当前位置:文档之家› 高分子材料分析与测试(期末复习及答案)

高分子材料分析与测试(期末复习及答案)

高分子材料分析与测试(期末复习及答案)
高分子材料分析与测试(期末复习及答案)

期末复习作业

一、名词解释

1.透湿量

透湿量即指水蒸气透过量。薄膜两侧的水蒸气压差和薄膜厚度一定,温度一定的条件下1㎡聚合物材料在24小时内所透过的蒸汽量(用

θ表示)

v

2.吸水性

吸水性是指材料吸收水分的能力。通常以试样原质量与试样失水后的质量之差和原质量之比的百分比表示;也可以用单位面积的试样吸收水分的量表示;还可以用吸收的水分量来表示。3.表观密度

对于粉状、片状颗粒状、纤维状等模塑料的表观密度是指单位体积中的质量(用

η表示)

a

对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度和相对湿度时的重量,故又称体积密度或视密度(用

ρ表示)

a

4、拉伸强度

在拉伸试验中,保持这种受力状态至最终,就是测量拉伸力直至材料断裂为止,所承受的最大拉伸应力称为拉伸强度(极限拉伸应力,用

σ表示)

t

5、弯曲强度

试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲应力(用

σ表示)

f

6、压缩强度

指在压缩试验中试样所承受的最大压缩应力。它可能是也可能不是试样破裂的瞬间所承受的压缩应力(用

σ表示)

e

7、屈服点

应力—应变曲线上应力不随应变增加的初始点。

8、细长比

指试样的高度与试样横截面积的最小回转半径之比(用λ表示)9、断裂伸长率

断裂时伸长的长度与原始长度之比的百分数(用

ε表示)

t

10、弯曲弹性模量

比例极限内应力与应变比值(用E f表示)

11、压缩模量

指在应力—应变曲线的线性范围内压缩应力与压缩应变的比值。由于直线与横坐标的交点一般不通过原点,因此可用直线上两点的应力差与对应的应变差之比表示(用E e表示)

12、弹性模量

在负荷—伸长曲线的初始直线部分,材料所承受的应力与产生相应的应变之比(用E表示)

13、压缩变形

指试样在压缩负荷左右下高度的改变量(用?h表示)

14、压缩应变

指试样的压缩变形除以试样的原始高度(用ε表示)

15、断纹剪切强度

指沿垂直于板面的方向剪断的剪切强度。

16、剪切应力

试验过程中任一时刻试样在单位面积上所承受的剪切负荷。17、压缩应力

指在压缩试验过程中的任何时刻,单位试样的原始横截面积上所承受的压缩负荷(用σ表示)

18、拉伸应力

为试样在外作用力下在计量标距范围内,单位初始横截面上所承受的拉伸力(用σ表示)

19、热性能

高聚物的热性能是其与热或温度有关的性能的总称。大致包括热稳定性、热物理性、流动性、耐寒性。

20、塑料硬度

塑料材料抵抗其他硬物体压力的能力。

21、疲劳

材料在交变的周期性应力或频繁的重复应力作用下,导致材料的力学性能减弱或破坏的过程称为疲劳。

22、塑料熔体流动速率

塑料熔体在规定的温度和压力下,在参照时间内(600s)从标准口模被压出的质量称为熔体流动速率,单位为g/10min。

23、塑料脆化温度

塑料低温力学行为的一种量度,以具有一定能量的冲锤冲击试样时,当试样开裂几率达到50%时的温度。

24、自然大气老化

高分子材料长期暴露在室外条件下产生的各种变化,又称大气老化。

25、常压热老化

是指塑料在常压和规定温度的热空气作用下见过一定时间后测定热稳定性推算储存期和使用寿命。

二、填空题

1.高分子材料的基本物理性能测试包括(物理性能)、(力学性能)、(热性能)、(电性能)、(老化性能)、(其他性能)等六方面的测定。

2、塑料水分含量的测定方法有(干燥恒重)、(气化测压法)、(卡尔·液体试剂滴定法)。

3、测定液体及蒸汽对聚合物的透过性有(“杯”法)、(“盘”法)、(静压水法)等方法。

4、橡胶硫化性能试验中、橡胶的硫化历程分析,可分为四个阶段(硫化诱导期)、(热硫化时期)、(硫化平坦期)(过硫化期)。测量聚合物透气性的方法有(真空法)、(恒压法)、(恒容法)、和近年来发展起来的(MC3型气体透过率测试仪)等。

5、温度对硫化橡胶的物理性能有较大影响,一般来说,橡胶的拉伸强度和拉伸应力是随温度的升高而(下降),断裂伸长率有所(增加),对于结晶速度不同的胶种更明显。

6、橡胶材料拉伸性能测试中,一般情况拉伸速度越快,拉伸强度越(大),伸长率越(小)。

7、高分子材料的冲击性能测试是在冲击负荷下测定材料的冲击强度,一般的冲击性能试验可以分为(摆锤式冲击性能试验)、(落球式冲击试验)、(高速拉伸冲击试验)。三种试验方法按照试验温度又可以分为(常温冲击)、(低温冲击)、(高温冲击)。

8、橡胶材料的冲击性能测试按照材料的受力状态可分为(弯曲冲击)、(拉伸冲击)、(扭转冲击)、(剪切冲击)。按照采用的能量和冲击次数可以分为(大能量的一次冲击)和(小能量的一次冲击)。

9、高分子材料蠕变和应力松弛试验中,温度越高,蠕变和应力松弛速率(越大),蠕变值和应力松弛值(越大)。这种情况下不适合硫化橡胶类高聚物,在恒定形变下,高分子材料的应力松弛有(物理松弛)和(化学松弛)两种。

10、塑料硬度试验中的硬度值可以用来估计热塑性塑料的固化程度,(完全固化的塑料)比(不完全固化的塑料)硬度高。

11、影响橡胶制品疲劳性能的因素有(原材料)、(配方)(力学特性)(周围环境因素)。在动态应力作用下塑料会产生疲劳,塑料疲劳的根本原因(由于塑料具有粘弹性),在交变应力作用下,

