当前位置:文档之家› 火焰检测技术

火焰检测技术

火焰检测技术
火焰检测技术

火焰检测

火焰有着与众不同的特征,他的颜色、温度、形状以及跳动的形式都可以作为识别的依据。下面,我们将从火焰的静态特征和动态特征两方面入手进行火焰识别。

静态特征(颜色与形状)

首先,火焰有着与众不同的颜色特征。描述其颜色的模型有很多,图7就是其中一种,它可以由RGB空间经过简单比较计算得到。

图7 火焰颜色分布图

由上图,任何RGB图像中只要满足R>=G且G>B的颜色都可以看作是火焰。图8中显示了由该模型对各种火焰的检测结果。虽然这种模型的误报会很多,但可以作为最初始的筛选手段排除掉最不可能是火焰的物体。

图8 火焰图片(上行)及相应颜色检测结果(下行)

火焰的外形也是用来识别的重要特征。一种模型是采用嵌套式轮廓模型。它

默认火焰存在一个或几个燃烧点,火焰从这些燃烧点一层层的向外扩散。越到外层的地方其形状的可边度越大,而且是连续的。图9展示了一个燃烧点的火焰模型,它由三层火焰轮廓组成,对于其右侧图10中的火焰经过该模型捕捉得到图11结果。

图9

火焰模型 图10 火焰图片 图11 符合模型的火焰

动态特征(频率)

火焰是跳跃着的,或者说是移动变化着的。初看起来没有什么规律,其实,经研究发现,火焰的外焰部分的运动存在一定频率。从图12中红色标出的火焰外焰部分来看,这些像素点在经历着有火焰和无火焰两种状态的切换,这个切换的频率经过计算是10HZ 。这样,我们通过捕捉这个10赫兹的特征可以进一步确认是否有火焰的存在。

图12 火焰外焰部分 图13 外焰运动存在一定频率

除此之外,火焰的运动是有能量变化的。燃烧的物理变化和化学变化造成了火焰能量的不均衡分布。这点可以作为区分火焰与其他颜色相似运动物体的特征。图14中红色衣服上被黑色边框划出的区域能量变化在其右侧显示,可见衣服的能量分布是均匀的(显示为均一灰色,没有亮暗变化)。与之对比,火焰的能量变化就显得非常不均匀,在能量分布图上看得到明显的亮暗变化。

图14 与火焰颜色接近图案的能量分布图15火焰的能量分布

烟雾检测

烟雾的特征和火焰有着明显的不同,无论是静态的还是动态的。这样使得我们可以将其与火焰识别分开处理。

静态特征(外形与对比度)

烟雾在颜色上没有像火焰样存在明显的分布,而且颜色与烟雾的浓度有直接关系。淡淡的烟是半透明的,可以看到其后面的物体,而浓烟是灰黑的,完全挡住了后面的事物。这样,单独考虑烟雾的颜色便无法描述它的特征。然而,无论烟雾浓淡,它都会使后面的事物变得模糊,甚至被完全遮挡。我们可以通过像素的对比度变化判断烟雾的有无。图16显示了通过对比度变化检测烟雾的结果。

图16 烟雾(上行)及通过对比度变化检测结果(下行)

动态特征(扩散)

烟雾的动态特征是烟雾区别于其他事物的重要特征。它具备以下特点:首先,烟雾以扩散的形式变化,可以假想存在一个或几个烟雾发生点,烟雾围绕这些点扩散开去(如图17和图18所示);其次,与火焰类似,烟雾的边界变化也存在一个3Hz的频率;再有,烟雾的轮廓是清晰画面与被烟雾模糊画面的交界;最后,烟雾的运动是连续而且是非刚性的。这些特点决定了烟雾与行人,汽车等等前景运动物体有本质的不同。

图17 烟雾及其轮廓图18 扩散的烟雾及其轮廓

第四章 第五章点火器及火焰检测

第四章点火器及火焰检测 第一节点火器概述 目前,大容量锅炉的煤粉燃烧器点火均使用液体燃料或气体燃料,采用多级点火方式。由电引燃器发火,逐级点燃气体燃料、液体燃料和煤粉;或者由电引燃器直接点燃液体燃料(轻油或重油),再点燃煤粉。点火过程可在主燃烧器上进行,也可先点燃启动(辅助)燃烧器,再由它们来点燃主燃烧器。 常规点火器的引燃器,有电火花、电弧、电阻丝等各种类型。 电阻丝点火器设备简单,结构紧凑,但电阻易氧化烧损,在直接点燃重油时烧损极为严重,目前仅在一些燃油锅炉上使用。电弧点火器可获得较大功率,但因电压低不易击穿污染层起弧,且烧蚀严重,设备体积大而笨重,逐渐为电火花装置所取代。 电火花引燃装置中以高压电火花(由5000—8000V的电压通过两极间的间隙放电)的使用为最广。进而还有高频高压电火花和高能电火花引燃装置,其性能更为优异。 除了专供点火的点火(燃烧)器之外,尚有兼点火和稳燃或带低负荷功能的辅助燃烧器。 在常规的点火燃烧器中,专供点火的点火燃烧器和辅助燃烧器有时并不能区分得很清楚。但一般前者只用于启动时点燃燃料,容量很小,在点燃主火焰并稳定燃烧后很快就停掉,而不用它来维持整个点火和启动过程。但对于现代的大容量锅炉而言,为了保证运行的安全,有的点火燃烧器除了在点火时投入外,在不利工况或事故工况下(如煤质差、负荷低或给煤不正常等等)也需要利用它来维持着火稳定;在有的锅炉上,主燃烧器熄火前也先要投入点火器以保证安全。这后一种点火器则属于点火和辅助燃烧器之列,或按有的习惯称之为维持点火的点火燃烧器。 另一种辅助燃烧器则是启动燃烧器,其用途是在锅炉启动过程中用来升压带负荷。 点火燃烧器的功用不同,其容量或点火能量也不相同。 点火能量系指单只点火器点燃与之相邻的主燃料所需的能量与该主燃料喷口设计热功率之比。它与主燃料特性、燃料空气混合物浓度和流速、燃烧器和点火器型式和布置以及火焰结构等有关。一般而言,点火器的最小容量(能量)约为所点燃的主燃料喷口设计输入热功率的1%一2%。燃煤锅炉的油点火器不小于580kW(2100MJ/h)。

