小,正温度系数的热敏电阻(PTC )的阻值随温度的升高而增大。

举一反三:

【高清课堂:传感器(原理及典型应用)例2】

【变式】如图是一火警报警的一部分电路示意图。其中2R 为用半导体热敏材料制成的

传感器,电流表为值班室的显示器,a b 、之间接报警器。当传感器2R 所在处出现火情时,

显示器的电流I 、报警器两端的电压U 的变化情况是( )

A . I 变大,U 变大

B . I 变小,U 变小

C . I 变小,U 变大

D . I 变大,U 变小

【答案】B

【解析】出现火情时温度升高,2R 减小,R 总减小, I 总增大,ab U 减小,U 并减

小,A I 减小,正确答案为B 。

类型二、光敏电阻的特性

例2.如图所示,1R 、2R 为定值电阻,L 为小灯泡,3R 为光敏电阻,当照射到3R 上

的光强度增大时( )

A .电压表的示数增大

B .2R 中电流减小

C .小灯泡的功率增大

D .电路的路端电压增大

【答案】ABC

【解析】本题综合考查光敏电阻的特性以及电路的动态分析。当光强度增大时,3R 阻

值减小,外电路电阻随见的减小而减小,1R 两端电压因干路电流增大而增大,同时内电压

增大,故电路路端电压减小,而电压表的示数增大,A 项正确,D 项错误;由路端电压减小,

而1R 两端电压增大知,2R 两端电压必减小,则2R 中电流减小,故B 项正确;结合干路电

流增大知流过小灯泡的电流必增大,则小灯泡的功率增大。

【总结升华】牢记光敏电阻的阻值随光强度的增加而减小。

例3.(2015 南昌期中)利用光敏电阻制作的光传感器,记录了传送带上工件的输送

情况,如图甲所示为某工厂成品包装车间的光传感记录器,光传感器B 能接收到发光元件A

发出的光,每当工件挡住A 发出的光时,光传感器就输出一个电信号,并在屏幕上显示出

电信号与时间的关系,如图乙所示。若传送带始终匀速运动,每两个工件间的距离为0.2 m ,

则下列说法正确的是( )

A .传送带运动的速度是0.1m/s

B .传送带运动的速度是0.2m/s

C .该传送带每小时输送3600个工件

D .该传送带每小时输送7200个工件

【答案】BC

【解析】从乙图可以知道:每间隔1秒的时间光传感器就输出一个电信号,而在这一段时间内传送带运动了两个工件之间的距离,所以传送带运动的速度是0.2=m/s=0.2 m/s 1v ,故A 错误B 正确;传送带每小时传送的距离为:s =vt =0.2×3600m ,工件个数为:=

=3600s n L 个,C 正确D 错误。

举一反三:

【高清课堂:传感器(原理及典型应用)例1】

【变式】(1)如图是利用光敏电阻自动计数的示意图,其中A 是 ,B 中的主要

元件是 。

(2) 自动计数原理是: 。

【答案】(1)发光仪器;光敏电阻 (2)见解析

【解析】(1)发光仪器;光敏电阻

(2)光传送带上没有物品挡住由A 射向B 的光信号时,光敏电阻的阻值变小,供给信号

处理系统的电压变低;当传送带上有物品挡住由A 射向B 的光信号时,光敏电阻的阻值变

大,供给信号处理系统的电压变高,这种高低交替变化的信号经过信号处理系统处理,就会

自动将其转化为相应的数字,实现自动计数功能.

类型三、霍尔元件的特性

例4.如图所示,截面为矩形的金属导体,放在磁场中,当导体中通有电流时,导体的

上、下表面的电势的关系为( )

A .M N U U >

B .M N U U =

C .M N U U <

D .无法判断

【答案】A

【解析】此题考查了霍尔效应的形成原因。霍尔效应形成的原因是因为带电粒子在磁场

中受到洛伦兹力作用,做定向移动形成的,根据左手定则,电子受到向下的洛伦兹力作用,

向N 板运动,则M 板剩下正电荷,所以M N U U >。

【总结升华】金属导体中能自由移动的是电子,电子向N 板聚集,M 板剩下正电荷。

例5.如图所示,有电流I 流过长方体金属块,金属块宽度为d ,高为b ,有一磁感应

强度为B 的匀强磁场垂直于纸面向里,金属块单位体积内的自由电子数为n ,试问金属块

上、下表面哪面电势高?电势差是多少?