(分子链变形)总滞后于应力,产生内摩擦生成大量的热,引起材料缺陷易疲劳。

12、高分子材料的基本热性能测试包括(热稳定性)、(热物理性)、(流动性)、(耐寒性)等四方面的测定。

13、橡塑材料线性收缩率的测定有两项(收缩率)和(后收缩率)。

14、测量材料的线性膨胀系数可用(连续升温法);测量平均线性膨胀系数可用(连续升温法)和(两端点温度法)两种方法。

15、评价橡胶材料在恒定湿热条件的暴露试验的指标(质量变化)、(尺寸变化)、(目测外观变化)、(物理性能变化)等四方面的测定。

16、塑料燃烧性能的试验方法中,最具有代表性、应用最广泛的方法为(水平燃烧法)和(垂直燃烧法),这两种方法都属于(塑料表面火焰传播实验方法)。

17、高聚物点性能指标主要有(介电强度)、(介电常数)、(损耗因子)、(体积电阻率)、(表面电阻率)、(耐电弧性)等六方面。

18、防止高聚物老化的办法是在高聚物合成或成型加工过程中加入(抗氧剂)和(防老剂)来防止高聚物的氧化降解和光降解。

三、解释说明题

1、聚合物溶液的粘度能提供粘性液体的性质、组成和结构方面的许多信息,另一方面溶液的粘度和聚合物的分子量有关,试说明应用黏度法测定聚苯乙烯(PS)分子量的原理。

(写公式,注明公式中符合的意义)

答:利用黏度法测定PS分子量

聚合物分子量与其溶液黏度的关系由Mark—Houwink方程推出[η]=KMα

式中[η]是聚合物溶液(聚苯乙烯溶液)的特性黏度;K、α是与聚合物种类、温度、溶剂以及分子量范围有关的常数。当K、α已知后,从聚合物溶液的特性黏度[η]就可以计算聚合物的分子量。

2、橡胶硫化性能测试试验中,硫化历程分为四个阶段,画出硫化的典型硫化阶段,并简要说明较为理想的硫化曲线具备的条件。

答:典型硫化曲线如课本第109页图5-11

0-5min是诱导硫化期5-10min是热硫化期

10-15min是平坦硫化期15-20min是过硫化期

较为理想的橡胶硫化曲线应满足:

①硫化诱导期足够长

②硫化速度要快

③硫化平坦期要长

3、塑料和橡胶的拉伸性能是力学性能中最重要、最基本的的性能之一。画出用一定速度拉伸,由应力-应变值对应的绘出的曲线。说明曲线上对应是哪三种材料两个区域中应力与

应变的关系如何

答:拉伸应力—应变曲线是课本第112页图6-1

A—脆性材B—具有屈服点的韧性材料C—无屈服点的韧性材料应力—应变一般分为弹性变形区和塑性变形区两个部分。在弹性变形区域,材料发生可完全恢复的弹性变形,应力—应变成正比例关系。曲线中直线部分的斜率是拉伸弹性模量值,它代表材料的刚性,弹性模量越大刚性越好。在塑性变形区,应力—应变不成正比例关系,最后出现断裂。

4.塑料和橡胶的力学性能是最重要、最基本的的性能之一,简述力学性能测试包括哪些项目的测试

答:力学性能测试包括拉伸性能、弯曲性能、压缩性能、冲击性能、剪切试验、蠕变及应力松弛试验、硬度试验、疲劳试验、摩擦及磨耗性能九个项目的测试。

5.简述橡塑材料洛氏硬度的试验原理。

答:橡塑材料洛氏硬度的试验原理:洛氏硬度是用规定的压头对试样先施加初试验力,接着再施加主试验力,然后卸除主试验力,保留初试验力,用前后两次初试验力作用下压头压入试样的深度差计算出的硬度值。其作用原理如课本第140页图6-28所示。采用金刚石圆锥或钢球作为压头,分两次对试样加荷,首先施加

,接着在施加主试验力,初试验力,压头压入试样的压痕深度为h

1

压头在总试验力作用下的压痕深度为h

;然后压头在总试验力

2

下保持一定时间后卸除主试验力,只保留初试验力,压痕因试样

,从而求出其硬度值。的弹性回复而最终形成的压痕深度为h

3

6.高分子材料的蠕变及应力松弛性能试验中,材料的形变随时间增加而逐渐增大的现象是蠕变现象,试画出线型高聚物在恒定应力下和除去应力后的形变时间曲线。并说明曲线上四个阶段的特点。

答:线型高聚物在恒定应力下和除去应力后的形变时间曲线是课本第133页图6-21

AB阶段:普弹形变,这是分子链内键长与键角的改变所引起的形变,这种形变是瞬时发生的,形变量很小,弹性模量很大,是可逆形变

BC阶段:高弹形变,是由于分子量构象的改变引起的形变,这种形变需要一个松弛时间,形变量很大,弹性模量很小,是可逆形变

CD阶段:黏性形变,是由于分子链之间产生了相对滑动引起的形变,这种形变会随时间无限发展,是不可逆形变

DE阶段:永久形变,是由于黏性流动的不可逆形变造成的

7.在高分子材料的力学性能试验中,发现材料会产生应力松弛和蠕变现象,论述在高分子材料在蠕变及应力松弛性能试验中的影响因素。

答:高分子材料在蠕变及应力松弛性能试验中的影响因素:

①温度温度越高,蠕变和应力松弛速率越大,蠕变值和

应力松弛值也越大。但对硫化橡胶这类交联高聚物,温

度升高一定值时其蠕变和应力松弛速率显着降低,蠕变

值和应力松弛值也变化很小。

②压力增大压力可以使材料的自由体积减少

③聚合物分子量黏性与高聚物的熔融黏度密切相关,而

熔融黏度又与分子量有关。当分子量较小时,熔融黏度

与分子量成正比;分子量足够大时,熔融黏度与分子量

的~次幂成正比。

④交联状态不同的交联网,其蠕变和应力松弛不相同,

随着交联度的提高,蠕变速率明显下降。

⑤共聚和增塑作用改变了高聚物的玻璃化温度,是蠕变

和应力松弛曲线在温度轴方向产生平移。

⑥结晶化结晶度不高也能大大减少蠕变或应力松弛。

⑦聚合物分子结构

8.叙述毛细管法测定高聚物的熔点的原理和主要影响因素。答:

(1)原理:

在控制升温速率的情况下对毛线管中的试样加热,观察其形状变化,将试样刚刚变透明或凝聚时的温度,作为该聚合物的熔点。

(2)主要影响因素:

①升温速率随着升温速率的增加,试样的熔点逐渐

变低。在—3℃/min范围内,测得的熔点值相差很小,

所以把升温速率规定为( )℃/min。

②控温起点高低按ISO3416—1985规定,当试验温

度到达比预期的熔点大约20℃时,即把升温速率调

整到2—℃/min。

③装样高度装样高度相差较大时,对试验结果有一

定影响。

材料分析测试技术-习题

第一章 1.什么是连续X射线谱?为什么存在短波限λ0? 答:对X射线管施加不同的电压,再用适当的方法去测量由X射线管发出的X射线的波长和强度,便会得到X射线强度与波长的关系曲线,称之为X射线谱。在管电压很低,小于20kv时的曲线是连续的,称之为连续谱。大量能量为eV的自由电子与靶的原子整体碰撞时,由于到达靶的时间和条件不同,绝大多数电子要经过多次碰撞,于是产生一系列能量为hv的光子序列,形成连续的X射线谱,按照量子理论观点,当能量为eV的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,在极限情况下,极少数的电子在一次碰撞中将全部的能量一次性转化为一个光量子,这个光量子具有最高的能量和最短的波长,即λ0。 2.什么是特征X射线?它产生的机理是什么?为什么存在激发电压Vk? 答:当X射线管电压超过某个临界值时,在连续谱的某个波长处出现强度峰,峰窄而尖锐,这些谱线之改变强度,而峰位置所对应的波长不便,即波长只与靶的原子序数有关,与电压无关,因为这种强度峰的波长反映了物质的原子序数特征,故称为特征X射线,由特征X射线构成的X射线谱叫做特征X射线谱。 它的产生是与阳极靶物质的原子结构紧密相关当外来的高速粒子(电子或光子)的动能足够大时,可以将壳层中的某个电子击出,或击到原子系统之外,击出原子内部的电子形成逸出电子,或使这个电子填补到未满的高能级上。于是在原来位置出现空位,原子系统处于激发态,高能级的电子越迁到该空位处,同时将多余的能量e=hv=hc/λ释放出来,变成光电子而成为德特征X射线。 由于阴极射来的电子欲击出靶材的原子内层电子,比如k层电子,必须使其动能大于k 层电子与原子核的结合能Ek或k层的逸出功Wk。即有eV k=1/2mv2〉-Ek=Wk,故存在阴极电子击出靶材原子k电子所需要的临界激发电压Vk。 3、X射线与物质有哪些互相作用? 答;X射线的散射:相干散射,非相干散射 X射线的吸收:二次特征辐射(当入射X射线的能量足够大时,会产生二次荧光辐射); 光电效应:这种以光子激发原子所产生的激发和辐射过程;俄歇效应:当内层电子被击出成为光电子,高能级电子越迁进入低能级空位,同时产生能量激发高层点成为光电子。 4、线吸收系数μl和质量吸收系数μm的含义 答:线吸收系数μl:在X射线的传播方向上,单位长度的X射线强度衰减程度[cm-1](强度为I的入射X射线在均匀物质内部通过时,强度的衰减率与在物质内通过的距离x成正步-dI/I=μdx,强度的衰减与物质内通过的距离x成正比)。与物质种类、密度、波长有关。质量吸收系数μm:他的物理意义是单位重量物质对X射线的衰减量,μ/P=μm[cm2/g]与物质密度和物质状态无关,而与物质原子序数Z和μm=kλ3Z3,X射线波长有关。 5、什么是吸收限?为什么存在吸收限? 答:1)当入射光子能量hv刚好击出吸收体的k层电子,其对应的λk为击出电子所需要的入射光的最长波长,在光电效应产生的条件时,λk称为k系激发限,若讨论X射线的被物质吸收时,λk又称为吸收限。 当入射X射线,刚好λ=λk时,入射X射线被强烈的吸收。当能量增加,即入射λ〉λk时,吸收程度小。

现代材料测试技术试题答案

一、X射线物相分析的基本原理与思路 在对材料的分析中我们大家可能比较熟悉对它化学成分的分析,如某一材料为Fe96.5%,C 0.4%,Ni1.8%或SiO2 61%, Al2O3 21%,CaO 10% ,FeO 4%等。这是材料成分的化学分析。 一个物相是由化学成分和晶体结构两部分所决定的。X射线的分析正是基于材料的晶体结构来测定物相的。 X射线物相分析的基本原理是什么呢? 每一种结晶物质都有自己独特的晶体结构,即特定点阵类型、晶胞大小、原子的数目和原子在晶胞中的排列等。因此,从布拉格公式和强度公式知道,当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射晶面的晶面间距值d和反射线的强度来表征。 其中晶面网间距值d与晶胞的形状和大小有关,相对强度I则与质点的种类及其在晶胞中的位置有关。 衍射花样有两个用途: 一是可以用来测定晶体的结构,这是比较复杂的; 二是用来测定物相。 所以,任何一种结晶物质的衍射数据d和I是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相,分析的思路将样品的衍射花样与已知标准物质的衍射花样进行比较从中找出与其相同者即可。 X射线物相分析方法有: 定性分析——只确定样品的物相是什么? 包括单相定性分析和多相定性分析定量分析——不仅确定物相的种类还要分析物相的含量。 二、单相定性分析 利用X射线进行物相定性分析的一般步骤为: ①用某一种实验方法获得待测试样的衍射花样; ②计算并列出衍射花样中各衍射线的d值和相应的相对强度I值; ③参考对比已知的资料鉴定出试样的物相。 1、标准物质的粉末衍射卡片 标准物质的X射线衍射数据是X射线物相鉴定的基础。为此,人们将世界上的成千上万种结晶物质进行衍射或照相,将它们的衍射花样收集起来。由于底片和衍射图都难以保存,并且由于各人的实验的条件不同(如所使用的X射线波长不同),衍射花样的形态也有所不同,难以进行比较。因此,通常国际上统一将这些衍射花样经过计算,换算成衍射线的面网间距d值和强度I,制成卡片进行保存。

材料分析测试技术复习题 附答案

材料分析测试技术复习题 【第一至第六章】 1.X射线的波粒二象性 波动性表现为: -以波动的形式传播,具有一定的频率和波长 -波动性特征反映在物质运动的连续性和在传播过程中发生的干涉、衍射现象 粒子性突出表现为: -在与物质相互作用和交换能量的时候 -X射线由大量的粒子流(能量E、动量P、质量m)构成,粒子流称为光子-当X射线与物质相互作用时,光子只能整个被原子或电子吸收或散射 2.连续x射线谱的特点,连续谱的短波限 定义:波长在一定范围连续分布的X射线,I和λ构成连续X射线谱 λ∞,波?当管压很低(小于20KV 时),由某一短波限λ 0开始直到波长无穷大长连续分布 ?随管压增高,X射线强度增高,连续谱峰值所对应的波长(1.5 λ 0处)向短波端移动 ?λ 0 正比于1/V, 与靶元素无关 ?强度I:由单位时间内通过与X射线传播方向垂直的单位面积上的光量子数的能量总和决定(粒子性观点描述)