辉光放电

辉光放电(Glow discharge) 辉光放电是放电等离子体中最常见的一种放电形式,应用也最广泛。比如,一般的气体激光器(He-Ne 激光器、CO2激光器等)、常用光源(荧光灯)、空心阴极光谱灯等。同时辉光放电也是放电形式中放电最稳定的放电形式,所以有必要对辉光放电进行较为详细的讨论。 §6.1 辉光放电的产生及典型条件 最简单的辉光放电的结构如图6.1(a)。调节电源电压E或限流电阻R,就会得到如图6.1(b)的V-A 特性曲线。管电压U调节到等于着火电压U b时,放电管内就会从非自持放电过渡到自持放电,此时,放电电流I会继续增大,管压降U下降,进入辉光放电区。放电管发出明亮的辉光,其颜色由放电气体决定。限流电阻R应比较大,以保证放电稳定在辉光放电区。如果限流电阻R很小,放电很容易进入弧光放电区。 辉光放电的特点:比较高的放电管电压U(几百~几千V),小的电流I(mA量级); 弧光放电的特点:很低的放电电压U(几十V),大电流放电I(A量级甚至更大)。 辉光放电的典型条件: ①放电间隙中的电场分布比较均匀,至少没有很大的不均匀性;例如He-Ne激光器的放电管内电场近似 均匀。 ②放电管内气体压强不是很高,要求满足(Pd)Ubmin<Pd<200Kpa cm(巴邢曲线的右支),d---放电管内 电极间距,(Pd)Ubmin--巴邢曲线最低点U bmin对应的Pd值。一般P=4Pa~14Kpa时,可出现正常辉光放电,而Pd>200Kpa cm时,非自持放电通常会过渡到火花放电或丝状放电; ③放电回路中的电源电压和限流电阻准许放电管的放电电流工作在mA量级,且电源电压应高于着火电 压U b,否则不能起辉。

《火焰检测技术》word版

火焰检测 火焰有着与众不同的特征,他的颜色、温度、形状以及跳动的形式都可以作为识别的依据。下面,我们将从火焰的静态特征和动态特征两方面入手进行火焰识别。 静态特征(颜色与形状) 首先,火焰有着与众不同的颜色特征。描述其颜色的模型有很多,图7就是其中一种,它可以由RGB空间经过简单比较计算得到。 图7 火焰颜色分布图 由上图,任何RGB图像中只要满足R>=G且G>B的颜色都可以看作是火焰。图8中显示了由该模型对各种火焰的检测结果。虽然这种模型的误报会很多,但可以作为最初始的筛选手段排除掉最不可能是火焰的物体。

图8 火焰图片(上行)及相应颜色检测结果(下行) 火焰的外形也是用来识别的重要特征。一种模型是采用嵌套式轮廓模型。它默认火焰存在一个或几个燃烧点,火焰从这些燃烧点一层层的向外扩散。越到外层的地方其形状的可边度越大,而且是连续的。图9展示了一个燃烧点的火焰模型,它由三层火焰轮廓组成,对于其右侧图10中的火焰经过该模型捕捉得到图11结果。 图9 火焰模型图10 火焰图片图11 符合模型的火焰 动态特征(频率) 火焰是跳跃着的,或者说是移动变化着的。初看起来没有什么规律,其实,经研究发现,火焰的外焰部分的运动存在一定频率。从图12中红色标出的火焰

外焰部分来看,这些像素点在经历着有火焰和无火焰两种状态的切换,这个切换的频率经过计算是10HZ 。这样,我们通过捕捉这个10赫兹的特征可以进一步确认是否有火焰的存在。 图12 火焰外焰部分 图13 外焰运动存在一定频率 除此之外,火焰的运动是有能量变化的。燃烧的物理变化和化学变化造成了火焰能量的不均衡分布。这点可以作为区分火焰与其他颜色相似运动物体的特征。图14中红色衣服上被黑色边框划出的区域能量变化在其右侧显示,可见衣服的能量分布是均匀的(显示为均一灰色,没有亮暗变化)。与之对比,火焰的能量变化就显得非常不均匀,在能量分布图上看得到明显的亮暗变化。 图14 与火焰颜色接近图案的能量分布 图15火焰的能量分布 烟雾检测 烟雾的特征和火焰有着明显的不同,无论是静态的还是动态的。这样使得我们可以将其与火焰识别分开处理。