【思路点拨】当电流在导体中流动时,运动电荷在洛伦兹力作用下,分别向导体上、下

表面聚集,在导体中形成电场,其中上表面带负电,电势低。随着正、负电荷不断向下、上

表面积累,电场增强,当运动电荷所受电场力与洛伦兹力平衡时,电荷将不再向上或向下偏

转,上、下表面间形成稳定电压。

【答案】下表面电势高 电势差为IB ned

【解析】本题是考查霍尔效应现象的计算题。

当电流在导体中流动时,运动电荷在洛伦兹力作用下,分别向导体上、下表面聚集,在

导体中形成电场,其中上表面带负电,电势低。随着正、负电荷不断向下、上表面积累,电

场增强,当运动电荷所受电场力与洛伦兹力平衡时,即qE qvB

=时,电荷将不再向上或向下偏转,上、下表面间形成稳定电压。

因为自由电荷为电子,故用左手定则可判定电子向上偏,则上表面聚集负电荷,下表面带多余等量的正电荷,故下表面电势高,设其稳定电压为U。

当运动电荷所受电场力与洛伦兹力平衡时,即

U

q qvB

b

=。

又因为导体中的电流I neSv nev bd

==?,

IB

U

ned

=。

【总结升华】(1)判断电势高低时注意载流子是正电荷还是负电荷。

(2)由以上计算得上、下两表面间的电压稳定时,

IB

U

ned

=,其中n为单位体积内的

自由电荷数,e为电子电荷量,对固定的材料而言为定值,若令

1

k

ne

=,则

IB

U k

d

=,此

即课本所给出的公式。

类型四、电容式传感器

例6.如图所示:

(1)图甲是________的电容式传感器,原理是________。

(2)图乙是________的电容式传感器,原理是________。

(3)图丙是________的电容式传感器,原理是________。

(4)图丁是________的电容式传感器,原理是________。

【答案】见解析

【解析】本题考查了几种常见电容式传感器的工作原理。

(1)图甲是角度的电容式传感器,其原理是当动金属片旋进的角度不同时,电容器的正对面积不同,电容器的电容不同。

(2)图乙是液体的电容式传感器,其原理是导电液体相当于电容器的一个极板,当液体深度发生改变时,相当于两极板的正对面积发生改变,电容器的电容也随之改变。

(3)图丙是压力的电容式传感器,其原理是当作用在一个电极的压力改变时,金属片的形状也发生改变,两极板的距离发生改变,电容器的电容也发生改变。

(4)图丁是位移的电容武传感器,其原理是和物体固定在一起的电介质板,当物体发生一小段位移时,插入两极板间的电介质发生变化,导致电容器的电容发生变化。

【总结升华】电容式传感器体积小、反应灵敏,是一种多功能传感器,可用来做压力、

转角、位移、压强、声音等传感器。

举一反三:

【高清课堂:传感器(原理及典型应用)例3】 【变式】图甲是测量 的电容式传感器,原理是 _________ 图乙是测量 的电容式传感器,原理是 _________________

【答案】图甲:角度θ;动片与定片间的角度θ发生变化时,引起正对面积S 的变化,

通过测出电容C 的变化,测量动片与定片间的夹角θ。

图乙:液面高度h ;h 发生变化,金属芯线和导电液体组成的电容发生变化,通过测定C

的变化,可以测量液面高度h 的变化。

类型五、力传感器的应用

例7.用如图所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度,该装

置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器,用两根相同的轻弹

簧夹着一个质量为2.0 kg 的滑块,滑块可无摩擦滑动,两弹簧的另一端分别接在传感器

a b 、上,其压力大小可直接从传感器的液晶显示屏上读出,现将装置沿运动方向固定在汽

车上,传感器b 在前,传感器a 在后。汽车静止时,传感器a b 、的示数均为10 N 。(g 取

10 m/s )

(1)若传感器a 的示数为14 N ,b 的示数为6.0 N ,求此时汽车的加速度大小和方向;

(2)当汽车以怎样的加速度运动时,传感器a 的示数为零?

【思路点拨】两轻弹簧相同,左弹簧伸长多少,右弹簧就缩短多少。传感器上所显示出

力的大小即弹簧对传感器的压力,据牛顿第三定律知,此即为弹簧上的弹力大小,亦即该弹

簧对滑块的弹力大小。

【答案】(1)24.0 m/s ,方向向前 (2)2

10m/s ,方向向后

【解析】本题是力传感器在实际中的一个应用。传感器上所显示出力的大小即弹簧对传

感器的压力,据牛顿第三定律知,此即为弹簧上的弹力大小,亦即该弹簧对滑块的弹力大小。

(1)如图所示,依题意,左侧弹簧对滑块向右的推力114 N F =,右侧弹簧对滑块向左的推力2 6.0 N F =。

滑块所受合力产生加速度1a ,根据牛顿第二定律有121F F ma =-,得

2212114 6.0m/s 4.0 m/s 2.0

F F a m --===。 1a 与1F 同方向,即向前(向右)。

(2)a 传感器的读数恰为零,即左侧弹簧的弹力10F ='

,因两弹簧相同,左弹簧伸长多少,右弹簧就缩短多少,所以右弹簧的弹力变为220 N F ='

,滑块所受合力产生加速度,由牛顿第二定律得

22F F ma ==合'。

解得

222'10m/s F a m

==-。 负号表示方向向后(向左)。

【总结升华】两轻弹簧相同,左弹簧伸长多少,右弹簧就缩短多少,弹簧上弹力变化大小相等。

举一反三:

【高清课堂:传感器(原理及典型应用)例5】

【变式】惯性制导系统已广泛应用于导弹工程中,这个系统的重要元件是加速度计。加速度计的构造和原理的示意图如图示,沿导弹长度方向按装的固定光滑杆上套一个质量为m 的滑块,滑块的两侧分别与劲度系数均为k 的弹簧相连,两弹簧的另一端与固定壁相连。滑块原来静止,弹簧处于自然长度。滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导。

(1)设某段时间内导弹沿水平方向运动,指针向左偏离O 点的距离为S ,则这段时间内导弹的加速度 ( )

A . 方向向左,大小为 /kS m

B .方向向右,大小为 /kS m

C .方向向左,大小为2/kS m

D . 方向向右,大小为2/kS m

(2)若电位器(可变电阻)总长度为L ,其电阻均匀,两端接在稳压电源0U 上,当导弹以加速度a 沿水平方向运动时,与滑块连接的滑动片P 产生位移,此时可输出一个电信号U ,作为导弹惯性制导系统的信息源,为控制导弹运动状态输入信息,试写出U 与a 的函数关系式。

【答案】(1)D (2)02mU a kL

【解析】(1)略 (2)=2/a kS m ,/2S ma k =,所以 0X 0//U U R R U S L ==

0/2maU kL =

0=2mU a a kL

∝.

类型六、声传感器的应用

例8.动圈式话筒和磁带录音机都应用了电磁感应现象,图甲所示是动圈式话筒原理图,图乙所示是磁带录音机的录音、放音原理图,由图可知:

①话筒工作时磁铁不动,线圈振动而产生感应电流

②录音机放音时变化的磁场在静止的线圈里产生感应电流

③录音机放音时线圈中变化了的电流在磁头缝隙处产生变化的磁场

④录音机录音时线圈中变化的电流在磁头缝隙处产生变化的磁场

其中正确的是( )

A .②③④

B .①②③

C .①②④

D .①③④

【答案】C

【解析】本题考查了动圈式话筒和磁带录音机录放音的工作原理。话筒的工作原理是声波迫使金属线圈在磁铁产生的磁场中振动产生感应电流,①正确。录音时,话筒产生的感应电流经放大电路放大后在录音机磁头缝隙处产生变化的磁场,④正确。磁带在放音时通过变化的磁场使放音头产生感应电流,经放大电路后再送到扬声器中,②正确。

【总结升华】清楚声传感器的原理是解题关键。

举一反三:

【高清课堂:传感器(原理及典型应用)例4】

【变式】唱卡拉OK 用的话筒,内有传感器。其中有一种是动圈式的,它的工作原理是在弹性膜片后面粘接一个轻小的金属线圈,线圈处于永磁体的磁场中,当声波使膜片前后振动时,就将声音信号转变为电信号。下列说法正确的是 ( )

A .该传感器是根据电流的磁效应工作的

B .该传感器是根据电磁感应原理工作的

C .膜片振动时,穿过金属线圈的磁通量不变

D .膜片振动时,金属线圈中不会产生感应电动势

【答案】B

类型七、温度传感器的应用

例9.在家用电热灭蚊器中,电热部分主要元件是PTC 元件,PTC 元件是由钛酸钡等半导体材料制成的电阻器,其电阻率ρ随温度t 的变化关系如图

所示,由于这种特性,PTC 元件具有发热、保温双重功能。对

此,以下判断正确的是( )

①通电后,其电功率先增大,后减小

②通电后,其电功率先减小,后增大

③当其产生的热量与散发的热量相等时,温度保持在1t 不变

④当其产生的热量与散发的热量相等时,温度保持在1t 和2t 之间的某一值不变

A .①③

B .②③

C .②④

D .①④

【思路点拨】注意分析图象信息,把握变化规律,并结合所学物理规律进行分析讨论。

【答案】D

【解析】当电热灭蚊器温度由0升到1t 的过程中,电阻器的电阻率ρ随温度升高而减小,其电阻R 随之减小,由于加在灭蚊器上的电压U 保持不变,灭蚊器的热功率P 随之增大,当1t t =时,1P P =达到最大。当温度由1t 升高到2t 的过程中,ρ增大,R 增大,P 减小;而温度越高,其与外界环境温度的差别也就越大,高于环境温度的电热灭蚊器的散热功率P '

也就越大;因此在这之间的某一温度3t 会有3P P P

==',即电热功率P 减小到等于散热功率时,即达到保温;当3t t <,P P >',使温度自动升高到3t ;当3t t >,P P <',使温度自动降为3t ,实现自动保温。

