当前位置:文档之家› 线性代数在生活中的应用

线性代数在生活中的应用

线性代数在生活中的应用
线性代数在生活中的应用

线性代数在生活中的运用

线性代数的研究对象就是向量,向量空间(或称线性空间),线性变换与有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正就是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。

线性方程组就是各个方程关于未知量均为一次的方程组

x j表示未知量,ai j为系数,bi 为常数项。则有

???????=+++=+++=+++n

n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c 2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。

线性方程组主要讨论的问题就是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。

当非齐次线性方程组有解时,解唯一的充要条件就是对应的齐次线性方程组只有零解;解无穷多的充要条件就是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解与有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。

克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。

线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请瞧下面一个例子。

例:

一个庙里有一百个与尚, 这中间有大与尚有小与尚, 这一百个与尚每顿饭总共要吃一百个馒头, 其中大与尚一个人吃三个, 小与尚三个人吃一个, 问有多少大与尚, 多少小与尚?

那么, 假设大与尚的数目就是x 1, 小与尚的数目就是x 2, 那么由第一个条件,

总共有100个与尚

可以知道: x1+x 2=100

而由第二个条件, 大与尚一个人吃3个馒头, 小与尚一个人吃1/3个馒头, 吃的馒头的总数就是100个, 那么就得第二个方程

1003

1321=+x x 将上面两个方程联立, 就得线性方程组:

?????=+=+)2(100313)1(1002121x x x x

要解这个方程组有两种办法, 其实质就是一样的, 一种叫消元法, 从(1)式解出x 1得

x 1=100-x 2

将其代入到(2)式, 得

25

75100758600300

)100(91003

1)100(3122

2222=-====+-?=+-?x x x x x x x

因此算出共有75个小与尚, 25个大与尚、或者用加减法, 先将(1)式乘3得

3x 1+3x 2=300? ?

(3)

用此(3)式减去(1)式得

2003

1322=-x x 同样能够解得 x 2=75

由此可以推知更多元的线性方程组的解法。

而其实, 更多元的线性方程组也就是同样的解法.

那么, 为什么还要开线性代数这门课程专门研究解线性方程组的问题呢? 线性代数要研究的就是解有许多变元的线性方程组, 即变量的个数要比上例多得多, 可能会多到几十个变元, 上百个变元, 甚至成千上万个变元、

因此, 线性代数给出的一般的线性方程组的形式就是:

???????=+++=+++=+++n

n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 那么, 既然变元如此之多, 一定不能用人工手算, 必然要用计算机来进行计算、 因此, 如果没有计算机的发展, 线性代数这门课也就没有什么用. 实际上, 线性代数正就是为了用计算机解线性方程组提供理论基础。

在科技实践中,从实际中来的数学问题无非分为两类:一类线性问题;一类非线性问题。线性问题就是研究最久、理论最完善的,我们可以简单地说数学中的线性问题就是最容易被解决的,如微分学研究很多函数线性近似的问题。而非线性问题则可以在一定基础上转化为线性问题求解。

因此遇到一个问题,首先判定就是线性问题还就是非线性问题;其次如果就是线性问题如何处理,若就是非线性问题如何转化为线性问题。可见线性代数作为研究线性关联性问题的代数理论的重要性。

随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正就是解决这些问题的有力工具。

在物理学方面, 整个物理世界可以分为机械运动, 电运动, 还有量子力学的运动。而机械运动的基本方程就是牛顿第二定律, 即物体的加速度同它所受到的力成正比, 这就是一个基本的线性微分方程、 由此根据不同的力学系统, 又

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数在实际生活中的应用

线性代数在生活中的实际应用 大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。;;初等的数学 知识学习线性代数数学建模函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则一一克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮 70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷 149克,钾30克,问三种化肥各需多少千克?

线性代数在实际生活中的应用

线性代数在生活中的实际应用 制药工程学院环境科学苏雷10204118 大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。;;;初等的数学知识学习线性代数数学建模函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则——克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷

