当前位置:文档之家› 天然气发动机结构及工作原理

天然气发动机结构及工作原理

上柴D6114ZB发动机技术参数

D6114B 1、主轴承螺栓拧紧到规定扭矩的情况下: 主轴承座孔内径Φ105±0.011 主轴承内径:Φ98 +0.089+0.131 与曲轴主轴颈配合间隙:0.076-0.144mm 2、凸轮轴轴承座孔和轴承孔直径座孔直径 座孔直径:Φ64±0.015 轴承内孔直径:Φ60 +0.085+0.155 与凸轮轴轴颈配合间隙:0.075=0.164mm,极限0.20 轴承内孔磨损极限:Φ60.20 3、气缸套 气缸套内孔直径Φ114 0+0.035 气缸套内也不圆度:0.0125 4、活塞 活塞裙部(离活塞最低处23.6)尺寸,Φ113.87±0.007,极限Φ113.78 活塞环侧隙:第二道环0.06-0,极限0.016;油环0.903-0.062,极限0.012 活塞环闭口间隙:第1、2道气环0.4-0.6,磨损极限1.4,油环0.3-0.5,磨损极限1.4 5、活塞销 活塞销的外径:Φ45 -0.007+0 6、连杆 连杆大头孔Φ81±0.011 连杆大头轴承内孔:Φ76 +0.059+0.101 与连杆轴颈配合间隙:0.046-0.114 连杆小头孔:Φ49±0.012 连杆小头轴承内孔:Φ45 +0.025+0.041 7、主轴承 主轴承厚度3.50 -0.06-0.05,磨损极限3.34 8、连杆轴承 连杆轴承厚度2.5-0.045-0.035,磨损极限2.43 9、曲轴 连杆轴颈:标准尺寸Φ76±0.013,磨损极限Φ75.962 连杆轴颈与连杆轴承配合间隙:0.046-0.114 连杆轴颈的不圆度:0.05,锥度:0.013 10、主轴颈 主轴颈,标准尺寸Φ98±0.013,极限磨损Φ97.962 主轴颈与主轴承配合间隙:0.076-0.144 主轴颈的不圆度:0.05,锥度:0.013 11、凸轮轴 凸轮轴直径:Φ60±0.0095,磨损极限Φ59.962,与轴承配合极限间隙:0.20 凸轮桃峰高度D6114B进气凸轮标准尺寸52.4495±0.16磨损极限52.13;排气凸轮45.8307±0.16,磨损极限45.51。 12气门间隙 柴油机在60℃以下,进气门间隙:0.30,排气门间隙:0.50

天然气供气系统结构与工作原理

安全管理编号:LX-FS-A21055 天然气供气系统结构与工作原理 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

天然气供气系统结构与工作原理 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 天然气供气系统的性能、同发动机优化匹配情况,对天然气发动机性能有至关重要的影响。如表4-1所示,在解放CA6102型汽油机上,采用不同的供气系统装置,提高压缩比,充分证明压缩比的提高可部分补偿发动机的标定功率损失,而且采用性能优良的供气装置可使标定功率损失大幅度降低。原机压缩比为6.75时,采用1#供气装置的标定功率损失达24.2%,压缩比提高到7.6时标定功率损失降为18.1%。而采用2#供气装置,压缩比为7.6时,同原机型相比,标定功率损失可降低到10%左右。

上柴DZB发动机技术参数

上柴D Z B发动机技术参 数 Document number:BGCG-0857-BTDO-0089-2022

D6114B 1、主轴承螺栓拧紧到规定扭矩的情况下: 主轴承座孔内径Φ105±0.011 主轴承内径:Φ98 +0.089+0.131 与曲轴主轴颈配合间隙:0.076-0.144mm 2、凸轮轴轴承座孔和轴承孔直径座孔直径 座孔直径:Φ64±0.015 轴承内孔直径:Φ60 +0.085+0.155 与凸轮轴轴颈配合间隙:0.075=0.164mm,极限0.20 轴承内孔磨损极限:Φ60.20 3、气缸套 气缸套内孔直径Φ114 0+0.035 气缸套内也不圆度:0.0125 4、活塞 活塞裙部(离活塞最低处23.6)尺寸,Φ113.87±0.007,极限Φ113.78活塞环侧隙:第二道环0.06-0,极限0.016;油环0.903-0.062,极限0.012 活塞环闭口间隙:第1、2道气环0.4-0.6,磨损极限1.4,油环0.3-0.5,磨损极限1.4 5、活塞销 活塞销的外径:Φ45 -0.007+0 6、连杆