火焰检测原理

火焰检测原理 燃烧火焰具有各种特性,如发热程度、电离状态、火焰不同部位的辐射、光谱及火焰的脉动或闪烁现象、差压、音响等,均可用来检测火焰的“有”或“无”。以煤、油作为 燃料的锅炉在燃烧过程中会辐射红外线(IR)、可见光和紫外线(UV)。 所有的燃料燃烧都辐射一定量的紫外线和大量的红外线,且光谱范围涉及红外线、可见光及紫外线。因此,整个光谱范围都可以用来检测火焰的“有”或“无”。由于不同种类的燃料,其燃烧火焰辐射的光线强度不同,相应采用的火焰检测元件也会不一样。一般说来,煤粉火焰中除了含有不发光的CO2和水蒸气等三原子气体外,还有部分灼热发光的焦炭粒子和炭粒,它们辐射较强的红外线、可见光和一些紫外线,而紫外线往往容易被燃烧产物和灰粒吸收而很快被减弱,因此煤粉燃烧火焰宜采用可见光或红外线火焰检测器。而在用于暖炉和点火用的油火焰中,除了有一部分CO2和水蒸气外,还有大量的发光碳黑粒子,它也能辐射较强的可见光、红外线和紫外线,因此可采用对这三种火焰较敏感的检测元件进行测量。而可燃气体作为主燃料燃烧时,在火焰初始燃烧区辐射较强的紫外线,此时可采用紫外线火焰检测器进行检测。除辐射稳态电磁波外,所有的火焰均呈脉动变化。因此,单燃烧器工业锅炉的火焰监视可以利用火焰脉动变化特性,采用带低通滤波器(10—20Hz)的红外固体检测器(通常采用硫化铅)。但电站锅炉多燃烧器炉膛火焰的闪烁规律与单燃烧器工业锅炉不大一样,特别是在燃烧器的喉口部分,闪烁频率的范围要宽得多。硫化铅(PbS)感测器,这是一种硫化铅光敏电阻,其特点是对红外线辐射特别敏感。燃料在燃烧时,由化学反应产生闪烁的红外线辐射,使硫化铅光敏电阻感应,转变成电信号,再经放大器处理后,输出4-20mA 或0-10V的模拟量。在光谱中,红外线的波长为Page 3 of 43 600nm以上,而这种硫化铅感测器的光谱灵敏度为600nm-3000nm,对绝大部分红外线辐射都可以有效采集,同

火焰检测装置

谈谈火焰检测装置的应用 1.引言 炉膛安全监控系统(FSSS)是防止因易燃物积聚和误操作而造成锅炉事故,保证锅炉安全运行的重要措施,火焰检测装置是FSSS的关键设备,FSSS 能否投运成功,在很大程度上取决于火焰检测装置动作的正确与可靠。火焰检测装置一般由探头、信号电缆、运算放大处理器组成。目前,国内火电厂火焰检测装置的应用有常规火焰检测装置和图像火焰检测装置。 2.常规火焰检测装置 常规火焰检测装置大多是基于对光能强度的检测,主要是可见光、红外线、紫外线,其基本原理是根据火焰的强度和脉动频率来判断炉膛火焰的存在与否,这类装置存在着“偷看”和火焰特征区瞄准的问题,对探头的安装要求比较严格,不同煤种、不同负荷、不同风粉比对燃料的着火点造成影响。 2.1可见光火焰检测装置 该装置利用炉膛燃料(煤粉、油、天然气)燃烧时辐射出具有一定强度和脉动性的可见光(400---700nm波长)来判断火焰是否存在。不同的火焰检测装置,探头输出信号形式不同:一种是直接输出不经处理的毫伏级信号;另一种是输出4---20mA标准信号,在探头可调整火焰增益放大系数,4---20mA 标准信号传输方式能提高带负载和传输过程中抗干扰的能力。火焰检测装置提供4---20mA模拟量和开关量信号输出,用以火焰显示和控制保护。 可见光火焰检测装置八十年代初期开始应用于电站锅炉,国内火电厂目前普遍采用。 2.2红外火焰检测装置 该装置利用炉膛燃料燃烧时辐射出的近红外线(700---3200nm波长)对燃烧器火焰进行检测,适用于燃油、燃气燃烧的火焰检测,而在燃煤锅炉燃烧器火焰检测的应用则较少。 红外火焰检测装置七十年代未期开始应用于电站锅炉。。

实验 传感器之火焰篇

物质为主体的高温固体微粒构成的。火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的 1 ~ 2 μm 近红外波长域具有最大的辐射强度。例如汽油燃烧时的火焰辐射强度的波长。 火焰传感器是机器人专门用来搜寻火源的传感器,当然火焰传感器也可以用来检测光线的亮度,只是本传感器对火焰特别灵敏。火焰传感器利用红外线对对火焰非常敏感的特点,使用特制的红外线接受管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器中,中央处理器根据信号的变化做出相应的程序处理。 火焰传感器是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。 火焰传感器又称感光式火灾传感器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾传感器。 理; 2、通过该实验项目,学生能够学会编写火焰传感器的程序。

1、编写一个读取火焰传感器输出电平信号的程序; 2、将火焰检测状态做简单的处理显示,正常无火焰状态为0,检测到火焰状态为1; 3、用按键KEY1控制ZIGBEEN是否发送数据。 6.4.1硬件部分 1、ZIGBEE调试底板一个; 图6-1 ZIGBEE调试底板 2、20PIN转接线一条和带USB的J-Link仿真器一个; 图6-2 J-Link仿真器 3、转接板一个; 实验内容 6.3 实验设备 6.4 电 源 开 关 电 源 传感器C端口 指示灯 2 J-LINK接 ZigBee_DEBUG 复位键 节点按键 拨码开关 ZigBe按键 红 外 发 射 指 示 灯 1 ZigBee复位键 可 调 电 阻传 感 器 A 端 口 传感器B端口 方口USB线,另一端连接电上电指示灯 20PIN转接线,另一端接转接板 20PIN转接线接口 10PIN转接线接口 串口接口