线性代数在实际生活中的应用

线性代数在生活中的实际应用 大学数学就是自然科学的基本语言,就是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅就是学习一种专业的工具而已。 ;;;初等的数学知识 学习线性代数数学建模 函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式 实质上就是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝与与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在她的论文中提出了利用行列式求解线性方程组的著名法则——克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机与计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但就是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只就是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、 化肥每千克含氮64克,磷10克,钾0、6克;丙种化肥每千克含氮70克,磷5克,钾1、4克.若把此三种化肥混合,要求总重量23千克且含磷149克,钾30克,问三种化肥各需多少千克? 解: 题意得方程组 依千克、、各需设甲、乙、丙三种化肥32,1x x x ??? ??=++=++=++. 304.16.02,1495108,23321 321321x x x x x x x x x ,527- =D 此方程组的系数行列式81275 81 321-=-=-=D D D ,,又 由克莱姆法则,此方程组有唯一解:3=x 1;52=x ;.153=x 即甲乙丙三种化肥各需 3千克 5千克 15千克、 矩阵实质上就就是一张长方形的数表,无论就是在日常生活中还就是科学研究中,矩阵就是一种非常常见的数学现象。学校课表、成绩单、工厂里的生产进度 表、车站时刻表、价目表、故事中的证劵价目表、科研领域中的数据分析表,它就是表述或处理大量的生活、生产与科研问题的有力的工具。矩阵的重要作用主要就是它能把头绪纷繁的十五按一定的规则清晰地展现出来,使我们不至于背一些表面瞧起来杂乱无章的关系弄得晕头转向。塌还可以恰当的给出事物之间内在的联系,并通过矩阵的运算或变换来揭示事物之间的内在联系。它也就是我们求解数学问题时候“数形结合”的途径。矩阵的运算就是非常重要的内容。

线性代数原理的几个应用【文献综述】

毕业论文文献综述 数学与应用数学 线性代数原理的几个应用 一、前言部分 线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机飞速发展并且广泛应用的今天,计算机科学、统计学[1]、生物学、人口迁移模型等无不以线性代数为其理论和算法基础的一部分;该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性代数课程在大学数学中占有重要的地位,学习线性代数课程,无论是对于比较全面地培养学生的数学思维、提高数学素质还是进一步学习其他课程打下基础,都有着非常重要的理论和现实意义。而我国的线性代数课程偏重于理论的运算验证等,传统的线性代数教材追求逻辑的严密性和理论体系的完整性,重理论而轻视实践,剥离了概念、原理和范例的几何背景与现实意义,导致教学不尽如人意[2]。 本文主要利用建模思想应用线性代数知识解决实际问题,即从问题实例出发,建立数学模型[3],引入线性代数的基本知识点,回到实际应用中去。事实上用这种方式进行教学,可以培养学生的创新能力,提高学生分析和解决问题的能力。实际上线性代数自身理论正是在解决离散数学问题,建立数学模型的过程中发展起来的。 通过线性代数的学习,我们发现它和实际生活有着密切的联系。因此本文的写作目的就是把线性代数的有关知识运用到解决实际问题中去。在本文中,我主要通过几个实际例子,建立相应的数学建模进行研究分析。具体方案是先采集大量有关数据,然后运用线性代数原理等知识,借助MATLAB[4]等计算机工具对数据进行处理和分析,最后得到一个最优的策划方案。

线性代数在企业生产中的应用

线性代数在企业生产中的应用 小组:第五组 系部:工商管理系 专业:市场营销 指导老师:赵梅春 提交日期:2015年5月27日

目录 线性代数在企业生产中的应用 (1) 摘要 (2) 简介 (3) 什么是线性代数 (3) 线性代数在经营管理领域中的应用 (4) 线性代数应用广泛的原因 (4) 相关知识 (5) 实例分析 (9) 1、价格平衡模型 (9) 2、生产总值问题 (11) 3、产品成本计算 (13) 4、投入产出数学模型 (14) 参考文献 (15) 致谢 (15)

摘要 线性代数是一门讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的学科。当代,睡着线性代数在企业生产领域的广泛应用,线性代数显得日益的重要。通过对线性代数知识的运用,企业可以预测市场变化、计算投资与回报、调节最优的生产模式等。科学地运用线性代数可以使企业生产更加适应当今不断变化的市场环境。可见,对线性代数研究的深浅将直接影响我国企业是否能在未来的生产中顺利发展。本文将围绕线性代数在企业生产中的应用,通过四个线性代数在企业生产中应用的实例,即运用线性代数建立投入产出模型、运用线性代数计算产品成本、运用线性代数解决生产总值问题等四个实例,目的在于通过对这四个实例的分析,来说明线性代数在企业生产中有着那些应用,并解释为什么这些应用对企业生产有着不可替代的重要作用,以及解答如何在企业生产中科学地运用小小大,而更重要的是,我们希望本文的研究成果,能为企业在运用线性代数解决生产问题这一方面提供科学有效的参考价值。 关键词:线性代数企业生产数学模型预测市场 Abstract