?单位时间通过垂直于传播方向的单位截面上的能量大小,与A2成正比(波动性观点描述) 短波限:对X射线管施加不同电压时,在X射线的强度I 随波长λ变化的关系曲线中,在各种管压下的连续谱都存在一个最短的波长值λ0,称为短波限。 3.连续x射线谱产生机理 【a】.经典电动力学概念解释: 一个高速运动电子到达靶面时,因突然减速产生很大的负加速度,负加速度引起周围电磁场的急剧变化,产生电磁波,且具有不同波长,形成连续X射线谱。 【b】.量子理论解释: * 电子与靶经过多次碰撞,逐步把能量释放到零,同时产生一系列能量为hυi的光子序列,形成连续谱 * 存在ev=hυmax,υmax=hc/ λ0, λ0为短波限,从而推出λ0=1.24/ V (nm) (V为电子通过两极时的电压降,与管压有关)。 * 一般ev≥h υ,在极限情况下,极少数电子在一次碰撞中将全部能量一次性转化为一个光量子 4.特征x射线谱的特点 对于一定元素的靶,当管压小于某一限度时,只激发连续谱,管压增高,射线谱曲线只向短波方向移动,总强度增高,本质上无变化。 当管压超过某一临界值后,在连续谱某几个特定波长的地方,强度突然显著

高分子材料典型力学性能测试实验

《高分子材料典型力学性能测试实验》实验报告 学号姓名专业班级 实验地点指导教师实验时间 在这一实验中将选取两种典型的高分子材料力学测试实验,即拉伸实验及冲 击试验作为介绍。 实验一:高分子材料拉伸实验 一、实验目的 (1)熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作,了解测 试条件对测定结果的影响。 (2)通过应力—应变曲线,判断不同高分子材料的性能特征。 二、实验原理 在规定的实验温度、湿度和实验速率下,在标准试样(通常为哑铃形)的 两端沿轴向施加载荷直至拉断为止。拉伸强度定义为断裂前试样承受最大载荷与试样的宽度和厚度的乘积的比值。实验不仅可以测得拉伸强度,同时可得到断裂伸长率和拉伸模量。 玻璃态聚合物在拉伸时典型的应力-应变曲线如下:

是在较低温度下出现的不均匀拉伸,所以又称为冷拉。 将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、 形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力—应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服 点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。所涉及的相关计算公式: (1)拉伸强度或拉伸断裂应力或拉伸屈服应力或偏置屈服应力σt σt 按式(1)计算: (1) 式中σt—抗拉伸强度或拉伸断裂应力或拉伸屈服应力或偏置屈服应力,MPa; p—最大负荷或断裂负荷或屈服负荷或偏置屈服负荷,N; b—实验宽度,mm;d—试样厚度,mm。 (2)断裂伸长率εt εt 按式(2)计算: 式中εt——断裂伸长率,%;

《材料分析测试技术》试卷(答案)

《材料分析测试技术》试卷(答案) 一、填空题:(20分,每空一分) 1. X射线管主要由阳极、阴极、和窗口构成。 2. X射线透过物质时产生的物理效应有:散射、光电效应、透射X射线、和热。 3. 德拜照相法中的底片安装方法有:正装、反装和偏装三种。 4. X射线物相分析方法分:定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。 5. 透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。 6. 今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。 7. 电子探针包括波谱仪和能谱仪成分分析仪器。 8. 扫描电子显微镜常用的信号是二次电子和背散射电子。 二、选择题:(8分,每题一分) 1. X射线衍射方法中最常用的方法是( b )。 a.劳厄法;b.粉末多晶法;c.周转晶体法。 2. 已知X光管是铜靶,应选择的滤波片材料是(b)。 a.Co ;b. Ni ;c. Fe。 3. X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用(c )。 a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。 4. 能提高透射电镜成像衬度的可动光阑是(b)。 a.第二聚光镜光阑;b. 物镜光阑;c. 选区光阑。 5. 透射电子显微镜中可以消除的像差是( b )。 a.球差;b. 像散;c. 色差。 6. 可以帮助我们估计样品厚度的复杂衍射花样是(a)。 a.高阶劳厄斑点;b. 超结构斑点;c. 二次衍射斑点。 7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。 a.背散射电子;b.俄歇电子;c. 特征X射线。 8. 中心暗场像的成像操作方法是(c)。 a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。 三、问答题:(24分,每题8分) 1.X射线衍射仪法中对粉末多晶样品的要求是什么? 答:X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小 适中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一 个最佳厚度(t =

材料分析测试复习题及答案

材料分析测试方法复习题 第一部分 简答题: 1. X 射线产生的基本条件 答:①产生自由电子; ②使电子做定向高速运动; ③在电子运动的路径上设置使其突然减速的障碍物。 2. 连续X 射线产生实质 答:假设管电流为10mA ,则每秒到达阳极靶上的电子数可达6.25x10(16)个,如此之多的电子到达靶上的时间和条件不会相同,并且绝大多数达到靶上的电子要经过多次碰撞,逐步把能量释放到零,同时产生一系列能量为hv (i )的光子序列,这样就形成了连续X 射线。 3. 特征X 射线产生的物理机制 答:原子系统中的电子遵从刨利不相容原理不连续的分布在K 、L 、M 、N 等 不同能级的壳层上,而且按能量最低原理从里到外逐层填充。当外来的高速度的粒子动能足够大时,可以将壳层中某个电子击出去,于是在原来的位置出现空位,原子系统的能量升高,处于激发态,这时原子系统就要向低能态转化,即向低能级上的空位跃迁,在跃迁时会有一能量产生,这一能量以光子的形式辐射出来,即特征X 射线。 4. 短波限、吸收限 答:短波限:X 射线管不同管电压下的连续谱存在的一个最短波长值。 吸收限:把一特定壳层的电子击出所需要的入射光最长波长。 5. X 射线相干散射与非相干散射现象 答: 相干散射:当X 射线与原子中束缚较紧的内层电子相撞时,电子振动时向四周发射电磁波的散射过程。 非相干散射:当X 射线光子与束缚不大的外层电子或价电子或金属晶体中的自由电子相撞时的散射过程。 6. 光电子、荧光X 射线以及俄歇电子的含义 答:光电子:光电效应中由光子激发所产生的电子(或入射光量子与物质原子中电子相互碰撞时被激发的电子)。 荧光X 射线:由X 射线激发所产生的特征X 射线。 俄歇电子:原子外层电子跃迁填补内层空位后释放能量并产生新的空位,这些能量被包括空位层在内的临近原子或较外层电子吸收,受激发逸出原子的电子叫做俄歇电子。 7. X 射线吸收规律、线吸收系数 答:X 射线吸收规律:强度为I 的特征X 射线在均匀物质内部通过时,强度的衰减与在物质内通过的距离x 成比例,即-dI/I=μdx 。 线吸收系数:即为上式中的μ,指在X 射线传播方向上,单位长度上的X 射线强弱衰减程度。 8. 晶面及晶面间距 答:晶面:在空间点阵中可以作出相互平行且间距相等的一组平面,使所有的节点均位于这组平面上,各平面的节点分布情况完全相同,这样的节点平面成为晶面。 晶面间距:两个相邻的平行晶面的垂直距离。 9. 反射级数与干涉指数 答:布拉格方程 表示面间距为d ’的(hkl )晶面上产生了n 级衍射,n 就是反射级数 λ θn Sin d ='2:

(完整版)材料分析测试技术部分课后答案

材料分析测试技术部分课后答案 太原理工大学材料物理0901 除夕月 1-1 计算0.071nm(MoKα)和0.154nm(CuKα)的X-射线的振动频率和能量。 ν=c/λ=3*108/(0.071*10-9)=4.23*1018S-1 E=hν=6.63*10-34*4.23*1018=2.8*10-15 J ν=c/λ=3*108/(0. 154*10-9)=1.95*1018S-1 E=hν=6.63*10-34*2.8*1018=1.29*10-15 J 1-2 计算当管电压为50kV时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能. E=eV=1.602*10-19*50*103=8.01*10-15 J λ=1.24/50=0.0248 nm E=8.01*10-15 J(全部转化为光子的能量) V=(2eV/m)1/2=(2*8.01*10-15/9.1*10-31)1/2=1.32*108m/s 1-3分析下列荧光辐射产生的可能性,为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射;

(3)用CuKαX射线激发CuLα荧光辐射。 答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子,他们有一定的能量。最内层能量最低,向外能量依次增加。 根据能量关系,M、K层之间的能量差大于L、K成之间的能量差,K、L层之间的能量差大于M、L层能量差。由于释放的特征谱线的能量等于壳层间的能量差,所以K?的能量大于Ka 的能量,Ka能量大于La的能量。 因此在不考虑能量损失的情况下: CuKa能激发CuKa荧光辐射;(能量相同) CuK?能激发CuKa荧光辐射;(K?>Ka) CuKa能激发CuLa荧光辐射;(Ka>la) 1-4 以铅为吸收体,利用MoKα、RhKα、AgKαX射线画图,用图解法证明式(1-16)的正确性。(铅对于上述Ⅹ射线的质量吸收系数分别为122.8,84.13,66.14 cm2/g)。再由曲线求出铅对应于管电压为30 kv条件下所发出的最短波长时质量吸收系数。 解:查表得 以铅为吸收体即Z=82 Kαλ3 λ3Z3 μm Mo 0.714 0.364 200698 122.8 Rh 0.615 0.233 128469 84.13 Ag 0.567 0.182 100349 66.14 画以μm为纵坐标,以λ3Z3为横坐标曲线得K≈8.49×10-4,可见下图 铅发射最短波长λ0=1.24×103/V=0.0413nm λ3Z3=38.844×103 μm = 33 cm3/g 1-5. 计算空气对CrKα的质量吸收系数和线吸收系数(假设空气中只有质量分数80%的氮和质量分数20%的氧,空气的密度为1.29×10-3g/cm3)。 解:μm=0.8×27.7+0.2×40.1=22.16+8.02=30.18(cm2/g) μ=μm×ρ=30.18×1.29×10-3=3.89×10-2 cm-1 1-6. 为使CuKα线的强度衰减1/2,需要多厚的Ni滤波片?(Ni的密度为8.90g/cm3)。1-7. CuKα1和CuKα2的强度比在入射时为2:1,利用算得的Ni滤波片之后其比值会有什么变化? 解:设滤波片的厚度为t 根据公式I/ I0=e-Umρt;查表得铁对CuKα的μm=49.3(cm2/g),有:1/2=exp(-μmρt) 即t=-(ln0.5)/ μmρ=0.00158cm 根据公式:μm=Kλ3Z3,CuKα1和CuKα2的波长分别为:0.154051和0.154433nm ,所以μm=K

《材料分析测试技术》试卷答案

《材料分析测试技术》试卷(答案) 一、填空题:(20分,每空一分) 1.X射线管主要由阳极、阴极、和窗口构成。 2.X射线透过物质时产生的物理效应有:散射、光电效应、透射X 射线、和热。 3.德拜照相法中的底片安装方法有: 正装、反装和偏装三种。 4. X射线物相分析方法分: 定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。 5.透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。 6.今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。 7. 电子探针包括波谱仪和能谱仪成分分析仪器。 8.扫描电子显微镜常用的信号是二次电子和背散射电子。 二、选择题:(8分,每题一分) 1.X射线衍射方法中最常用的方法是( b )。 a.劳厄法;b.粉末多晶法;c.周转晶体法。 2. 已知X光管是铜靶,应选择的滤波片材料是(b)。 a.Co;b. Ni;c.Fe。 3.X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用( c )。 a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。 4.能提高透射电镜成像衬度的可动光阑是(b)。 a.第二聚光镜光阑;b.物镜光阑;c. 选区光阑。 5. 透射电子显微镜中可以消除的像差是( b )。 a.球差; b. 像散; c. 色差。 6.可以帮助我们估计样品厚度的复杂衍射花样是( a)。 a.高阶劳厄斑点;b.超结构斑点;c. 二次衍射斑点。 7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。 a.背散射电子; b.俄歇电子;c. 特征X射线。 8. 中心暗场像的成像操作方法是(c)。 a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。 三、问答题:(24分,每题8分) 1.X射线衍射仪法中对粉末多晶样品的要求是什么? 答: X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小适 中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一个 最佳厚度(t =

高分子材料测试技术答案 青岛科技大学考试复习资料

聚合物结构与性能 1.非晶体聚合物的力学三态,说明各自分子运动特点,并用曲线表示出来。 力学三态:玻璃态、高弹态和粘流态称为聚合物的力学三态 玻璃态:温度低,链段的运动处于冻结,只有侧基、链节、链长、键角等局部运动,形变小; 高弹态:链段运动充分发展,形变大,可恢复; 粘流态:链段运动剧烈,导致分子链发生相对位移,形变不可逆。 2.晶态聚合物的力学状态及其转变 在轻度结晶的聚合物中,少量的晶区起类似交联点的作用,当温度升高时,其中非晶区由玻璃态转变为高弹态,可以观察到 Tg 的存在,但晶区的链段由于受晶格能的限制难以运动,使其形变受到限制,整个材料表现为由于非晶区的高弹态而具有一定的韧性,由于晶区的存在具有一定的硬度。 若晶区的Tm>T f (非晶区),则当晶区熔融后,非晶区已进入粘流态,不 呈现高弹态; 若TmT f 时才进入 粘流态。 3.聚合物的分子运动具有以下特点 (1)运动单元的多重性(2)聚合物分子的运动是一个松弛过程:(3)聚合物的分子运动与温度有关 4.玻璃化温度的影响因素 (1)聚合物的结构(a) 主链结构(b) 侧基或侧链(c) 分子量(d) 化学交联 (2)共聚、共混与增塑 (3)外界条件 红外光谱分析思考题 1.红外光谱的定义 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录物质对红外光的吸收程度(或透过程度)与波长或波数关系曲线,就得到红外光谱 形变