【总结升华】对给定图象的题目,注意分析图象信息,把握变化规律,并结合所学物理规律进行分析讨论。

例10.(2015 枣庄校级月考)温度传感器广泛应用于室内空调、电冰箱等家用电器中,它是利用热敏电阻的阻值随温度变化的特性工作的。如图实-9-17甲所示,电源的电动势E =9.0 V ,内电阻不计;G 为灵敏电流计,内阻R g 保持不变;R 为热敏电阻,其电阻值与温度的变化关系如图乙所示。闭合开关S ,当R 的温度等于20℃时,电流表示数I 1=2 mA ;当电流表的示数I 2=3.6 mA 时,热敏电阻的温度是________℃。

【答案】120

【解析】从图乙查得t =20℃时,R 的阻值为4kΩ

由E =I 1(R +R g )得:

19k 4k 0.5k 2

g E R R I ΩΩΩ=-=-= 当I 2=3.6 mA 时,设热敏电阻的阻值为R ′,则

29k 0.5k 2k 3.6

g E R R I 'ΩΩΩ=-=-= 从图乙查得此时对应的温度t 2=120℃。

【总结升华】分析新情景题目,应注意把握题目中的条件,包括图中的信息。

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

(完整word版)传感器原理及应用复习题.docx

《传感器原理及应用》复习题 1.静态特性指标其中的线性度的定义是指 2.传感器的差动测量方法的优点是减小了非线性误差、提高了测量灵敏度。 3.对于等臂半桥电路为了减小或消除非线性误差的方法可以采用提高桥臂 比,采用差动电桥的方法。 4.高频反射式电涡流传感器实际是由线圈和被测体或导体两个部分组成的系统,两者之间通过电磁感应相互作用,因此,在能够构成电涡 流传感器的应用场合中必须存在金属材料。 5.霍尔元件需要进行温度补偿的原因是因为其霍尔系数和材料电阻 受温度影响大。使用霍尔传感器测量位移时,需要构造一个磁场。 6.热电阻最常用的材料是铂和铜,工业上被广泛用来测量中低温 区的温度,在测量温度要求不高且温度较低的场合,铜热电阻得 到了广泛应用。 7.现有霍尔式、电涡流式和光电式三种传感器,设计传送带上塑料零件的计数 系统时,应选其中的光电传感器。需要测量某设备的外壳温度,已知其 范围是300~400℃,要求实现高精度测量,应该在铂铑- 铂热电偶、铂电阻和热 敏电阻中选择铂电阻。 8.一个二进制光学码盘式传感器,为了达到1″左右的分辨力,需要采用 或位码盘。一个刻划直径为400 mm的 20 位码盘,其外圈分别间隔 为稍大于μm。 9.非功能型光纤传感器中的光纤仅仅起传输光信息的作用,功能型光纤传感器 是把光纤作为敏感元件。光纤的 NA 值大表明集光能力强。 11.光照使半导体电阻率变化的现象称为内光电效应,基于此效应的器件除光敏 电阻外还有处于反向偏置工作状态的光敏二极管。光敏器件的灵敏度可 用光照特性表征,它反映光电器件的输入光量与输出光电流(电压 )之间 的关系。选择光电传感器的光源与光敏器件时主要依据器件的光谱特性。 12. 传感器一般由敏感元件 _ 、转换元件 ___ 、测量电路及辅助电 源四个部分组成。 13.传感器的灵敏度是指稳态标准条件下,输出变化量与输入变化 量的比值。对线性传感器来说,其灵敏度是一常数。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理与工程应用完整版习题参考答案

《传感器原理及工程应用》完整版习题答案 第1章 传感与检测技术的理论基础(P26) 1—1:测量的定义? 答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。 所以, 测量也就是将被测量与同种性质的标准量进行比较, 确定被测量对标准量的倍数。 1—2:什么是测量值的绝对误差、相对误差、引用误差? 1- 3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.11402 ≈?L δ 标称相对误差 %==41.1142 2≈?x δ 引用误差 %--=测量上限-测量下限= 1) 50(1502 ≈?γ 1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 答:绝对误差是测量结果与真值之差, 即: 绝对误差=测量值—真值 相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值 ×100% 引用误差是绝对误差与量程之比,以百分数表示, 即: 引用误差=绝对误差/量程 ×100%

《传感器原理与应用》综合练习答案(期末考试)