Linear algebra is a discussion of matrix theory, matrix binding and subject finite-dimensional vector space linear transformation theory. Contemporary, asleep linear algebra is widely used in the production field, linear algebra is becoming increasingly important. Through the use of linear algebra, companies can predict market changes, and return on investment calculation, adjusting optimal production mode. Scientific use of linear algebra can make production more responsive to today's ever-changing market environment. Seen on the depth of linear algebra will directly affect whether the smooth development of Chinese enterprises in the future production. This article will focus on linear algebra in the enterprise production, by way of example in the production of four linear algebra applied, that the use of linear algebra establish input-output model, using linear algebra calculation of product cost, using linear algebra to solve the problem of GDP four instances, the aim of the analysis by these four examples to illustrate the production of linear algebra with those applications, and explain why these applications on the production plays an irreplaceable role, and how to answer in enterprise production Little Big scientific use, but more importantly, we hope that results of this study can provide

浅谈线性代数在生活中的应用

浅谈线性代数在生活中的应用 线性代数是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便!为了提高效率。把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。可以把一个不太明白的结构用已经熟知的线性代数理论来处理,如果我们可以知道所研究的对象的维数(比如说是n),我们就可以把它等同为R^n,量决定了质!多么深刻而美妙的结论!上面我说的是代数的一个抽象特性。这个对我们的影响是思想性的!如果我们能够把他用在生活中,那么我们的生活将是高效率的。 下面简要谈一下线性代数的具体应用。线性代数研究最多的就是矩阵了。矩阵又是什么呢?矩阵就是一个数表,而这个数表可以进行变换,以形成新的数表。也就是说如果你抽象出某种变化的规律,你就可以用代数的理论对你研究的数表进行变换,并得出你想要的一些结论。 另外,进一步的学科有运筹学。运筹学的一个重要议题是线性规划,而线性规划要用到大量的线性代数的处理。如果掌握的线性代数及线性规划,那么你就可以讲实际生活中的大量问题抽象为线性规划问题。以得到最优解:比如你是一家小商店的老板,你可以合理的安排各种商品的进货,以达到最大利润。如果你是一个大家庭中的一员,你又可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用啊! 总之,线性代数历经如此长的时间而生命力旺盛,可见它的应用之广! 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意, 而且写了成千篇关于这两个课题的文章。向量的概念, 从数学的观点来看不过是有序三元数组的一个集合, 然而它以力或速度作为直接的物理意义, 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度, 散度, 旋度就更有说服力。同样, 行列式和矩阵如导数一样(虽然dy/dx 在数学上不过是一个符号, 表示包括△y/△x 的极限的长式子, 但导数本身是一个强有力的概念, 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,意思是“ 解行列式问题的方法” ,书里对行列式的概念和它的展开已经有了清楚的叙述。Vandermonde 是第一个对行列式理论进行系统的阐述( 即把行列' 式理论与线性方程组求解相分离) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。Laplace 在1772 年的论文《对积分和世界体系的探讨》中, 证明了Vandermonde 的一些规则, 并推广了他的展开行列式的方法, 用r 行中所含的子式和它们的余子式的集合来展 开行列式,这个方法现在仍然以他的名字命名。德国数学家雅可比(Jacobi )

线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象就是向量,向量空间(或称线性空间),线性变换与有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正就是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组就是各个方程关于未知量均为一次的方程组 x j表示未知量,ai j为系数,bi 为常数项。则有 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c 2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题就是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。 当非齐次线性方程组有解时,解唯一的充要条件就是对应的齐次线性方程组只有零解;解无穷多的充要条件就是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解与有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。 线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请瞧下面一个例子。

《线性代数及其应用》要点整理

《线性代数及其应用》要点整理[使用方法:同学们参照这个目录进行回忆,发现没有掌握的部分立即查阅教材或复习资料] 一、必须掌握的核心计算方法 1、求线性方程组的解; 2、矩阵的加法及数乘; 3、矩阵乘法; 行列法则,矩阵乘法的性质,矩阵的幂; 4、求线性变换的标准矩阵; 5、矩阵的LU分解; 6、矩阵的转置 7、求矩阵的逆; 化简增广矩阵[A I],逆矩阵公式(伴随矩阵的求法); 8、求矩阵的行列式值: 余因子展开法(降阶法),行变换法,三角矩阵行列式值 的特殊求法; 9、通过行列式求平行四边形面积和平行六面体的体积; 10、求矩阵的零空间、列空间的基; 11、求向量在向量空间中相对于一组基的坐标; 12、求矩阵的特征向量和特征值; 13、矩阵的对角化; 14、向量的内积、长度(范数);