连杆大头孔Φ81±0.011 连杆大头轴承内孔:Φ76 +0.059+0.101 与连杆轴颈配合间隙:0.046-0.114 连杆小头孔:Φ49±0.012 连杆小头轴承内孔:Φ45 +0.025+0.041 7、主轴承 主轴承厚度3.50 -0.06-0.05,磨损极限3.34 8、连杆轴承 连杆轴承厚度2.5-0.045-0.035,磨损极限2.43 9、曲轴 连杆轴颈:标准尺寸Φ76±0.013,磨损极限Φ75.962 连杆轴颈与连杆轴承配合间隙:0.046-0.114 连杆轴颈的不圆度:0.05,锥度:0.013 10、主轴颈 主轴颈,标准尺寸Φ98±0.013,极限磨损Φ97.962 主轴颈与主轴承配合间隙:0.076-0.144 主轴颈的不圆度:0.05,锥度:0.013 11、凸轮轴 凸轮轴直径:Φ60±0.0095,磨损极限Φ59.962,与轴承配合极限间隙:0.20 凸轮桃峰高度D6114B进气凸轮标准尺寸52.4495±0.16磨损极限52.13;排气凸轮45.8307±0.16,磨损极限45.51。

康明斯电喷发动机故障代码资料

注意:此翻译稿仅供参考,所有内容以英文原版公告AEB15.43为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ?ECM具有大范围检测故障的能力 ?闪烁故障代码 ?位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 ?保养指示灯 机载诊断 1. 故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2. 闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

天然气发动机结构及工作原理

潍柴天然气发动机之发动机结构及工作原理 1 / 51

天然气的成分 主要成分是甲烷,易于完全燃烧,比空气轻,泄露后迅速飘散大气中,安全性好。作为车载能源,主要有以下两种贮存形态: 1、CNG-Compressed natural gas 压缩天然气: 气瓶内充满气时一般为20Mpa, 2、LNG-Liquefied natural gas 液化天然气: 在常压下、温度为-162度的天然气变为液态。 2 / 51

燃料种类 常态下密度kgm 沸点℃天然气(CH4) LPG 580 柴油(C16H34为代表) 汽油(C8H18为代表) -3 0.75~0.8(气态) 830 170~350 14.3:1 42.50 720~750 30~190 14.8:1 43.90 -161.5 17.2:1 49.81 130 -100 理论空燃比(kg/kg) 低热值 MJ(kg) -1 45.9 辛烷值(RON) 十六烷值 100~110 23~30 40~60 1.58~8.2 250 80~99 27 0 燃烧极限(体积) % 自然温度(常压下)T ℃ 闪点℃5~15 650 1.5~9.5 450 1.3~7.6 390~420 60 -43 -187 其中:辛烷值:指与汽油抗爆性相同的标准燃料所含异辛烷的体积分数. 低热值:指1立方米燃气完全燃烧后其烟气被冷却至原始温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热量. 3 / 51

天然气的安全性: 1)天然气在压缩(液化)、储运、减压、燃烧过程中,都是在严格密封的状态进行,不易泄漏; 2)天然气比空气轻(密度为空气密度的55%),如有泄漏,在高压下很快散失,不易着火; 3)天然气的着火点为650~750℃,比汽油高约260℃, 4)爆炸极限5~15%,比汽油的1~6%高2.5~4.7倍,与汽油相比不易发生燃烧和爆炸。 4 / 51

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

液化天然气汽车的结构及发展

编号:SM-ZD-13372 液化天然气汽车的结构及 发展 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

液化天然气汽车的结构及发展 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、液化天然气特点及其发展 液化天然气(LNG)工业是天然气加工工业的重要组成部分,经过半个多世纪的开发和发展,形成了生产、储存、海运、接收、再汽化供应用户、冷量利用、调峰等一系列完整的工业,并已步入成熟期,这便为采用LNG作为汽车燃料提供了先决条件。 1. 液化天然气的特点 液化天然气(LNG)是对地质开采的含90%以上甲烷(CH ?)的天然气气体通过“三脱”净化处理(脱水、脱烃、脱酸),实施液化处理而成,其主要成份为液体甲烷。在液化处理过程中,主要采用的工艺是利用膨胀制冷工艺,使天然气气体中的甲烷成份在-162℃液化分离,形成液化天然气的主导成份。液化后的体积比气态体积减少625倍左右。 LNG的分子量和H/C比均与CNG基本相同,只是LNG 通过深冷前的预处理,几乎除尽了天然气中的全部杂质;而

