当前位置:文档之家› 电动机的自锁控制线路教案汇编

电动机的自锁控制线路教案汇编

电动机的自锁控制线路教案汇编
电动机的自锁控制线路教案汇编

实习课教案

备注

(1分钟)

(1分钟) 提问启发法

(1分钟) 问题导入法

(1分钟)

心操作的工作习惯。

(2)电动机自锁控制线路的组成:

左边为电动机点动控制线路,右边为电动机自锁控制线路;

电动机自锁控制线路的主电路和电动机点动控制线路一模一样,

控制电路与点动控制电路比较,不同点在于和启动按钮SB1多并联了一个KM 常开辅助触头(起到自锁作用);和一个停止按钮SB2 (起到停止作用)。

为什么多了一个KM常开辅助触头就能让电机持续运转呢?我们来学习自锁控制电路的工作原理。

(3)电动机自锁控制线路的工作原理:

启动:合上电源开关QF—按下启动按钮SB1,有电流通过KM线圈—KM线圈得电一KM的主触头闭合、KM辅助常开触头闭合(自锁)一电机保持运转;

停止:按下停止按钮SB1-KM线圈失电一KM的主触头断开、KM辅

(1分钟)

归纳法

(4分钟)展示课件电化教学法讲授法提问启发法

助常开触头断开一电机失电停转。

的检测”视 频

展示教学课 件 电化教学法 讲授法

展示“电路

的检测”视

频 电化教学法 讲授法

学习―一好资料

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电动机点动和自锁控制电路

实验报告 实验名称:电动机点动和自锁控制电路 学生姓名:轻舞学号:XXXXXX 专业班级:XXXXXXX 实验类型:□验证□综合□设计□创新实验分组: XXXXXXXXXX 实验日期:实验成绩: 1. 实训目的 (1) 掌握点动和自锁运转控制的工作原理。 (2) 掌握点动和自锁运转控制的接线方法及工艺要求。 (3) 掌握点动和自锁运转控制线路的检查方法及通电运转过程。 (4) 掌握常用电工仪表、低压电器的选择和使用方法。 2. 实验器材 (1) 电工刀、尖嘴钳、钢丝钳、剥线钳、旋具各1把。 (2) 四种颜色(BV或BVV)、芯线截面为1.5mm2和2.5mm2的单股塑料绝缘铜线若干。 (3) 电动机控制实验台1台。 (4) 三极自动开关1个、熔断器4个、交流接触器1个、三元件热继电器1个、按钮2个。 (5)功率为4kW的三相异步电动机DM01台 3. 实验前的准备 (1) 了解三相异步电动机运转控制电路的应用; (2) 熟练分析三相异步电动机点动和自锁运转控制电路的工作原理及动作过程; (3) 明确低压电器的功能、使用范围及接线工艺要求。 4. 实验内容 1) 分析控制原理 电动机点动和自锁运转控制电路是利用按钮、接触器来控制电动机朝单一方向运转的,其控制简单、经济,维修方便, 广泛用于大于5.5kW以上电动机间接启动的控制。其控制线路如图1、2所示。

图1 电动机的点动控制线路 (1)启动停止控制: 合上电源断路器QF, 按下启动按钮SB1→KM线圈得电→KM主触头闭 合(辅助常开触头同时闭合)→电动机M启动并点动运行。当松开SB1时, 它虽然恢复到断开位置, 在松开SB1时, 电动机停止。 (2)接线时,先接主回路,它是从380V三相交流电源的输出端U、V、W开始,经熔断器、 交流接触器的主触头、热继电器到电动机上,用导线按顺序分清颜色串联起来。主电路连接完整无误后,再连接控制电路。它是从220V三相交流电源某输出端开始,经过熔断器、常开按钮SB1、接触器的线圈、热继电器的常闭触头到零线。用黑色线连接。

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.doczj.com/doc/6510230658.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

电动机正转自锁控制线路

电动机正转自锁控制线路 教学目标: 了解常用低压电器的性能与选用, 掌握电动机全压启动六个基本控制线路的基本原理 按原理图进行接线和调试, 各控制线路的故障进行检修与检修。 教学仪器: 常用低压电器、电工用具、电力拖动线路板、电动机、连接导线 理论内容: 电动机正转自锁控制线路图 1. 安装步骤及工艺要求 (1)在控制板上安装电器元件,并贴上醒目的文字符号,工艺要求如下: ①组合开关、熔断器的受电端子应安装在控制板的外侧,并使熔断器的受电端为底座的中心端。 ②各元件的安装位置应整齐、均匀,间距合理,便于元件的更换。 ③紧固各元件时要用力均匀,紧固程度适当。在紧固熔断器、接触器等易碎裂元件时,应用手按住元件的一边轻轻摇动,一边用旋具轮换旋紧对角线上的螺钉,直到手摇不动后再适当旋紧些即可。 (2) 线路板上进行槽板布线和套编码管的工艺要求: ① 布线应横平竖直,分布均匀。变换走向时应垂直。 ② 布线时严禁损伤线芯和导线绝缘。 ③ 布线顺序一般以接触器为中心,由里向外,由低到高,先控制电路,后主电路进行,以不妨碍后续布线为原则。 L2 L3 FU2