15、向量的正交化: 正交分解,正交投影,The Gram-Schmidt Process,一组基 的正交化、单位正交化; 16、矩阵的QR分解; 17、最小二乘问题: 求最小二乘解,最小二乘误差,求解法方程; 18、对称矩阵的对角化; 19、二次型: 将对称矩阵写为二次型,将二次型还原为对称矩阵,二次 型的变量代换(消去交叉项); 二、核心概念 1、线性方程组(齐次、非齐次,相容、不相容); 2、矩阵(系数、增广,阶梯型、简化阶梯型,奇异、非奇异、 可逆、不可逆,单位、初等、对角、三角、对称、相似, 正交); 3、线性无关和线性相关; 4、线性变换; 5、子空间(零子空间,矩阵的行、列、零空间,同构); 6、向量空间的维数和秩; 7、向量空间的基; 8、行列式; 9、特征方程、特征值、特征向量;

线性代数在专业的应用及举例论文范文

华北水利水电学院 线性代数在专业的应用及举例 课程名称:线性代数 专业班级: 成员组成: 联系方式:

2012年11月9日星期五 线性代数在专业的应用及举例 摘要:线性代数作为高等院校各专业一门重要的数学基础课程,它不但广泛应用于 微分方程、概率统计、控制理论等数学分支,而且其知识已渗透到自然科学的其他学科,如工程技术、科学计算、经济管理等领域,因此,线性代数在加强学生逻辑思维和创造性思维,培养学生创新能力方面,无疑起着至关重要的作用。 关键词:线性代数原因应用内容作用 正文: 一.线性代数被广泛运用的原因 大自然的许多现象恰好是线性变化的。以物理学为例整个物理世界可以分为机械运动、电运动、还有量子力学的运动。而机械运动的基本方程是牛顿第二定律即物体的加速度同它所受到的力成正比这是一个基本的线性微分方程。电运动的基本方程是麦克思韦方程组这个方程组表明电场强度与磁场的变化率成正比而磁场的强度又与电场强度的变化率成正比因此麦克思韦方程组也正好是线性方程组。而量子力学中描绘物质的波粒二象性的薜定谔方程也是线性方程组。随着科学的发展我们不仅要研究单个变量之间的关系还要进一步研究多个变量之间的关系因为各种实际问题在大多数情况下可以线性化而科学研究中的非线性模型通常也可以被近似为线性模型另外由于计算机的发展线性化了的问题又可以计算出来所以线性代数因成为了解决这些问题的有力工具而被广泛应用。如量子化学量子力学是建立在线性Hilbert空间的理论基础上的没有线性代数的基础不可能掌握量子化学。而量子化学和分子力学的计算在今天的化学和新药的研发中是不可缺少的。线性代数所体现的几何观念与代数方法之间的联系从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等对于强化人们的数学训练增益科学智能是非常有用的。

线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组是各个方程关于未知量均为一次的方程组 xj 表示未知量,aij 为系数,bi 为常数项。则有 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c2,…,cn )为一个解。若c1,c2,…,cn 不全为0,则称(c1,c2,…,cn )为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。 当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n 维空间的一个子空间。 线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请看下面一个例子。 例: 一个庙里有一百个和尚, 这中间有大和尚有小和尚, 这一百个和尚每顿饭总共要吃一百个馒头, 其中大和尚一个人吃三个, 小和尚三个人吃一个, 问有多少大和尚, 多少小和尚? 那么, 假设大和尚的数目是x 1, 小和尚的数目是x 2, 那么由第一个条件, 总共 有100个和尚 可以知道: x 1+x 2=100 而由第二个条件, 大和尚一个人吃3个馒头, 小和尚一个人吃1/3个馒头, 吃的馒头的总数是100个, 那么就得第二个方程

线性代数矩阵的性质及应用举例

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数的过去,现在,将来及应用

目录 一.线性代数的发展史 1.概述 2.矩阵和行列式 3.矩阵 4.线性方程组 5.线性代数的进一步深入发展——二次型 6.线性代数的扩展——从解方程到群论的产生二.线性代数的综合应用 1.概述 2、现代飞行器外形设计 3、卫星遥感图象处理 4.用逆阵进行保密编译码 5.综合题 6.利用递推法计算行列式 7、求解矩阵方程 三.总结