《传感器原理与应用》综合练习 一、填空题 1.热电偶中热电势的大小仅与金属的性质、接触点温度有关,而与热电极尺寸、形状及温度分布无关。 2.按热电偶本身结构划分,有普通热电偶、铠装热电偶、微型热电偶。3.热电偶冷端电桥补偿电路中,当冷端温度变化时,由不平衡电桥提供一个电位差随冷端温度变化的附加电势,使热电偶回路的输出不随冷端温度的变化而改变,达到自动补偿的目的。 4.硒光电池的光谱峰值与人类相近,它的入射光波长与人类正常视觉的也相近,因而应用较广。 5.硅光电池的光电特性中,光照度与其短路电流呈线性关系。 6.压电式传感器的工作原理是基于某些介质材料的压电效应。 7.压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成。电畴具有自己极化方向。经过极化过的压电陶瓷才具有压电效应。 8.压电陶瓷的压电常数比石英晶体大得多。但石英晶体具有很多优点,尤其是其它压电材料无法比的。 9.压电式传感器具有体积小、结构简单等优点,但不能测量频率小的被测量。特别不能测量静态量。 10.霍尔效应是导体中的载流子在磁场中受洛伦茨力作用发生位移的结果。 11.霍尔元件是N型半导体制成扁平长方体,扁平边缘的两对侧面各引出一对电极。一对叫激励电极用于引入激励电流;另一对叫霍尔电极,用于引出霍尔电势。 12.减小霍尔元件温度误差的措施有:(1)利用输入回路的串联电阻减小由输入电阻随温度变化;引起的误差。(2)激励电极采用恒流源,减小由于灵敏度随温度变化引起的误差。 13.霍尔式传感器基本上包括两部分:一部分是弹性元件,将感受的非电量转换成磁物理量的变化;另一部分是霍尔元件和测量电路。 14.磁电式传感器是利用霍尔效应原理将磁参量转换成感应电动势信号输出。 15.变磁通磁电式传感器,通常将齿轮的齿(槽)作为磁路的一部分。当齿轮转动时,引起磁路中,线圈感应电动势输出。 16.热敏电阻正是利用半导体的数目随着温度变化而变化的特性制成的热敏感元件。 17.热敏电阻与金属热电阻的差别在于,它是利用半导体的电阻随温度变化阻值变化的特点制成的一种热敏元件。 18.热敏电阻的阻值与温度之间的关系称为热敏电阻的。它是热敏电阻测温的基础。 19.热敏电阻的基本类型有:负温度系数缓变型、正温度系数剧变型、临界温度型。 20.正温度系数剧变型和临界温度型热敏电阻不能用于温度范围的温度控制,而在某一温度范围内的温度控制中却是十分优良的。 21.正温度系数剧变型和临界温度型热敏电阻属于型,适用于温度监测和温度控制。

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

新型传感器的原理、应用与发展

新型传感器的原理、应用与发展 (南昌大学,南昌,330031) The principle and application of new sensors (Nanchang University, Nanchang 330031, China) 摘要:现代新型传感器由于具有测量精度高、动态响应快、稳定性好、抗干扰能力强、易于小型和微 型化、方便与微机进行接口等优点,在温度、压力、电压、转速等检测中有着广阔应用前景。本文简要的介绍了几种现代新型传感器的基本原理和它们在信号检测、汽车、船舶等方面的应用,以及新型传感器的发展前景。 关键词:新型传感器;原理;应用;发展前景 Abstract:Modern new sensor with high measurement precision has many advantages, such as fast dynamic response、good stability、strong anti-interference ability,、easy to small and miniaturization, and its` easy to connect with microcomputer.It has a broad application prospect in the ways of temperature、pressure、voltage and speed detection. This paper briefly introduces several basic principle of modern new sensors and their applications in signal detection, automotive, Marine applications,and the prospects of the development of new sensors. Key words:new type sensor;principle;application;prospects of the development 1前言 传感器是一种把物理量或化学量转变成便于利用的电信号的器件,其实质是一种功能块,