康明斯电喷发动机故障代码

注意:此翻译稿仅供参考,所有内容以英文原版公告为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ECM具有大范围检测故障的能力 闪烁故障代码 位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 保养指示灯 机载诊断 1.故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2.闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

发动机的组成及工作原理

发动机的组成及工作原理 一、组成: 总的来说,目前发动机由两大机构、五大系统组成 1、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 2、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 3、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 4、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 5、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 6、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 7、起动系 理解这个并不难,要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动

国内天然气发动机产品简介

国内天然气发动机产品简介时间:2007-09-24 17:31:54 08:19:54 来源:carnews 作者:吕玉洁 由于石油资源分布不均及日益短缺的威胁,寻找清洁的代用燃料成为影响社会可持续发展的重要因素之一。在各种汽车代用燃料中,天然气因其清洁、储量大、热值高、排污低、使用经济性好而备受关注。发展天然气汽车对于改善城市空气质量,缓解我国能源压力有着重要的现实意义。 根据燃气汽车使用天然气的不同形态,可分为压缩天然气(CNG)和液化天然气(LNG)两种。这两种形态的燃料发动机在国内均已得到应用。 天然气发动机经历了三代技术发展,第一代产品是机械式,第二代属于简单闭环控制,第三代采用电控喷射CNG技术。目前,国外CNG发动机已在广泛应用第三代技术,比第三代技术更先进的LNG缸内直喷技术也已得到小批试用,其动力性、经济性和排放俱佳,但其开发难度大,费用昂贵,成本也高,国内尚未开始研制。我国已发展到了第三代,即采用高压喷射,通过节气门传感器、气体流量传感器、转速传感器、水温传感器、进气温度传感器、压力传感器和氧传感器等经过中央处理单元来控制点火、空燃比等。 国内大型汽车厂和发动机厂如东风、解放、上柴、潍柴、玉柴不断加大产品开发力度,相继推出了产品并在市场上进行推广应用。以下是目前我国生产天然气发动机的主要厂商及部分产品介绍。 珀金斯雷沃动力(天津)有限公司 珀金斯雷沃动力(天津)有限公司是英国珀金斯在中国的合资公司,公司投资3000余万元用于“欧Ⅳ、欧Ⅴ”天然气发动机的项目研发。该项目包含Phaser 135TiN、 Phaser 160TiN、Phaser 180TiN、Phaser 210TiN四个机型,在Phaser系列柴油机基础上,采用电控闭环多点喷射技术,通过燃油系统到燃气系统的设计转变、性能与排放优化标定试验、可靠性考核、排放认证等工作来实现,功率覆盖100-156kW。 https://www.doczj.com/doc/6510374303.html,/news_end.php?id=105 2006年10月23日,天津珀金斯正式下线“天然气欧Ⅳ发动机”,完成了第一阶段产品的开发,又在继续开发第二阶段欧Ⅴ产品。目前,雷沃动力天然气发动机成功匹配福田欧V客车,泰国客户已与福田欧V签订了1000多台采用雷沃动力天然气发动机动力系统的客车供货协议。美国客户也与雷沃动力签订了天然气发动机的采购合同。 https://www.doczj.com/doc/6510374303.html,/news_end.php?id=107 东风康明斯发动机有限公司 东风康明斯发动机有限公司是由东风汽车股份有限公司和康明斯公司各占50%股份比例合资兴建的发动机制造公司。通过滚动式技术引进和自行开发战略,在产品开发上逐步实现与美国康明斯公司同步发展。 东风康明斯主要生产B系列天然气发动机,采用稀燃闭环电子控制系统和ECM模块和故障诊断系统,能自动设置运行参数并进行发动机自我调节和保护,排放通过美国环保署EPA认证同时满足欧Ⅲ标准。 B系列天然气发动机主要参数:

天然气发动机工作原理

本帖最后由giant 于2012-2-4 21:47 编辑 天然气发动机工作原理: ·LNG从气瓶体通过管路进入汽化器加热汽化,经过稳压罐稳压后由燃气稳压后由燃气滤清器滤清,之后能过电磁切断阀控制进入稳压器稳压,稳压后的燃气进入热交换器。 ·CNG从压缩气瓶通过管路进入减压器减压至8bar后,经过滤清器进入热交换器。燃气经过热交换器加热后通过节温器进入FMV,由FMV控制喷射入混合器中与增压后的空气混合。电子节气门控制混合气进入发动机气缸内燃烧做功。 ·LPG从气瓶出来经高压电磁阀到蒸发调压器,变成气态的LPG。LPG经FTV与空气在混合器内充分混合,进入发动机缸内混合燃烧。 淮柴天然气发动机部件介绍 潍柴天然气发动机的美国伍德沃德公司的OH2.0系统。OH2.0系统一套单点喷射,稀然,全功能,自适应闭环抵制系统,由三部分组成。分别是燃料控制系统,空气控制系统和点火系统。发动机控制模块及线束 ◆ ECM电控模块 ECM是一个徽缩了的计算机管理中心,它以信号(数据)采集作为输入,经进计算处理,分析判断,决定对策,然后以发出控制指令,指挥执行器工作作为输出,同时给传感器提供稳压电源或参考电压。其全部功能是通过各种硬件和软件来完成的。WOODWARD2.0系统采用ECU128-HD微处理器。可以支持单点或多点喷射,支持CAN通讯。 ECM具有以下结构:① 最大有34模拟量输入,5个数字量输入,5 PWM输入等;② 最大支持12个喷嘴驱动,1个驱动单独对应一个喷嘴;③ 11个低端输出;④ 2 CAN通讯口;⑤ 1 RS -485通讯口。ECU有两个5V电源输出,给传感器供电,两电源相互独立,如果5V电源短路,电压下降并会导致许多系统错误;有一专门应用于连接传感器和ECU的接地,以保证传感器的精确读数。ECM采用RS485用于Toolkit软件连接,故障检查和标定。 发动机电控模块(ECM)及点火控制模块(ICM)一般安装在控制箱中,控制箱由主机厂固定在车架上。发动机控制器有防水,防震,防高温要求,整车厂设计整车时,必须考虑发动机控制器的防水,防震以及防高温等要求。 ◆ 发动机线束 线束是发动机的神经,起着传输信号的重要作用,线束的质量直接发动机的可靠性。2.0系统有三条线束:ECU线束,发动机线束和点火线束。ECU线束要是连接ECU与发动机线束,并有诊断接口,CAN接口等功能性接口。发动机线束是连接各个传感器与ECU线束,将传感器测

天然气供气系统结构与工作原理实用版

YF-ED-J8818 可按资料类型定义编号 天然气供气系统结构与工 作原理实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

天然气供气系统结构与工作原理 实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 天然气供气系统的性能、同发动机优化匹 配情况,对天然气发动机性能有至关重要的影 响。如表4-1所示,在解放CA6102型汽油机 上,采用不同的供气系统装置,提高压缩比, 充分证明压缩比的提高可部分补偿发动机的标 定功率损失,而且采用性能优良的供气装置可 使标定功率损失大幅度降低。原机压缩比为 6.75时,采用1#供气装置的标定功率损失达 24.2%,压缩比提高到7.6时标定功率损失降为 18.1%。而采用2#供气装置,压缩比为7.6时,

同原机型相比,标定功率损失可降低到10%左右。 试验中采用的天然气中CH?含量均在95%左右。采用7.6压缩比和2 #供气装置时,同时采用了改进型进气道,加大了进气充量。若作为CNG和汽油两用燃料发动机,应采用90 #汽油。 天然气供气系统包括高压电磁阀、减压阀和混合器等,其中最关键组件就是减压阀和混合器,下面分别介绍。 一、减压阀

飞行器发动机的分类及工作原理

飞行器发动机的分类及工作原理 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的 活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以 在外太空工作的火箭发动机等。时至今日,飞行器发动机已经形成了一个种类繁多, 用途各不相同的大家族。飞行器发动机常见的分类原则有两个:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否需要空气参加工作,飞行器发动机可分为两类:吸气式发动机和火箭喷气式发动机。吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂 (助燃剂,所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所 说的航空发动机即指这类发动机。根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气发动机和脉动喷气发动机等。火箭喷气发动机是—— 种不依赖空气工作的发动机。航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭喷气发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。按产生推进动力的原理 不同,飞行器发动机又可分为直接反作用力发动机和间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。间接反作用力发动机是由发动机带动 飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下流动时,空气对 螺旋桨(旋翼产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡 轮风扇喷气发动机。活塞式发动机空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推( 拉力。所以,作为飞机的动力装置发动机与螺旋桨是不能分割的。主要组成主要由气缸、活塞、连杆、曲气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空