线性代数的发展史 1.概述 数线性代是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 现代线性代数的历史可以上溯到1843年和1844年。1843年,哈密顿发现了四元数。1844年,格拉斯曼发表了他的著作《Die lineare Ausdehnungslehre》。1857年,阿瑟·凯莱介入了矩阵,这是最基础的线性代数思想之一。这些早期的文献掩饰了线性代数主要在二十世纪发展的事实: 在抽象代数的环论开发之前叫做矩阵的类似数的对象是难于名次列前的。随着狭义相对论的到来,很多开拓者增值了线性代数的微妙。进一步的,解偏微分方程的克莱姆法则的

线性代数在现实生活中的应用

线性代数在现实生活中的应用 【摘要】线性代数理论有着悠久的历史和丰富的内容,其理论应用,是研究现代科学技术的重要方法,在众多的科学技术领域中应用都十分广泛。本文通过对线性代数的定义的解释,和应用实例的列举,分析了线性代数被广泛运用于各个领域的原因。并对在这些领域中,线性代数的具体应用做了简要论述。 【关键词】线性代数;实际生活;应用实例 一、什么是线性代数 线性代数(Linear Algebra)是数学的一个分支,也是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。 [1]也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的是为了解决问题的方便,为了提高效率,通过线性代数可以把一些看似不相关的问题化归为一类问题。线性代数的研究内容包括行列式,矩阵和向量等,其主要处理的是线性关系的问题,随着数学的发展,线性代数的含义也不断的扩大。它的理论不仅渗透到了数学的许多分支中,而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用。 二、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的。以物理学为例,整个物理世界可以分为机械运动、电运动、还有量子力学的运动。而机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,这是一个基本的线性微分方程。电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。而量子力学中描绘物质的波粒二象性的薜定谔方程,也是线性方程组。 其二,随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而科学研究中的非线性模型通常也可以被近似为线性模型,另外由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因成为了解决这些问题的有力工具而被广泛应用。如量子化学(量子力学)是建立在线性Hilbert空间的理论基础上的,没有线性代数的基础,不可能掌握量子化学。而量子化学(和分子力学)的计算在今天的化学和新药的研发中是不可缺少的。 其三,线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。 三、线性代数在实际中的应用 下面将从几个领域出发简要谈一下线性代数在实际生活中的应用。

线性代数在实际生活中的应用

线性代数在生活中的实际应用 制药工程学院 环境科学 苏雷 10204118 大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。 ;;;初等的数学知识 学习线性代数数学建模 函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式 实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则——克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、 化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷149克,钾30克,问三种化肥各需多少千克? 解: 题意得方程组 依千克、、各需设甲、乙、丙三种化肥32,1x x x ??? ??=++=++=++. 304.16.02,1495108,23321 321321x x x x x x x x x ,527- =D 此方程组的系数行列式81275 81 321-=-=-=D D D ,,又 由克莱姆法则,此方程组有唯一解:3=x 1;52=x ;.153=x 即甲乙丙三种化肥各需 3千克 5千克 15千克、 矩阵 阵是一种非常常见的数学现象。学校课表、成绩单、工厂里的生产进度表、车站 时刻表、价目表、故事中的证劵价目表、科研领域中的数据分析表,它是表述或处理大量的生活、生产与科研问题的有力的工具。矩阵的重要作用主要是它能把头绪纷繁的十五按一定的规则清晰地展现出来,使我们不至于背一些表面看起来杂乱无章的关系弄得晕头转向。塌还可以恰当的给出事物之间内在的联系,并通

线性代数原理的几个应用【开题报告】

毕业论文开题报告 数学与应用数学 线性代数原理的几个应用 一、选题的背景、意义 线性代数作为一个独立的代数学分支在20世纪才形成,然而它的历史却非常的久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。 线性代数作为一独立的数学分枝有着自身独特的概念、思想方法和处理问题的手法,其主要特点之一是数学观念新,引入了结构的思想。它更多的是从离散的角度研究客观世界的空间形式和数量关系。而线性代数课程在大学数学中占有重要的地位,它是高等院校普遍开设的一门基础性数学课程,包括矩阵与行列式、矩阵的初等变换与线性方程组、向量的线性相关性与向量空间、特征值与矩阵对角化、二次型、线性空间与线性变换等内容。 线性代数的含义随数学的发展而不断扩大,线性代数在科学研究、经济投入产出、工程技术等领域的应用越来越广泛、深入。线性代数的理论和方法已经渗透到数学的许多分支,很多实际问题的处理,最后往往归结为线性问题,它比较容易处理。比如:线性方程组在气象预报中的应用:为了做天气和气象预报,有时往往根据诸多因素最后归结为解一个线性方程组。当然,这种线性方程组在求解时,不能手算而要在电子计算机上进行。线性方程组在国民经济中的应用:为了预测经济形势,利用投入产出经济数学模型,也往往归结为求解一个线性方程组。线性代数在“人口迁移模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面有着广泛的应用。比如在力学、物理学、经济学和工程学等学科中都有重要应用。 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间