材料测试分析方法答案

第一章 一、选择题 1.用来进行晶体结构分析的X射线学分支是() A.X射线透射学; B.X射线衍射学; C.X射线光谱学; D.其它 2. M层电子回迁到K层后,多余的能量放出的特征X射线称() A.Kα; B. Kβ; C. Kγ; D. Lα。 3. 当X射线发生装置是Cu靶,滤波片应选() A.Cu;B. Fe;C. Ni;D. Mo。 4. 当电子把所有能量都转换为X射线时,该X射线波长称() A.短波限λ0; B. 激发限λk; C. 吸收限; D. 特征X射线 5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题) A.光电子; B. 二次荧光; C. 俄歇电子; D. (A+C) 二、正误题 1. 随X射线管的电压升高,λ0和λk都随之减小。() 2. 激发限与吸收限是一回事,只是从不同角度看问题。() 3. 经滤波后的X射线是相对的单色光。() 4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。() 5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。() 三、填空题 1. 当X射线管电压超过临界电压就可以产生X射线和X射线。 2. X射线与物质相互作用可以产生、、、、 、、、。 3. 经过厚度为H的物质后,X射线的强度为。 4. X射线的本质既是也是,具有性。 5. 短波长的X射线称,常用于;长波长的X射线称 ,常用于。 习题 1.X射线学有几个分支?每个分支的研究对象是什么?

2. 分析下列荧光辐射产生的可能性,为什么? (1)用CuK αX 射线激发CuK α荧光辐射; (2)用CuK βX 射线激发CuK α荧光辐射; (3)用CuK αX 射线激发CuL α荧光辐射。 3. 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、 “吸收谱”? 4. X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量 描述它? 5. 产生X 射线需具备什么条件? 6. Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中? 7. 计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短 波限和光子的最大动能。 8. 特征X 射线与荧光X 射线的产生机理有何异同?某物质的K 系荧光X 射线波长是否等 于它的K 系特征X 射线波长? 9. 连续谱是怎样产生的?其短波限V eV hc 3 01024.1?= =λ与某物质的吸收限k k k V eV hc 3 1024.1?= =λ有何不同(V 和V K 以kv 为单位)? 10. Ⅹ射线与物质有哪些相互作用?规律如何?对x 射线分析有何影响?反冲电子、光电 子和俄歇电子有何不同? 11. 试计算当管压为50kv 时,Ⅹ射线管中电子击靶时的速度和动能,以及所发射的连续 谱的短波限和光子的最大能量是多少? 12. 为什么会出现吸收限?K 吸收限为什么只有一个而L 吸收限有三个?当激发X 系荧光 Ⅹ射线时,能否伴生L 系?当L 系激发时能否伴生K 系? 13. 已知钼的λK α=0.71?,铁的λK α=1.93?及钴的λK α=1.79?,试求光子的频率和能量。 试计算钼的K 激发电压,已知钼的λK =0.619?。已知钴的K 激发电压V K =7.71kv ,试求其λK 。 14. X 射线实验室用防护铅屏厚度通常至少为lmm ,试计算这种铅屏对CuK α、MoK α辐射 的透射系数各为多少? 15. 如果用1mm 厚的铅作防护屏,试求Cr K α和Mo K α的穿透系数。 16. 厚度为1mm 的铝片能把某单色Ⅹ射线束的强度降低为原来的23.9%,试求这种Ⅹ射 线的波长。 试计算含Wc =0.8%,Wcr =4%,Ww =18%的高速钢对MoK α辐射的质量吸收系数。 17. 欲使钼靶Ⅹ射线管发射的Ⅹ射线能激发放置在光束中的铜样品发射K 系荧光辐射,问 需加的最低的管压值是多少?所发射的荧光辐射波长是多少? 18. 什么厚度的镍滤波片可将Cu K α辐射的强度降低至入射时的70%?如果入射X 射线束 中K α和K β强度之比是5:1,滤波后的强度比是多少?已知μm α=49.03cm 2 /g ,μm β =290cm 2 /g 。 19. 如果Co 的K α、K β辐射的强度比为5:1,当通过涂有15mg /cm 2 的Fe 2O 3滤波片后,强 度比是多少?已知Fe 2O 3的ρ=5.24g /cm 3,铁对CoK α的μm =371cm 2 /g ,氧对CoK β的 μm =15cm 2 /g 。 20. 计算0.071 nm (MoK α)和0.154 nm (CuK α)的Ⅹ射线的振动频率和能量。(答案:4.23

高分子材料分析与测试

期末复习作业 一、 名词解释 1. 透湿量 透湿量即指水蒸气透过量。 薄膜两侧的水蒸气压差和薄膜厚度一 定, 温度一定的条件下1山2聚合物材料在24小时内所透过的蒸 汽量(用 v 表示) 2. 吸水性 吸水性是指材料吸收水分的能力。 通常以试样原质量与试样失水 后的 质量之差和原质量之比的百分比表示; 也可以用单位面积的 试样吸收 水分的量表示;还可以用吸收的水分量来表示。 3. 表观密度 对于粉状、 片状颗粒状、 纤维状等模塑料的表观密度是指单位体 对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度 4、拉伸强度 在拉伸试验中, 保持这种受力状态至最终, 就是测量拉伸力直至 应 力,用 t 表示) 5、弯曲强度 试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲 应力 (用 f 表示) 积中的质量(用 a 表示) 和相对湿度时的重量,故又称体积密度或视密度(用 a 表示) 材料断裂为止, 所承受的最大拉伸应力称为拉伸强度 极限拉伸

6、压缩强度 指在压缩试验中试样所承受的最大压缩应力。 它可能是也可能不 7、屈服点 应力—应变曲线上应力不随应变增加的初始点。 8、细长比 14、压缩应变 是试样破裂的瞬间所承受的压缩应力(用 e 表示) 指试样的高度与试样横截面积的最小回转半径之比(用 表示) 9、断裂伸长率 断裂时伸长的长度与原始长度之比的百分数(用 t 表示) 10、弯曲弹性模量 比例极限内应力与应变比值(用 E f 表示) 11、压缩模量 指在应力—应变曲线的线性范围内压缩应力与压缩应变的比值。 由于直线与横坐标的交点一般不通过原点, 因此可用直线上两点 的应力差与对应的应变差之比表示(用 E e 表示) 12、弹性模量 在负荷—伸长曲线的初始直线部分, 材料所承受的应力与产生相 应的应变之比(用 E 表示) 13、压缩变形 指试样在压缩负荷左右下高度的改变量(用 h 表示) 指试样的压缩变形除以试样的原始高度(用 表示)