上柴C6121发动机及简介

传承狄 赛尔 动力改变世界 C6121柴油机 C6121 DIESEL ENGINE

传承狄赛尔 动力改变世界?前身上海吴淞农业机械修配厂,成立于一九四七年,隶属四大家族工厂,解放后改名为上海柴油机厂。首批国家一级企业。1993年改制为A、B股的上市公司 ,同时在境内外上市。Established in 1947, belonged to Big 4 family factory with the former name Shanghai Wusong Agricultural Equipments Co. Named as Shanghai Diesel Engine Co., Ltd after 1949.It was one of first National Star Companies. Transformed to Listed Company in A, B, and overseas stock market. ?拥有国家级技术中心,首批博士后工作站,现有6位在站博士后、33位教授级高工、37位硕士、300多位高工、600多位工程师。It has state-level technical centers, the first batch of postdoctoral workstations, available in six postdoctoral stations, 33 professor Engineers, 37 master‘s degree, more than 300 High level Engineers, over 600 engineers ?拥有国内一流的内燃机研发和生产基地。It has domestic first-class R & D and production base for The internal combustion engine with the ?现以平均每年递增20%的速度发展,上柴目标:到2010年成为全球有比较优势的动力生产基地。It is developing with an average annual rate of 20 percent with target that it will become the world‘s comparative advantage of the momentum production base by 2010. 一、上柴简介

汽车发动机构造与原理

22 第1篇 汽车发动机构造与原理 第1章 发动机基本结构与工作原理 发动机:将其 它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW )、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基本结构及工作原理 1.1.1 四冲程汽油机基本结构及工作原理 1.四冲程汽油机基本结构(图1-2) 2.四冲程汽油机基本工作原理(图1-2) 表1-1 四冲程汽油机工作过 程 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

23 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S :指活塞在上、下两个止点之间距离; 气缸工作容积V s :一个活塞在一个行程中所扫过的容积。 S D V s 10 6 2 4?=π 式中 V s ——工作容积(m 3); D ——气缸直径(mm ); S ——活塞行程(mm )。 发动机的排量V st :一台发动机所有气缸工作容积之和。 i V V s st = 式中 V st ——发动机的排量(L ); i ——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa ,温度达600K~700K ),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 1 2 1T T - =η 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T 1)升高,而排气的温度(T 2)降低,导致热效率提高。 1860年,法国人Lenoir (勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto )制造出第一台四冲程内燃机,采用压缩 行程名称 曲轴转角 活塞行向 进气门 排气门 进气 0o~180o ↓ 开 关 压缩 180o~360o ↑ 关 关 作功 360o~540o ↓ 关 关 排气 540o~720o ↑ 关 开

上柴与康明斯天然气发动机的对比改

上柴与康明斯天然气(CNG)发动机 在上海巴士一汽使用情况 2005年9月,在上海巴士一汽公交公司使用上海申沃4辆天然气客车,其中选装上柴T6114ZLQ3B发动机和进口康明斯B8.3-250CNG发动机各2台。自9月16日开始作对比实验。 1、上柴CNG发动机 2台CNG发动机在147路车队运营,147线路由军工路至江西北路,整条线路路况较差。每天跑6~8个班次,已累计运行近十多万公里。 驾驶员反映在营运过程中动力性表现良好,起步加速和爬坡性能不逊于柴油发动机,百公里平均气耗60.5立方米(全年)。 燃气气质适应性范围较广,当燃气中润滑油含量≥75ppm、硫化物含量≤30ppm时燃气喷嘴阀均能正常工作。电控单元监测发动机运行,发动机异常时能及时报警,避免故障的扩大。 电控系统工作电压范围为8~32V,工作电流较小,电路故障率低。发动机运行至今,燃气供给系统、电控系统以及发动机关键零件等核心部件均没有出现故障。 维修方便且费用低。为了降低用户使用成本,对高压点火线、火花塞等易损件上柴公司进行了国产化试配,高压点火线、火花塞每台套成本控制在200元左右,经检验能满足使用要求。 上海巴士一汽公交公司对该款产品的性价比给予了较高的评价。经济性好,故障率低,售后服务及时配件价格低等。 2、康明斯CNG发动机 2台康明斯CNG发动机在79路车队运营,已运行十多万公里。百公里平

均气耗平均达到61.9立方米(全年)。运行至今总的情况较好,不足的方面发动机的机油耗高(目前2台发动机机油耗高故障仍未解决),发生故障后无法及时修复且部分配件系进口件价格较高供应及时性差因此使用维修成本相对较高。 附表: 上柴T6114CNG发动机与康明斯CNG发动机技术参数对比 上海巴士一汽技术部 2008年元月 1