论线性代数在现实生活中的应用(结课论文)

论线性代数在实际生活的应用 【摘要】我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,其理论应用,是研究现代科学技术的重要方法,在众多的科学技术领域中应用都十分广泛。可我们仅从课本上学到的东西都是经许多先辈们的梳理总结出来的精华。在此我希望通过讲解线性代数的定义,线性代数的发展历史及其突出贡献,在现实生活的实际应用给我们带来的便捷性阐述我们为什么要学习线性代数,线性代数的学科性质给人来发展做出了怎样的贡献。 【关键词】线性代数;实际生活;应用实例 以上这就是数学家给出线性代数的定义,可线线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难,而且很大部分把学生(特别是偏向文科类的高校大学生)认为,高数无用论,线性代数是高数的重要分支,自然成了首要被攻击的对象。我身边的一位人文社会科学系专业的学生小朱这样说道:“人文社会科学专业注重的应该是学生抽象思维的培养,一味地强调全面发展有时反而会起到负面作用。文科生学高数,学线性代数,有什么用处呢?就算有用,也往往是在用之前,就被遗忘和荒废了。”而更有专家指出“就自己的经历来讲,她认为文科生开设高数课毫无益处,尤其是中文系,开设纯理论的数学实在是很荒谬”。她认为,说要培养数字概念和数学思维,高中学的知识已经足够了,没有必要再在大学开设线性代数这门学科。 我相信大部分人都跟我一样,特别是偏向文科学科的同学都会有这样的疑问——到底有没有必要学习线性代数?到底线性代数在我们现实生活中又有什么意义?对我们人类的发展进步何帮助?让我们带着这样的疑问一起看看下面内容,我相信大家会有一个答案。 三、线性代数的发展历史 线性代数的发展历史。线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量。现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,但是实际上却是这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。因为费马和笛卡儿的工作,所以我们一般认为线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。可是当到了十九世纪上半叶才完成了到n维向量空间的过渡。矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无

线性代数应用实例

线性代数应用实例 求插值多项式 右表给出函数f(t)上4个点的值,试求三次插值多项式 p(t) a 0 a-|t a 2t 2 a 3t 3 , 并求f (1.5)的近似值。 角军:令三次多项式函数 p(t) a 0 a 1t a 2t 2 表中已知的4点,可以得到四元线性方程组: a 。 3 a o a 1 a 2 a 3 0 a o 2a 1 4a 2 8a 3 1 a o 3a 1 9a 2 27a 3 6 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: 2 3 2,a 3 1,三次多项函数为 p(t) 3 2t 2t t ,故f(1.5)近 似等于 p(1.5) 3 2(1.5) 2(1.5)2 (1.5)3 1.125。 在一般情况下,当给出函数 f(t)在n+1个点t i (i 1,2,卅,n 1)上的值f(tj 时,就可 以用n 次多项式p(t) a 。a 1t a ?t 2 卅 a n t n 对f (t)进行插值。 在数字信号处理中的应用——数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都 限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线 性算子,它的标注符号为z 1 o 根据这样的结 构图,也可以用 类似 于例 7.4的方法,求它 的输入输出之间的传递函数,在数字信号处 理中称为系统函 数。 图1表示了某个数字滤波器的结构图, 现在要求出它的系统函数,即输出 y 与输入 u 之比。先在它的三个中间节点上标注 信号 的名称x1,x2,x3,以便对每个节点列写方程。 t i 0 1 2 3 f(t i ) 3 -1 6 得到x = 1 0 0 0 3 0 1 0 -2 0 0 1 0 -2 0 0 0 1 1 u m --- 2 X 1 y -i ---- 11 -- 1 — z 1 ■ V 1/4 J 1 1/4 ■ * x 2 二―]X 3 z 1 ,. 3/8 图1某数字滤波器结构图 >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到 a 0 3,a 1 2, a 2

相关主题
文本预览
相关文档 最新文档