材料分析测试技术左演声课后答案

如对你有帮助,请购买下载打赏,谢谢! 第一章 电磁辐射与材料结构 一、教材习题 1-1 计算下列电磁辐射的有关参数: (1)波数为3030cm -1的芳烃红外吸收峰的波长(μm ); 答:已知波数ν=3030cm -1 根据波数ν与波长λ的关系)μm (10000)cm (1λν= -可得: 波长μm 3.3μm 3030 100001≈==νλ (2)5m 波长射频辐射的频率(MHz ); 解:波长λ与频率ν的关系为λνc = 已知波长λ=5m ,光速c ≈3×108m/s ,1s -1=1Hz 则频率MHz 6010605/103168=?=?=-s m s m ν (3)588.995nm 钠线相应的光子能量(eV )。 答:光子的能量计算公式为λνc h h E == 已知波长λ=588.995nm=5.88995?10-7m ,普朗克常数h =6.626×10-34J ?s ,光速c ≈3×108m/s ,1eV=1.602×10-19J 则光子的能量(eV )计算如下: 1-3 某原子的一个光谱项为45F J ,试用能级示意图表示其光谱支项与塞曼能级。 答:对于光谱项45F J ,n =4,L =3,M =5;S =2(M =2S +1=5),则J =5,4,3,2,1, 当J =5,M J =0,±1,±2,···±5;……J =1,M J =0,±1。光谱项为45F J 的能级示意图如下图: 1-4 辨析原子轨道磁矩、电子自旋磁矩与原子核磁矩的概念。 答:原子轨道磁矩是指原子中电子绕核旋转的轨道运动产生的磁矩;电子自旋磁 矩是指电子自旋运动产生的磁矩;原子核磁矩是指原子中的原子核自旋运动产生的磁矩。 1-5 下列原子核中,哪些核没有自旋角动量? 12C 6、19F 9、31P 15、16O 8、1H 1、14N 7。

高分子材料分析测试与研究方法复习材料.doc

一. 傅里叶红外光谱仪 1. 什么是红外光谱图 当一束连续变化的各种波长的红外光照射样品时,其中一部分被吸收,吸收的这部分光能就转变为分子的振动能量和转动能量;另一部分光透过,若将其透过的光用单色器进行色散,就可以得到一谱带。若以波长或波数为横坐标,以百分吸收率或透光度为纵坐标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,也有称红外振-转光谱图 2. 红外光谱仪基本工作原理 用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构。 3. 红外光谱产生的条件 (1) 辐射应具有能满足物质产生振动跃迁所需的能量; (2) 辐射与物质间有相互偶合作用。 4. 红外光谱图的三要素 峰位、峰强和峰形 5. 红外光谱样品的制备方法 1) 固体样品的制备 a. 压片法 b. 糊状法: c. 溶液法 2) 液体样品的制备 a. 液膜法 b. 液体吸收池法 3) 气态样品的制备: 气态样品一般都灌注于气体池内进行测试 4) 特殊样品的制备—薄膜法 a. 熔融法 b. 热压成膜法

c. 溶液制膜法 6. 红外对供试样品的要求 ①试样纯度应大于98%,或者符合商业规格,这样才便于与纯化合物的标准光谱或商业光谱进行对照,多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析。 ②试样不应含水(结晶水或游离水) 水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理。 ③试样浓度和厚度要适当 使最强吸收透光度在5~20%之间 7. 红外光谱特点 1)红外吸收只有振-转跃迁,能量低; 2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构; 4)分析速度快; 5)固、液、气态样均可用,且用量少、不破坏样品; 6)与色谱等联用(GC-FTIR)具有强大的定性功能; 7)可以进行定量分析; 二. 紫外光谱 1. 什么是紫外-可见分光光度法?产生的原因及其特点? 紫外-可见分光光度法也称为紫外-可见吸收光谱法,属于分子吸收光谱,是利用某些物质对200-800 nm光谱区辐射的吸收进行分析测定的一种方法。紫外-可见吸收光谱主要产生于分子价电子(最外层电子)在电子能级间的跃迁。该方法具有灵敏度高,准确度好,使用的仪器设备简便,价格廉价,且易于操作等优点,故广泛应用于无机和有机物质的定性和定量测定。 2. 什么是吸收曲线?及其吸收曲线的特点? 测量某种物质对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图,可得到一条曲线,称为吸收光谱曲线或光吸收曲线,它反映了物质

材料分析测试方法部分课后习题集答案解析

第一章X 射线物理学基础 2、若X 射线管的额定功率为1.5KW,在管电压为35KV 时,容许的最大电流是多少? 答:1.5KW/35KV=0.043A。 4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 答:因X 光管是Cu 靶,故选择Ni 为滤片材料。查表得:μ m α=49.03cm2/g,μ mβ=290cm2/g,有公式,,,故:,解得:t=8.35um t 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 ⑶一个具有足够能量的χ射线光子从原子部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作的功W,称此时的光子波长λ称为K 系的吸收限。 ⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体,这样一个K层空位被两个L层空位代替的过程称为俄歇效应。 第二章X 射线衍射方向 2、下面是某立方晶第物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(123),(100),(200),(311),(121),(111),(210),(220),(130),(030),(221),(110)。 答:立方晶系中三个边长度相等设为a,则晶面间距为d=a/ 则它们的面间距从大小到按次序是:(100)、(110)、(111)、(200)、(210)、(121)、(220)、(221)、(030)、(130)、