第一章原子发射光谱法解读

第一章、原子发射光谱法 一、选择题 1.闪耀光栅的特点之一是要使入射角α、衍射角β和闪耀角θ之间满足下列条件( ) (1) α=β(2) α=θ(3) β=θ(4) α=β=θ 2光栅公式[nλ= b(Sinα+ Sinβ)]中的b值与下列哪种因素有关?( ) (1) 闪耀角(2) 衍射角(3) 谱级(4) 刻痕数(mm-1) 3. 原子发射光谱是由下列哪种跃迁产生的?( ) (1) 辐射能使气态原子外层电子激发(2) 辐射能使气态原子内层电子激发 (3) 电热能使气态原子内层电子激发(4) 电热能使气态原子外层电子激发 4. 摄谱法原子光谱定量分析是根据下列哪种关系建立的(I——光强, N基——基态原子数, ?S——分析线对黑度差, c——浓度, I——分析线强度, S——黑度)?( ) (1) I-N基(2) ?S-lg c(3) I-lg c(4) S-lg N基 5. 下述哪种光谱法是基于发射原理?( ) (1) 红外光谱法(2) 荧光光度法(3) 分光光度法(4) 核磁共振波谱法 6. 当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是( ) (1) K(2) Ca(3) Zn(4) Fe 7. 以光栅作单色器的色散元件,若工艺精度好,光栅上单位距离的刻痕线数越多,则( ) (1) 光栅色散率变大,分辨率增高(2) 光栅色散率变大,分辨率降低 (3) 光栅色散率变小,分辨率降低(4) 光栅色散率变小,分辨率增高 8. 发射光谱定量分析选用的“分析线对”应是这样的一对线( ) (1) 波长不一定接近,但激发电位要相近(2) 波长要接近,激发电位可以不接近 (3) 波长和激发电位都应接近(4) 波长和激发电位都不一定接近 9. 以光栅作单色器的色散元件,光栅面上单位距离内的刻痕线越少,则( ) (1) 光谱色散率变大,分辨率增高(2) 光谱色散率变大,分辨率降低 (3) 光谱色散率变小,分辨率增高(4) 光谱色散率变小,分辨率亦降低 10. 在下列激发光源中,何种光源要求试样制成溶液?( ) (1)火焰(2)交流电弧(3)激光微探针(4)辉光放电 11. 用发射光谱进行定性分析时,作为谱线波长的比较标尺的元素是( ) (1)钠(2)碳(3)铁(4)硅 12. 基于发射原理的分析方法是( ) (1) 光电比色法(2) 荧光光度法(3) 紫外及可见分光光度法(4) 红外光谱法 13. 发射光谱法用的摄谱仪与原子荧光分光光度计相同的部件是( ) (1)光源(2)原子化器(3)单色器(4)检测器 14. 下面哪些光源要求试样为溶液, 并经喷雾成气溶胶后引入光源激发?( ) (1) 火焰(2) 辉光放电(3) 激光微探针(4) 交流电弧 15. 发射光谱分析中, 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是( ) (1) 直流电弧(2) 低压交流电弧(3) 电火花(4) 高频电感耦合等离子体 16. 电子能级差愈小, 跃迁时发射光子的( ) (1) 能量越大(2) 波长越长(3) 波数越大(4) 频率越高 17. 光量子的能量正比于辐射的( ) (1)频率(2)波长(3)传播速度(4)周期 18. 下面哪种光源, 不但能激发产生原子光谱和离子光谱, 而且许多元素的离子线强度大于原子线强度?( )

火焰光度检测器FPD

火焰光度检测器F P D 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1. FPD是 1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、 H2S、 CS2、 SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3. FPD检测硫化物是目前最好的方法,为了提高 FPD灵敏度和操作特性,在单火焰气体的流路式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在 300 ~ 450nm之间,最大波长约在 39左右;磷化合物发射光谱波长范围约在 480 ~ 575nm之间,最大波长约在 526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成 HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于 HPO的浓度,所以 FP 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2)与含硫化物的质量、流速之间的关系为IS2=I[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既 1

火焰检测器系统

第1章概述 1.1 用途 火焰检测设备是火力发电厂锅炉炉膛安全监控系统(FSSS)中的关键设备,它的作用贯穿于从锅炉启动至满负荷运行的全过程,用于判定全炉膛内或单元燃烧器火焰的建立/熄灭或有火与无火,当发生全炉膛灭火或单元燃烧器熄火时,火焰检测设备触点准确动作发出报警,依靠FSSS系统连锁功能,停止相应给粉机、磨煤机、燃油总阀或一次风机等的运行,防止炉膛内积聚燃料,异常情况被点燃引起锅炉爆炸恶性事故的发生,因此设备性能即设备运行的可靠性与检测的准确性直接关系到机组的运行安全与稳定性,ZHJZ-IV型火焰检测器适用于按各种方式分类的锅炉,包括按燃料类型分为燃油、燃煤、燃气锅炉,按机组容量分类的各种大中小型锅炉,按炉型分类的四角切圆燃烧、对冲燃烧、循环流化床等各种锅炉。 1.2 火焰检测原理 油、煤或气体燃料的燃烧其实质是燃料化学能以电磁波的形式释放,燃烧器火焰一般都能发射几乎连续的发光光谱,其发射源是燃烧过程中生成的高温炭素微粒子、微粉炭粒子群和气体等,不同的燃料燃烧过程中的中间产物不完全相同或中间产物的所占比例各不相同,不同的燃烧中间产物所发射的光谱不完全一样,这是选择不同类型火焰检测器依据,C2发射可见光(发射波长为473.7纳米左右)、CH化合物发射紫外到蓝光区波段的光谱、炭素粒子群发射红光区光谱、CO2、H2O和SO2等三原子气体发射红外光,不同燃料的光谱分布特性是油火焰含有大量的红外线、部分可见光、和少量紫外线,煤粉火焰含有少量紫外线、丰富的可见光和少量红外线。气体火焰有丰富的紫外线、红外线和较少的可见光,而且对于单只燃烧器火焰,其辐射光谱沿火焰轴线分布是有规律的,例如煤粉锅炉中煤粉燃烧器沿轴线从里至外分为4个区域即预热区、初始燃烧区、安全燃烧区和燃尽区,在初始燃烧区不但可见光较丰富而且能量辐射率变化聚烈,因此火焰检测探头准确对准燃烧器的初始燃烧区是最佳选择。 ZHJZ-IV型火焰检测器的火焰检测设备是一种间接辐射型可见光式火焰检测设