传感器原理及工程应用概述

第二章传感器概述 1、传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 2、传感器是由敏感原件和转换原件组成 3、两种分类方法:一种是按被测参数分类,一种是按传感器工作原理分类 4、传感器的基本特性可分为静态特性和动态特性 5、静态特性是指被测量的值处于稳定状态时输入与输出的关系。主要指标有灵敏度、线性度、迟滞、重复性和漂移等。 6、灵敏度是输出量增量ΔY与引起输出量增量ΔY的相应输入量增量ΔX之比。用S表示即S=ΔY\ΔX。 7、线性度是指传感器的输入与输出之间数量关系的线性程度。也叫非线性误差用γL 表示即γL= 8、传感器在相同工作条件下输入量由小到大(正量程)及由大到小(反量程)变化期间输入输出特性曲线不重合的现象称为迟滞。迟滞误差用 9、重复性是指传感器在相同的工作条件下输入量按同一方向做全量程连续多次变化时,所得特性曲线不一致的程度。最大重复差值 10、漂移是指输入量不变的情况下传感器输出量随着时间变化。产生漂移的原因有两个一是传感器自身结构参数一是周围环境。温度漂移的计算 第三章应变式传感器 1、电阻应变式传感器是以电阻应变片为转换原件的传感器。 2、工作原理是基于电阻应变效应,即导体在外界作用下产生机械变形(拉伸或压缩)是,其电阻值相应发生变化(应变效应)。 3、电阻应变片分为丝式电阻应变片和箔式电阻应变片。 4、电阻在外力作用下而改变原来尺寸或形状的现象称为变形,而去掉外力后物体又能完全恢复其原来的尺寸和形状,这种变形称为弹性变形。具有弹性变形特性的物体称为弹性原件。 5、应变片的电阻值是指应变片没有粘贴且未受应变时,在室温下测定的电阻值即初始电阻值。 6、将直的电阻丝绕成敏感栅后,虽然长度不变,但应变状态不同,应变片敏感栅的电阻变化减小,因而其灵敏系数K较整长电阻丝的灵敏系数K0小,这种现象称为应变片的横向效应。为了减少横向效应产生的测量误差,现在一半多采用箔式应变片。 7、应变片温度误差:由于测量现场环境温度的改变而给测量带来的附加误差。产生的主要因素有以下两个方面:一是电阻温度系数的影响,一是试件材料和电阻丝材料的线膨胀系数的影响。 8、电阻应变片的温度补偿方法:1)线路补偿法2)应变片的自补法9***电阻应变片的测量电路10、压阻效应是指在一块半导体的某一轴向施加一定的压力时,其电阻值产生变化现象, 第四章电感式传感器 1、利用电磁感应原理将被测非电量如、位移、压力、流量、振动等转换成线圈自感系数L或互感系数M的变化,再由测量电路转换为电压或电流的变化量输出,这种装置称为电感式传感器。 2、零点残余电压:传感器在零点位移时的输出电压。产生原因主要有以下两点一是由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,因此在两电感线圈上的电压幅值和相位不同,从而形成了零点残余电压的基波分量。一是由于传感器导磁材料磁化曲线的非线性(如铁磁饱和,磁滞损耗)使得激励电流与磁通波形不一致,从而形成了零点残余电压的高次谐波分量。为减小电感式传感器的零点残余电压,可以采取以下措施1)在设计和工艺上,力求做到磁路对称,铁芯材料均匀;要经过热处理以除去机械应力和改善磁性;两线圈毕恭毕敬绕制要均匀,力求几何尺寸与电气特性保持一致。2)在电路上进行补偿。 3、把被测的非电量变化转化为线圈互感变化的传感器称为互感式传感器。这种传感器

传感器原理及应用期末复习资料精装版

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 1.什么是传感器? 广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 2.传感器由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换原件和基本电路组成。敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。传感器的核心部分是转换原件,转换原件决定传感器的工作原理。 3.传感器的总体发展趋势是什么?传感器的应用情况。 传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 4.了解传感器的分类方法。所学的传感器分别属于哪一类? 按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器 按传感器的输出信号分类:模拟传感器、数字传感器 按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器 按传感器的功能分类:单功能传感器、多功能传感器、智能传感器 按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器 电化学传感器 按传感器的能源分类:有源传感器、无源传感器 国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器 含12个小类:力学量、热学量、光学量、磁学量、电学量、声学量、射线、气体、离子、温度传感器以及生化量、生理量传感器。 1.传感器的性能参数反映了传感器的输入输出关系 2.传感器的静态特性是什么?由哪些性能指标描述?主要性能参数的意义是什么 1线性度:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,线性度RL是表征实际特性与拟合直线不吻合的参数 拟合方法:理论线性度(理论拟合)、c、端基线性度(端点连线拟合)d、独立线性度(端点平移) 最小二乘法线性度 2迟滞:传感器在正、反行程期间输入、输出曲线不重合的现象称迟滞(迟环)。 3重复性:传感器输入量按同一方向作多次测量时输出特性不一致的程度。 4灵敏度: 在稳定条件下输出微小增量与输入微小增量的比值 传感器输出曲线的斜率就是其灵敏度。灵敏度S 反映输入变量能引起的输出变化量 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。 5分辨率和阈值:分辨率——传感器能够检测到的最小输入增量; 阈值——输入小到某种程度输出不再变化的值 6 漂移是指传感器的输入被测量不变,而其输出量却发生了改变。包括零点漂移与灵敏度漂移, 7稳定性:传感器在一较长时间内保持性能参数的能力 3.传递函数的定义是什么? 初始条件为零时输出的拉氏变换与输入的拉氏变换之比。 4.电涡流传感器有较好的线性和灵敏度

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

激光传感器的工作原理及其应用

激光传感器的工作原理 及其应用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

激光传感器由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。常见的是激光测距传感器,它通过记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。激光传感器的应用 利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。 激光测长 精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。现代长度计量多是利用光波的干涉现象来进行的,其精度主要取决于光的单色性的好坏。激光是最理想的光源,它比以往最好的单色光源(氪-86灯)还纯10万倍。因此激光测长的量程大、精度高。 激光测距 它的原理与无线电雷达相同,将激光对准目标发射出去后,测量它的往返时间,再乘以光速即得到往返距离。由于激光具有高方向性、高单色性和高功率等优点,这些对于测远距离、判定目标方位、提高接收系统的信噪比、保证测量精度等都是很关键的,因此激光测距仪日益受到重视。在激光测距仪基础上发展起来的激光雷达不仅能测距,而且还可以测目标方位、运运速度和加速度等,已成功地用于人造卫星的测距和跟踪。 激光测振 它基于多普勒原理测量物体的振动速度。多普勒原理是指:若波源或接收波的观察者相对