上柴天然气发动机软件诊断功能及模式

一、术语定义 5VESA 从ECM到传感器的5V外部电源,通道A为ECM上的A2和A3针脚。 5VESB 从ECM到传感器的5V外部电源,通道B为ECM上的J2针脚。 ACT 进入进气歧管的空气温度。 AL 自适应学习。 AL_Mult 自适应学习因子或修正系数。以百分数形式对燃料喷射量进行修正并保存在ECM的RAM中。 Analog 0到5V电压或0到电源电压信号。 Batt 电源电压 Boost 估算的进气歧管相对压力。 BP 大气压力 CAM 凸轮轴位置传感器 CL 闭环 CL_Mult 闭环因子或修正系数。该系数根据UEGO的反馈以百分比形式对燃料喷射量进行快速调整。当开关关闭时不被ECM保存。 Clock ECM内部的定时功能模块。 COP ECM内部自检 EBP 增压器下游的排气背压,由当前的发动机功率和大气压力估算所得 ECM 发动机控制模块 ECT 发动机冷却液温度 EE 电子可擦除编程只读存储器,EEPOM可存储RSG,燃料标定和ECM等信息。 Execution ECM内部功能模块 Flash 可编程内存模块,存储有发动机控制系统的标定信息。 FPP 脚踏板位置,感应发动机负荷命令。 FTV 主燃料阀 IMON ICM中的点火监视器,通过向ECM发送信号判断初级线圈是否工作正常。 Inj 燃料喷射阀 Interrupt ECM内部功能模块 IVS 怠速确认传感器 IFTV 怠速燃料阀 J1708 Rx J1708 接收电路 J1708 Tx J1708 传输电路 J1708 A SAE对重型车辆电子部件的数字通讯标准。

MAP 进气歧管空气绝对压力 MAT 进气歧管空气温度,由ACT和当前发动机功率估算所得。 MIL 故障指示灯,安装于仪表盘上并在ECM探测到系统故障时发亮。 NGP 计量阀处的天然气压力 NGT 计量阀处的天然气温度 NGTP 天然气罐压力,该传感器安装在调压器上。 NGTT 天然气罐中气体温度 PTP 节气门前压力 PW 脉宽调制 RAM 随机访问存储器,发动机运行时变化并在发动机停止时保存。 Raw 变量的原始数据 RSG 车速控制,限制最大车速。 SFC 系统故障代码,当诊断测试失败时保存在ECM中。 SFL 系统故障灯,同MIL。 Stack ECM内部模块 Thr Inhibit 节气门限制,为一安全开关,当启用时不管FPP如何不允许发动机转速超过怠速。 TPS 节气门位置传感器 Trigger 凸轮轴位置传感器发出的信号。 UEGO 宽域型排气氧传感器,通过测量排气中氧气含量确定燃空比。 UEGOH UEGO 加热器 UEGOP UEGO 泵 UEGOR UEGO 电阻 UEGOS UEGO 传感体 VREF ECM内部5V参考电压 WG PWM 废气旁通阀脉宽调制信号。

上柴C 发动机及简介

传承 狄赛尔 动力改变世界 C6121柴油机 C6121 DIESEL ENGINE

传承狄赛尔 动力改变世界?前身上海吴淞农业机械修配厂,成立于一九四七年,隶属四大家族工厂,解放后改名为上海柴油机厂。首批国家一级企业。1993年改制为A、B股的上市公司 ,同时在境内外上市。Established in 1947, belonged to Big 4 family factory with the former name Shanghai Wusong Agricultural Equipments Co. Named as Shanghai Diesel Engine Co., Ltd after 1949.It was one of first National Star Companies. Transformed to Listed Company in A, B, and overseas stock market. ?拥有国家级技术中心,首批博士后工作站,现有6位在站博士后、33位教授级高工、37位硕士、300多位高工、600多位工程师。It has state-level technical centers, the first batch of postdoctoral workstations, available in six postdoctoral stations, 33 professor Engineers, 37 master‘s degree, more than 300 High level Engineers, over 600 engineers ?拥有国内一流的内燃机研发和生产基地。It has domestic first-class R & D and production base for The internal combustion engine with the ?现以平均每年递增20%的速度发展,上柴目标:到2010年成为全球有比较优势的动力生产基地。It is developing with an average annual rate of 20 percent with target that it will become the world‘s comparative advantage of the momentum production base by 2010. 一、上柴简介

相关主题
文本预览
相关文档 最新文档