高分子材料分析测试与表征实验大纲

《高分子材料分析测试与表征》实验教学大纲 课程名称:高分子材料分析测试与表征课程编号:050332024 课程类别:专业基础课课程性质:选修 适用专业:高分子材料与工程 课程总学时:32 实验(上机)计划学时:8 开课单位:材料科学与工程学院 一、大纲编写依据 1.高分子材料与工程专业2017版教学计划; 2. 高分子材料与工程专业《近代材料研究方法》理论教学大纲对实验环节的要求; 3. 近年来《近代材料研究方法》实验教学经验。 二、实验课程地位及相关课程的联系 1.《近代材料研究方法》是高分子材料与工程专业基础课程; 2.本实验项目是《近代材料研究方法》课程知识的运用; 3.本实验项目是理解和运用材料分析检测手段以及对检测结果进行分析标定的基础; 4.本实验以《材料科学基础》、《物理化学》、《大学物理》、《高分子物理》和《高分子 化学》为先修课。 5.本实验对毕业论文等工作具有指导意义。 三、实验目的、性质和任务 1.熟悉X射线衍射仪、紫外可见光分光光度计和热重分析仪 2.能够对X射线衍射图谱进行标定,能够利用粉末衍射卡片对单相物质进行物相鉴 定 3.了解扫描电镜、能谱仪和红外光谱仪的结构 4.通过实际分析,明确扫描电镜、红外光谱仪、紫外可见光分光光度计和热重分析 仪的用途 5.理解X射线衍射、光谱分析和热分析的基本理论,训练运用上述分析手段的基本 技能,掌握科学的实验方法; 6.培养学生观察问题、分析问题和独立解决问题的能力 7.通过设计性实验训练,使学生初步掌握如何根据需要选择合适的检测手段; 8.培养正确记录实验数据和现象,正确处理实验数据和分析实验结果的能力以及正 确书写实验报告的能力。 四、实验基本要求 1.实验项目的选定依据教学计划对学生工程实践能力培养的要求; 2.巩固和加深学生对X射线衍射、扫描电镜、紫外可见光分光光度计和热重分析仪等 基础知识的理解,提高学生综合运用所学知识的能力; 3.实验项目要求学生综合掌握本课程基本知识,并运用相关知识自行设计实验方案;

材料分析测试方法练习与答案

第一章 一、选择题 1、用来进行晶体结构分析的X射线学分支就是( B ) A、X射线透射学; B、X射线衍射学; C、X射线光谱学; D、其它 2、M层电子回迁到K层后,多余的能量放出的特征X射线称( B ) A.Kα;B、Kβ;C、Kγ;D、Lα。 3、当X射线发生装置就是Cu靶,滤波片应选( C ) A.Cu;B、Fe;C、Ni;D、Mo。 4、当电子把所有能量都转换为X射线时,该X射线波长称( A ) A.短波限λ0;B、激发限λk;C、吸收限;D、特征X射线 5、当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L 层电子打出核外,这整个过程将产生( D ) (多选题) A.光电子;B、二次荧光;C、俄歇电子;D、(A+C) 二、正误题 1、随X射线管的电压升高,λ0与λk都随之减小。( ) 2、激发限与吸收限就是一回事,只就是从不同角度瞧问题。( ) 3、经滤波后的X射线就是相对的单色光。( ) 4、产生特征X射线的前提就是原子内层电子被打出核外,原子处于激发状态。( ) 5、选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。( ) 三、填空题 1、当X射线管电压超过临界电压就可以产生连续X射线与特征X射线。 2、X射线与物质相互作用可以产生俄歇电子、透射X射线、散射X射线、荧光X射线、光电子 、热、、。 3、经过厚度为H的物质后,X射线的强度为。 4、X射线的本质既就是波长极短的电磁波也就是光子束,具有波粒二象性性。 5、短波长的X射线称,常用于;长波长的X射线称 ,常用于。 习题 1.X射线学有几个分支?每个分支的研究对象就是什么? 2.分析下列荧光辐射产生的可能性,为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射; (3)用CuKαX射线激发CuLα荧光辐射。 3.什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、 “吸收谱”? 4.X射线的本质就是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理 量描述它?

材料分析测试技术左演声课后答案

材料分析测试技术左演 声课后答案

第一章 电磁辐射与材料结构 一、教材习题 1-1 计算下列电磁辐射的有关参数: (1)波数为3030cm -1的芳烃红外吸收峰的波长(μm ); 答:已知波数ν=3030cm -1 根据波数ν与波长λ的关系)μm (10000)cm (1λν= -可得: 波长μm 3.3μm 3030 100001 ≈==νλ (2)5m 波长射频辐射的频率(MHz ); 解:波长λ与频率ν的关系为λνc = 已知波长λ=5m ,光速c ≈3×108m/s ,1s -1=1Hz 则频率MHz 6010605/103168=?=?=-s m s m ν (3)588.995nm 钠线相应的光子能量(eV )。 答:光子的能量计算公式为λνc h h E == 已知波长λ=588.995nm=5.88995?10-7m ,普朗克常数h =6.626×10-34J ?s ,光 速c ≈3×108m/s ,1eV=1.602×10-19J 则光子的能量(eV )计算如下: eV eV J m s m s J E 107.210602.110375.3 10375.31088995.5/10310 626.61919197834≈??=?=?????=----- 1-3 某原子的一个光谱项为45F J ,试用能级示意图表示其光谱支项与塞曼能级。 答:对于光谱项45F J ,n =4,L =3,M =5;S =2(M =2S +1=5),则J =5,4,3,2, 1,当J =5,M J =0,±1,±2,···±5;……J =1,M J =0,±1。光谱项为45F J 的能级示意图如下图:

高分子材料分析与测试(期末复习及答案)

期末复习作业 一、名词解释 1.透湿量 透湿量即指水蒸气透过量。薄膜两侧的水蒸气压差和薄膜厚度一定,温度一定的条件下1㎡聚合物材料在24小时内所透过的蒸汽量(用 θ表示) v 2.吸水性 吸水性是指材料吸收水分的能力。通常以试样原质量与试样失水后的质量之差和原质量之比的百分比表示;也可以用单位面积的试样吸收水分的量表示;还可以用吸收的水分量来表示。3.表观密度 对于粉状、片状颗粒状、纤维状等模塑料的表观密度是指单位体积中的质量(用 η表示) a 对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度和相对湿度时的重量,故又称体积密度或视密度(用 ρ表示) a 4、拉伸强度 《 在拉伸试验中,保持这种受力状态至最终,就是测量拉伸力直至材料断裂为止,所承受的最大拉伸应力称为拉伸强度(极限拉伸应力,用 σ表示) t 5、弯曲强度 试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲应力(用 σ表示) f

6、压缩强度 指在压缩试验中试样所承受的最大压缩应力。它可能是也可能不是试样破裂的瞬间所承受的压缩应力(用 σ表示) e 7、屈服点 应力—应变曲线上应力不随应变增加的初始点。 8、细长比 指试样的高度与试样横截面积的最小回转半径之比(用λ表示)9、断裂伸长率 — 断裂时伸长的长度与原始长度之比的百分数(用 ε表示) t 10、弯曲弹性模量 比例极限内应力与应变比值(用E f表示) 11、压缩模量 指在应力—应变曲线的线性范围内压缩应力与压缩应变的比值。由于直线与横坐标的交点一般不通过原点,因此可用直线上两点的应力差与对应的应变差之比表示(用E e表示) 12、弹性模量 在负荷—伸长曲线的初始直线部分,材料所承受的应力与产生相应的应变之比(用E表示) 13、压缩变形 指试样在压缩负荷左右下高度的改变量(用?h表示) 14、压缩应变 `

相关主题
文本预览
相关文档 最新文档