火焰探测器

火焰探测器:物质燃烧时,在产生烟雾和放出热量的同时,也产生可见或不可见的光辐射。火焰探测器又称感光式火灾探测器,它是用于响应火灾的光特性。即扩散火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。根据火焰的光特性,目前使用的火焰探测器有两种:一种是对波长较短的光辐射敏感的紫外探测器,另一种是对波长较长的光辐射敏感的红外探测器。 紫外火焰探测器是敏感高强度火焰发射紫外光谱的一种探测器,它使用一种固态物质作为敏感元件,如碳化硅或硝酸铝,也可使用一种充气管作为敏感元件。 红外光探测器基本上包括一个过滤装置和透镜系统,用来筛除不需要的波长,而将收进来的光能聚集在对红外光敏感的光电管或光敏电阻上。 火焰探测器宜安装在有瞬间产生爆炸的场所。如石油、炸药等化工制造的生产存放场所等。 火焰探测的基本原理 火焰的辐射是具有离散光谱的气体辐射和伴有连续光谱的固体辐射,其波长在0.1-10μm或 更宽的范围,为了避免其他信号的干扰,常利用波长<300nm的紫外线,或者火焰中特有的波长在4.4μm附近的CO2辐射光谱作为探测信号。紫外线传感器只对185~260nm狭窄范围内的紫外线进行响应,而对其它频谱范围的光线不敏感,利用它可以对火焰中的紫外线进行检测。到达大气层下地面的太阳光和非透紫材料作为玻壳的电光源发出的光波长均大于300nm,故火焰探测的220m-280nm中紫外波段属太阳光谱盲区(日盲区)。紫外火焰探测技术,使系统避开了最强大的自然光源一太阳造成的复杂背景,使得在系统中信息处理的负担大为减轻。所以可靠性较高,加之它是光子检测手段,因而信噪比高,具有极微弱信号检测能力,除此之外,它还具有反应时间极快的特点。与红外探测器相比,紫外探测器更为可靠,且具有高灵敏度、高输出、高响应速度和应用线路简单等特点。因而充气紫外光电管正日益广泛地应用于燃烧监控、火灾自报警、放电检测、紫外线检测、及紫外线光电控制装置中。 但对于传统的紫外光电管器件,由于结构设计和制备工艺的限制,其噪声和灵敏度是一个互相矛盾的参数。一般而言,需将灵敏度控制在一个合适的水平,过高的灵敏度对器件的低噪

氢火焰离子化检测器详细介绍包括原理等超详细!!!

氢火焰离子化检测器详细介绍(包括原理等超详细!!!)

————————————————————————————————作者: ————————————————————————————————日期: ?

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。 氮火焰离子化检测器晌应机理

火焰检测报警器 课程设计

广州学院 嵌入式技术应用项目说明书 (火焰检测报警器) 院(系)机械工程学院 专业机械电子工程 班级 12机电2班 学生姓名利齐帅徐杰龙林辉梁庆堂指导老师王蕊 成绩 2015年 10 月 10 日

课程设计任务书 兹发给12机电 2 班学生利齐帅、徐杰龙、林辉、梁庆堂课程设计任务书,内容如下: 1.设计题目:火焰检测报警器 2.应完成的项目: (1)设计说明书计算准确、书写工整,字数不少于3000字;图纸正确清晰,符合制图标准及有关规定。 (2)分组实现原理图设计及相关元器件的设计,按要求完成总体电路。 (3)基于相关电路完成电路设计、程序设计与实物。 (4)完成总体内容,实现具体功能。 3.参考资料以及说明: (1)《电子线路CAD与实训》(电子工艺出版社) (2)《电子工艺技术与实践》(机械工程出版社) (3)《单片机原理及应用》(清华大学出版社) (4)集成电路数据手册查询网:https://www.doczj.com/doc/6511986467.html,/ (5)《新概念51单片机C语言教程:入门、提高、开发、拓展全攻略》(电子工业出版社) 4.本设计任务书于2015年11月16日发出,应于2015年11月27日前完成,然后进行答辩。 指导教师签发2015 年11 月16 日

评语: 总评成绩: 指导教师签字: 年月日

目录 摘要 (4) 第一章绪论 (5) 第二章总体内容及设计 (6) 2.1 总体内容设计及目标 (6) 2.2 组员及任务 (6) 第三章电路设计及元器件选型 (7) 3.1 AT89C52单片机控制模块电路原理图设计 (7) 3.2晶振起振模块电路与功能 (8) 3.3 1602液晶屏显示模块电路原理图设计 (9) 3.4声音报警模块电路原理图设计 (11) 3.5红外火焰传感器功能及电路 (11) 第四章程序设计 (13) 4.1输入部分程序 (13) 4.2输出部分程序 (14) 4.3定时应用与功能 (16) 第五章电路设计及结果 (17) 第六章总结 (19) 参考文献 (20)