《传感器原理及工程应用》第四版郁有文课后答案

第一章传感与检测技术的理论基础 1.什么是测量值的绝对误差、相对误差、引用误差?答:某量值的测得值和真值之差称为绝对误差。 相对误差有实际相对误差和标称相对误差两种表示方法。实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。 引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。 2.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合? 答:测量误差是测得值与被测量的真值之差。 测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。 在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。在计算相对误差时也必须知道绝对误差的大小才能计算。 采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度

引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。 3. 用测量范围为-50?+150kPa的压力传感器测量140kPa 压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解:绝对误差142 140 2 kPa 142 140 实际相对误差100% 1.43% 140 142 140 标称相对误差100% 1.41% 142 142 140 引用误差100% 1% 150 ( 50) 4. 什么是随机误差?随机误差产生的原因是什么?如何减小随机误差 对测量结果的影响? 答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。 随机误差是由很多不便掌握或暂时未能掌握的微小因素 (测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。 对于测量列中的某一个测得值来说,随机误差的出现具有随机性,

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

传感器原理与工程应用复习题参考答案1

《传感器原理及工程应用》习题答案 第1章 传感与检测技术的理论基础(P26) 1-3 用测量围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L = 140kPa 测量值 x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.1140 2 ≈?L δ 标称相对误差 %= =41.1142 2 ≈?x δ引用误差 %--=测量上限-测量下限= 1)50(1502≈?γ

1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 解: 对测量数据列表如下: 当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。 则 2072.410.03270.0788()0.104d G mm v σ=?=<=-, 所以7d 为粗大误差数据,应当剔除。然后重新计算平均值和标准偏差。 当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。 则 20 2.370.01610.0382()d i G mm v σ=?=>,所以其他14个测量值中没有坏值。 计算算术平均值的标准偏差 20 0.0043()d mm σσ= = = 20 330.00430.013()d mm σ=?= 所以,测量结果为:20(120.4110.013)()(99.73%)d mm P =±= 1-14 交流电路的电抗数值方程为

传感器原理与应用期末试卷

盐城师范学院考试试卷 2006 - 2007 学年第一学期 物电院电子信息工程专业《传感器原理与应用》试卷A 班级学号姓名 一、填空题(本大题30空 ,每空1分,共30分) 1. 电容传感器的转换电路除可用谐振调幅和调频电路外,较多采用的 电路还有、、、。 2.将温度转换为电势大小的热电式传感器是传感器,而将温 度变化转换为电阻大小的热电式传感器是(金属材料)或(半导体材料)。 3.用于制作压电传感器的常用压电材料是和。 4.在磁敏式传感器中,传感器和传感器属于体型磁 敏传感器,和属于结型磁敏传感器。 5. 光纤传感器由光源、光纤和三部分组成,光纤传感器一般分 为两大类,即传光型光纤传感器,也称为非功能性光纤传感器,另一类是光纤传感器,也称为光纤传感器,前者多使用光纤,而后者只能用光纤。 6.基于外光电效应的器件有和;基于内光电效 应的器件有、、等。 7. 湿敏电阻是一种随环境变化而变化的敏感元件。 8. 目前常用的数字式传感器有、、、四 大类。 9. 氧化型气体吸附到N型半导体气敏元件上,将使截流子数目减少, 从而使材料的电阻率_ __。

二、选择题(本大题10小题 ,每小题2分,共20分) 1.目前,我国使用的铂热电阻的测量范围是()。 A. -200~850?C B. -50~850?C C. -200~150?C D. -200~50?C 2.通常用应变式传感器测量()。 A.温度 B.密度 C.加速度 D.电阻 3.在光线作用下,半导体电导率增加的现象属于()。 A. 外光电效应 B. 内光电效应 C. 光电发射 4.位置敏感器件的缩写为 ( )。 A.PSD B. CCD C.PZT 5. 常见的数显游标卡尺用( )作基准器件。 A.感应同步器 B. 光栅尺 C.容栅尺 6.气敏传感器中的加热器是为了( )。 A.去除吸附在表面的气体 B. 去除吸附在表面的油污和尘埃 C.去除传感器中的水分 D. 起温度补偿作用 7. 霍尔效应中,霍尔电势与()。 A.霍尔常数成正比B.霍尔常数成反比 C.霍尔元件的厚度成正比D.霍尔元件的厚度成反比 8.压电陶瓷传感器与压电石英晶体传感器的比较是()。 A.前者比后者灵敏度高得多B.后者比前者灵敏度高得多 C.前者比后者性能稳定性高得多D.后者比前者性能稳定性高得多9.计量光栅上出现莫尔条纹的条件有()。 A.两块栅距相等的光栅叠在一起B.两块光栅的刻线之间有较大的夹角C.两块光栅的刻线之间有较小的夹角D.两块光栅刻线之间必须平行