06第六章 原子发射光谱法

原子发射光谱法自测题 一、选择题 ( 每题2分,共13题 26分 ) 1、矿物中微量Ag、Cu的发射光谱定性分析应采用的光源是( ) A、 CP光源 B、直流电弧光源 C、低压交流电弧光源 D、高压火花光源 2、测量光谱线的黑度可以用( ) A、比色计 B、比长计 C、测微光度计 D、摄谱仪 3、下面哪些光源要求试样为溶液,并经喷雾成气溶胶后引入光源激发?( ) A、火焰 B、辉光放电 C、激光微探针 D、交流电弧 4、当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是( ) A、K B、Ca C、Zn D、Fe 5、用发射光谱法测定某材料中的Cu 元素时,得铜的某谱线的黑度值(以毫米标尺表示)为S(Cu) = 612,而铁的某谱线的黑度值S(Fe) = 609,此时谱线反衬度是2.0,由此可知该分析线对的强度比是( ) A、31.6 B、1.01 C、500 D、25.4 6、下面几种常用的激发光源中,激发温度最高的是( ) A、直流电弧 B、交流电弧 C、电火花 D、高频电感耦合等离子体 7、用发射光谱进行定性分析时,作为谱线波长的比较标尺的元素是( ) A、钠 B、碳 C、铁 D、硅 8、以光栅作单色器的色散元件,光栅面上单位距离内的刻痕线越少,则( ) A、光谱色散率变大,分辨率增高 B、光谱色散率变大,分辨率降低 C、光谱色散率变小,分辨率增高 D、光谱色散率变小,分辨率亦降低 9、分析线和内标线符合均称线对的元素应该是( ) A、波长接近 B、挥发率相近 C、激发温度相同 D、激发电位和电离电位相近 10、在原子发射光谱摄谱法定性分析时采用哈特曼光阑是为了( ) A、控制谱带高度 B、同时摄下三条铁光谱作波长参比 C、防止板移时谱线产生位移 D、控制谱线宽度 11、用发射光谱进行定量分析时,乳剂特性曲线的斜率较大,说明( ) A、惰延量大 B、展度大 C、反衬度大 D、反衬度小 12、下列哪个因素对棱镜摄谱仪与光栅摄谱仪的色散率均有影响?( ) A、材料本身的色散率 B、光轴与感光板之间的夹角 C、暗箱物镜的焦距 D、光线的入射角 13、下列哪种仪器可用于合金的定性、半定量全分析测定( ) A、极谱仪 B、折光仪 C、原子发射光谱仪 D、红外光谱仪 E、电子显微镜 二、填空题 ( 共12题 24分 ) 14、在发射光谱定性分析中,在拍摄铁光谱和试样光谱时,用移动________来代替移动感光板,其目的是_____________________________________________________。 15、你的实验中所用的发射光谱的摄谱仪的色散元件是____________________,检测器是

解析各种检测器的原理、用途和作用

解析各种检测器的原 用途和理、作用

气相色谱仪-检测系统 1.热导检测器热导检测器 (Thermal coductivity detector ,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果 热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加一倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。 2.气相色谱仪氢火焰离子化检测器 氢火焰离子化检测器(Flame lonization Detector ,FID)简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口 及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气 混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量 级,易进行痕量有机物分析。其缺点是不能检测惰性气体、空气、水、CO , CO2、

第六章、辉光放电(Glow discharge)

第六章、辉光放电(Glow discharge) 辉光放电是放电等离子体中最常见的一种放电形式,应用也最广泛。比如,一般的气体激光器(He-Ne 激光器、CO2激光器等)、常用光源(荧光灯)、空心阴极光谱灯等。同时辉光放电也是放电形式中放电最稳定的放电形式,所以有必要对辉光放电进行较为详细的讨论。 §6.1 辉光放电的产生及典型条件 最简单的辉光放电的结构如图6.1(a)。调节电源电压E或限流电阻R,就会得到如图6.1(b)的V-A 特性曲线。管电压U调节到等于着火电压U b时,放电管内就会从非自持放电过渡到自持放电,此时,放电电流I会继续增大,管压降U下降,进入辉光放电区。放电管发出明亮的辉光,其颜色由放电气体决定。限流电阻R应比较大,以保证放电稳定在辉光放电区。如果限流电阻R很小,放电很容易进入弧光放电区。 辉光放电的特点:比较高的放电管电压U(几百~几千V),小的电流I(mA量级); 弧光放电的特点:很低的放电电压U(几十V),大电流放电I(A量级甚至更大)。 辉光放电的典型条件: ①放电间隙中的电场分布比较均匀,至少没有很大的不均匀性;例如He-Ne激光器的放电管内电场近似 均匀。 ②放电管内气体压强不是很高,要求满足(Pd)Ubmin<Pd<200Kpa cm(巴邢曲线的右支),d---放电管内 电极间距,(Pd)Ubmin--巴邢曲线最低点U bmin对应的Pd值。一般P=4Pa~14Kpa时,可出现正常辉光放电,而Pd>200Kpa cm时,非自持放电通常会过渡到火花放电或丝状放电; ③放电回路中的电源电压和限流电阻准许放电管的放电电流工作在mA量级,且电源电压应高于着火电 压U b,否则不能起辉。

光谱分析培训资料解析

光谱分析培训资料 2006年9月

原子吸收光谱分析培训资料 说明:以下内容仅是该类检测人员需要掌握的最基本知识,还涉及到的理论知识需用业余时间学习,实际经验需在操作中去积累。有关实验室认可内容将以质量手册和程序文件为依据进行专题培训。 理论知识 一、原子吸收光谱分析的基本原理 1.原理: 原子吸收分光光度法,又称原子吸收光谱法,是基于从光源发出的被测元素特征辐射通过元素的原子蒸气时被其基态原子吸收,由辐射的减弱程度测定元素含量的一种现代仪器分析方法2.分类:通常分为2类 a).火焰原子吸收分析:由火焰将试样分解成自由原子。 b).石墨炉无火焰原子吸收分析:依靠电加热的石墨管将试样气化及分解。 3.优点: a).检出限低。可达ng.ml-1级。 b).选择性好,原子吸收光谱是元素的固有特征。 c).精密度高,相对标准偏差达到1%没有困难,最好可以达到0.3%或更好。 d).抗干扰能力强,一般不存在共存元素的光谱干扰。干扰主要来自化学干扰。 e).分析速度快,使用自动进样器,每小时测定几十个样品没有任何困难。 f).应用范围广,可分析周期表中绝大多数的金属与非金属元素。 g).进样量小,一般进样量3~6ml.min-1 h).仪器设备相对简单,操作简便。 4.不足: 主要用于单元素的定量分析,标准曲线的动态范围通常小于2个数量级。 二、原子吸收光谱分析的定量方法 吸光度与试样中被测元素含量成正比

A=Kc(A—吸光度;c—被测元素的含量;) 常用的定量方法: 有标准曲线法——最基本的定量方法 标准加入法 浓度直读法。 1.标准曲线法: 用标准物质配制标准系列溶液,在标准条件下,测定各标准样品的吸光度值Ai,对被测元素的含量ci。在同样条件下,测定样品的吸光度值Ax,根据被测元素的吸光度值Ax,从校正曲线求得其含量ci。 2.标准加入法: 分取几份等量的被测试样,在其中分析加入不等量的被测元素标准溶液,依次在标准条 件下测定它们的吸光度值,制作吸光度值对加入量的校正曲线,用外推法求得样品溶液的浓度3.浓度直读法: 在标准曲线为直线的浓度范围内,先用一个标样定标,通过标尺扩展,将测定吸光度值 调整为浓度值,以后测定试样时直接得到它的浓度值。 三、原子吸收光谱仪的组成 光源 原子化器、氢化物发生器 分光系统 检测系统 1.光源——空心阴极灯:由待测元素本身或其合金制成,内充惰性气体。 2.火焰原子化器:由雾化器、雾化室及燃烧器三部分组成 a). 雾化器:通过毛细管由气流的负压吸入溶液,并将溶液分散成非常细的雾滴。 b). 雾化室:预混室,燃气、助燃气、分散雾滴在此充分地混合均匀。 c). 燃烧器:用于混合气燃烧之用。一般是单缝燃烧器。我们所使用的是空气乙炔火焰燃烧器 与氧化亚氮乙炔燃烧器。 3.氢化物发生器:用于易形成氢化物的元素测定,As、Se、Sb、Hg元素 4.光学系统:单色器,分单光束与双光束。 5.检测系统:接收被火焰吸收后信号输入到光电倍增管,变成电讯号,最后经过转换由记记录仪

交流火焰检测

燃气热水器交流火焰检测电路 由于变压器输出交流信号,燃气燃烧产生离子体,火焰产生正负极离子体,当交流信号到达火焰检测信号探针处,交流信号可在火焰上形成通路,从而火焰起到一个二极管整流作用,使火焰探针左侧的电容充电,产生一个负电压,经过比较器后变成低电平.......... 火焰检测反馈电路 如图所示,焰检测反馈电路由单片机,**管Q5、Q6,就压管T2及IC1等元器件组成。当工作时单片机在给点火控制电路信号的同时也把触发信号加到了Q5的基极,使Q5饱和导通,由Q6及T2组成的电感三点式自激振荡电路得电起振工作,振荡电路工作后在T2的次级绕组上感应出一个约150V的交流脉冲电压,此电压的一端通过电容C6和电阻R15后由连接导线连接到安装在燃烧器旁的火焰探测针上,当燃气被点燃燃烧时,因火焰本身所具有的单向导电特性(二级管特性),通过C6及R15加到火焰探测针上的交流脉冲电压被火焰整流,整流后产生的离子电流给电容C7充电,在C7上形成一个下正上负的充电电压,C7上端的负电压通过R17加到IC1比较器的负端上,使IC1比较器的负端电位低于正端电位,迫使IC1比较器反转,由原来输出的低电平反转为高电平,再将此高电平信号送到单片机的火焰信号检测输入口上。 当燃气灶意外熄火时,通过C6及R15加到火焰探测针上的150V交流脉冲电压呈现开路状态,IC1比较器的负端由于R19的作用而使电

位高于比较器的正端,迫使IC1比较器反转,由原来的高电平反转为低电平状态,输出的低电平信号送到单片机的火焰信号检测输入口上。当火焰探测针发生严重漏电或火焰探测针与机体短路时,T1次级绕组上的150V交流脉冲电压通过R15及C7构成回路,因电容的线性对交流电短路,IC1比较器的负端由于R19的作用而高于正端电位,使比较器反转,输出低电平,此低电平信号输入到单片机的火焰信号检测口上,这样,单片机通过火焰信号检测输入端电平的高低就可判别火焰的有无。本电路由于采用了交流火焰检测方法,提高了火焰检测的可靠性,防止了控制误动作的发生。