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

传感器原理及工程应用设计

传感器原理及工程应用设计

传感器原理及工程应用设计(论文) 压电传感器在动平衡测量系统中的设计与应用 学生姓名:李梦娇 学号:20094073231 所在学院:信息技术学院 专业:电气工程及其自动化(2)班 中国·大庆 2011年12月

摘要 传感器是动平衡测量系统中的重要元件之一, 是一种将不平衡量产生的振动信号不失真地转变成电信号的装置。利用压电式力传感器作为动平衡测量系统中的敏感元件来测量不平衡质量引起的振动。重点阐述了该压电式力传感器的结构设计、安装位置设计及振动信号检测中的关键问题。同时, 详细分析了该传感器的信号调理电路特点。现场实验结果表明, 设计的压电式力传感器在动平衡测量中的性能良好。动平衡处理是旋转部件必须采取的工艺措施之一, 以单片机为核心的动平衡测量系统将逐步取代常规动平衡仪。 关键词:动平衡振动信号压电式力传感器调理电路测量系统单片机

ABSTRACT As one of the important elements in the dynamic balancing measurement system, transducer is the device that converts the vibration signal caused by the mi balance into electrical signal without distortion. The piezoelectric pressure transducer is app lied to dynamic balancing measurement system formeasuring the vibration caused by mi balanced mass. The structure design and the installation location of the piezoelectric force transducer and the critical issues in vibration signal detection are expounded. The characteristics of the signal conditioning circuit of this transducer are analyzed in detail. The experimental results show that the performance of the piezoelectric pressure transducer offers excellent performance in dynamic balancing measurement. The dynamic equilibration measurement is one of the main technological steps to betaken for all the swiveling part s. T he conventional dynamic equilibration measurement system is being replaced by a new o ne based on a monolithic computer. Keyword:dynamic balance vibration signal Piezoelectric force transducer Conditioning circuit Measurement system Monolithic computer

传感器原理及应用期末试题3

传感器原理及应用期末试题 一.判断题.(本题共10分,对则打“√”,不对则打“×”) 1.A/D转换就是把模拟信号转换成连续的数字信号。() 2.固有频率fn=400Hz的振动子的工作频率范围为f>400Hz。() 3.信号在时域上波形有所变化,必然引起频谱的相应变化。() 4.一台仪器的重复性很好,但测得的结果并不准确,这是由于存在随机误差的缘故。()5.一般来说测量系统的固有频率越高,则其灵敏度就越低。() 6.交流电桥的输出信号经放大后,直接记录就能获得其输入信号的模拟信号了。()7.测量小应变时,应选用灵敏度高的金属丝应变片,测量大应变时,应选用灵敏度低的半导体应 变片。() 8.传递函数表征了系统的传递特性,并反映了物理结构,因此凡传递函数相同的系统,其物理结 构必然相同。() 9./称为信号x(t)的频率响应函数。() 10.作为温度补偿的应变片应和工作应变片作相邻桥臂且分别贴在与被测试件相同的置于同一温度场的材料上。() 选择题(共24分,每空1.5分,每题只有一个正确答案) 1.压电式加速度计测量系统的工作频率下限取决于() a.加速度计力学系统的频率特性; b.压电晶体的电路特性; c.测量电路的时间常数。 2.用惯性式加速度计进行测量,为保证相位关系不变,应选择适当的阻尼比β,一般取β=() 或β=();而对惯性式位移传感器应有β=() a.β=0; b.β=0.7; c.β=1; d.β=0.86 3.要测量x(t)=5aSin40πt+aSin2000πt的振动位移信号,为了尽量减少失真,应采用()的惯性加速度计。 a.fn=15Hz、β=0.707; b.fn=1000Hz、β=0.707; c.fn=50kHz、β=0.04 4.压电式加速度传感器的阻尼率一般为() a.β>1; b.0.707<β<1; c.β=0.707; d.β<<0.707 5.描述非周期信号的数学工具是()。 a.三角函数; b.拉氏变换; c.付氏变换; d.付氏级数 6.复杂周期信号的频谱是() a.离散谱; b.连续谱; c.δ函数; d.sinc函数 7.对某二阶系统输入周期信号X(t)=A0sinωmt,则系统输出信号有以下特性()。 [注:ωm>ωn] 幅值、频率、相位皆不变;b.频率改变,幅值、相位不变;c.幅值、相位改变,频率不变; d.相位不变,幅值、频率改变 8.测量等速变化的温度时,为了减小测量误差,希望测温传感器的时间常数() a.大些好; b.小些好; c.要适中; d.可不考虑 9.半导体应变片是根据()原理工作的;压电式加速度计的工作原理是基于() 电阻应变效应;b.压阻效应;c.压电效应;d.电磁效应 10.金属丝应变片在测量某一构件的应变时,其电阻的相对变化主要由()引起的。

相关主题
文本预览
相关文档 最新文档