氢火焰离子化检测器详细的介绍(包括原理等超详细)

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

图像火焰检测及燃烧分析系统的应用分析

图像火焰检测及燃烧分析系统的应用分析 摘要:针对电站锅炉常规火检系统存在的“偷看”、“漏看”问题,从锅炉燃烧特性和图像火检工作原理进行了分析,探讨了图像火检的实用性和应用情况。 关键词:图像火检;火焰检测;探头 目前,我国电站锅炉采用的火焰检测器是以可见光、红外光为主的光敏元件检测器,这两种光敏原件检测器都是借助火焰着火区辐射能量的交流分量、火焰的脉动幅值和脉动频率,进行火焰着火与熄火的检测。然而在锅炉运行过程中,由于锅炉负荷及配风的变化,煤火检过程中,“偷看”、“漏看”的问题一直比较严重,而且长期存在,导致对燃烧器的检测准确性大大降低,以至于灭火保护也不得不解除,影响机组运行安全。 图像火焰检测及燃烧分析系统,其原理是利用火焰图像,来对火焰燃烧情况进行全程监控,能够直观地判断火焰的存在状态,煤种和负荷变化对其影响极小。这是一种新型的火焰检测装置。本文主要分析了图像火检的工作原理,以及燃烧器在燃烧方面的特性,以此论证在锅炉火焰检测中,图像火检所独有的优势。 1 图像火检系统概述

图像火焰检测及燃烧分析系统的核心,是基于煤粉在燃烧过程中的火焰图像分析,主要是对火焰图像视频信号进行处理,整个处理过程包括火焰图像视频信号的采集、传输、放大、录制、显示、分析等几部分。图像火焰检测及燃烧分析系统的组成主要有如下几部分: ●火焰图像传感器 ●视频信号分配器 ●火焰图像检测器(下位机) ●火焰图像监视管理系统 ●火焰图像录放系统 ●通讯系统 火检探头采用视频信号传输,不配备光纤。 2 图像火检工作原理 图像火焰检测及燃烧分析系统,其原理是借助广角长焦距工作镜头对整个燃烧器状况进行判断,并利用彩色CCD 摄像机对燃烧器喷口的火焰图像进行直观拍摄。由于燃烧火焰图像中含有大量的信息,再采用传像技术、计算机数字图像处理技术、模式识别技术等对图像进行分析,以便对单个燃烧器火焰的ON/OFF信号进行准确判断。 3 火焰检测不稳定性分析 电站锅炉运行过程中常规煤火检一直存在“偷看”、“漏看”和稳定性差的问题,为了解决这个问题,就需要对电站

火焰监测原理

离子火焰监测器是利用火焰的单向导电原理而研制的一种火焰检测装置,该装置由传感器和监测器两部分组成。传感器为一支具有良好导电作用的电极,即火焰检测电极。当火焰检测电极接触到火焰时,即产生一流经燃烧器接地回路的微弱的火焰离子电流,该信号经控监测放大处理后,给出火焰指示,并通过继电器输出触点的转换来对外部设备进行控制。 由于各种气体、液体燃料在燃烧时,不断地挥发出污染物质,使电极氧化或结焦,影响火焰信号的接收.因此必须定期检查和擦拭电极头,以保证电极能可靠传导火焰电流信号。 如果电极已烧损变形,不可勉强使用,而应及时更换新的电极,在设备运行中若发现火焰信号不稳定或产生误动作,应仔细检查电极的接线是否正确牢靠,电极与燃烧器是否有短路现象,如有上述故障应及时排除。 基本就两块: 1.电子检测电极问题,接触不好,或是烧短了,注意材质特殊,不能任意更换。 2.检测放大器的问题。 电离式火检一般出现无法检测到火焰的问题,都是由于火焰脱火造成的,脱火就是火焰形状的改变,无法与烧咀及其他设备构成回路,需要调整燃气和风量的配比。

除此之外,还有可见光火检,紫外线火检等很多种 利用辐射光能原理的火焰检测器是目前使用最广泛,也是较行之有效的方法。辐射光能强度检测的原理是用探头接收火焰发出的辐射,按照其强度的大小判断火焰的存在与否。由于检测波段的不同,可以分为紫外线、可见光、红外线及全辐射火焰检测。 紫外、红外探头分别探测不同部分的光谱,只有当2个探头同时探测到相应的光谱时,紫外、红外探头才会有输出,这样就避免了单独使用紫外或红外探头由某些原因(如闪电、电弧焊等)所引起的误报警。该火焰探头有两个继电器输出,其故障继电器的常闭点与终端电阻串接,并连在火焰继电器的常开点上。当探头有故障发生时,故障继电器动作,产生一故障(开路)信号。当探测到火焰时,火焰继电器动作,输出一报警信号。该紫外/红外采用了自动oi测试功能,大约一分钟检测一次,检查探头镜头的清洁度,传感器的灵敏度和内部电子电路的功能。如果连续三次均探测到故障,探头将输出一故障信号。 ULTRA-VOILET DETECTOR 火焰探测信号来自紫外线探测器和烟雾探测器。火焰探测器有三个独立的探测管,用于探测波长为180—260埃的紫外线辐射。当火焰的辐射作用到探测管之一的阴极时,电子束放射出来。电子束作用到充满探测管的电离气体,从而发射出更多的电子,产生出雪崩条件。更多的电子释放出来,在阴极和阳极之间产生一个瞬时电子流。这个

相关主题
文本预览
相关文档 最新文档