④在每根剥去绝缘层导线的两端套上编码套管,所有从一个接线端子(或接线柱)到 另一个接线端子(或接线柱)的导线必须连续,中间无接头。 ⑤导线与接线端子或接线柱连接时,不得压绝缘层、不反圈及不露铜过长。 ⑥同一元件、同一回路的不同接点的导线间距离应保持一致 ⑦一个电器元件接线端子上的连接导线不得多余两根,每节接线端子板上的连接导线 一般只能允许连接一根。 ⑧按钮内接线时,用力不可过猛,以防螺钉打滑。 (3)据电路图检查控制线路板的正确性 (4)安装电动机 (5)连接电动机和按钮金属外壳的保护接地线。 (6)连接电源、电动机等控制板外部的接线。 二、检测说明 1.按电路图或接线图从电源端开始,逐段核对接线及接线端子处线号是否正确,有无漏接、错接之处。检查导线接点是否符合要求,压接是否牢固。 2.学生用万用表检查线路的通断情况。应选用倍率适当的电阻挡,并进行校零,以防止短路故障的发生。 (1)对控制电路的检查(可断开主电路),将表棒分别搭在U11、V11线端上,此时读数应为“∞”。按下SB1(或者用起子按下KM的衔铁)时,指针应偏转很大,读数应为接触器线圈的直流电阻。 (2)对主电路的检查(断开控制电路),看有无开路或短路现象,此时可用手动来代替接触器通电进行检查。 3.用兆欧表检查线路的绝缘电阻应不得小于1MΩ。 4.通电试车:必须征得老师同意,并由老师在现场监护。由老师接通三相电源L1、L2、L3,学生合上电源开关QS,按下SB1,观察接触器KM是否吸合,松开SB1接触器KM是否自锁,观察电动机运行是否正常等;按下SB2,观察接触器KM是否释放,电动机是否停转。

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

三相异步电动机的控制电路图

三相异步电动机的控制电路 一、复习思路及要求 1. 题型:选择题、技能题、简答题。 2. 必须熟练分析各种控制电路的工作原理,只有熟悉了工作原理才能正确绘制控制电路;补画控制电路;识别电路图中的错误;对故障进行正确分析处理;设计一些简单的控制电路;并且对PLC中简单的程序设计也有帮助。 3. 该部分容是非常重要的,要熟悉电路形式及控制形式:自锁、联锁的作用及连接方式;点动、连续运转;具有过载保护的连续运转控制电路是基础。 4. 需要掌握的控制电路有:⑴点动单向运转控制电路;⑵连续单向运转控制电路;⑶点动与连续混合控制电路;⑷接触器联锁双向运转控制电路;⑸按钮联锁双向运转控制电路;⑹接触器按钮双重联锁双向运转控制电路;(7)降压起动控制电路。 二、控制电路的分析 1.单向点动转控制电路 2.单向连续运转控制电路 3.连续与点动混合控制电路(一) 4.连续与点动混合控制电路(二) 5.连续与点动混合控制电路(三)

该电路中使用了中间继电器。其电器符号是KA。作用是:当其他继电器的触点数量不够时,可借助中间继电器来扩展触头数和触点容量,起到信号中继作用。 注:通过以上控制电路明确自锁的作用及其连接方式.......................。 6.多地控制电路 该控制电路能实现电动机的两地控制。起动按钮并联,停止按钮串联。(图中如果SB1、SB2控制A地,则SB3、SB4控制B地。) 7.接触器联锁双向控制电路 该电路采用了接触器联锁优点是工作安全可靠。但电动机由正转变为反转时,必须先按下停止按钮,才能按反转按钮,否则由于接触器联锁作用,不能实现反转。 8.按钮联锁双向控制电路该线路的优点是操作方便,由正转变为反转时不必按下停止按钮,但容易产生电源两相短路故障。 9.接触器按钮双重联锁双向控制电路 该线路工作安全可靠、操作方便。 注:通过以上三个线路要明确联锁的作用及连接方式.......................。 10.定子绕组串电阻降压起动控制线路(一)

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电动机点动和自锁控制电路

电工实训一、电动机点动和自锁控制电路 1. 实训目的 (1) 掌握点动和自锁运转控制的工作原理及接线方法。 (2) 掌握点动和自锁运转控制线路的检查方法。 2. 实验器材 电工实训实验台、连接导线、电动机 3. 实验前的准备 (1) 了解三相异步电动机运转控制电路的应用; (2) 熟练分析三相异步电动机点动和自锁运转控制电路的工作原理及动作过程; (3) 明确低压电器的功能、使用范围及接线要求。 4. 实验内容 1) 点动控制原理 电动机点动和自锁运转控制电路是利用按钮、接触器来控制电动机朝单一方向运转的,其控制简单、经济,维修方便, 广泛用于大于5.5kW以上电动机间接启动的控制。其控制线路如图1、2所示。 图1 电动机的点动控制线路 (1)启动停止控制: 合上电源断路器QF, 按下启动按钮SB1→KM线圈得电→KM主触头闭 合(辅助常开触头同时闭合)→电动机M启动并点动运行。当松开SB1时, 它虽然恢复到断开位置, 在松开SB1时, 电动机停止。 (2)接线时,先接主回路,它是从380V三相交流电源的输出端U、V、W开始,经熔断器、 交流接触器的主触头、热继电器到电动机上,用导线按顺序分清颜色串联起来。主电路连接完整无误后,再连接控制电路。它是从220V三相交流电源某输出端开始,经过熔断器、常开按钮SB1、接触器的线圈、热继电器的常闭触头到零线。

2) 自锁控制原理 图 2 电动机自锁运转控制线路 (1) 启动控制: 合上电源断路器QF, 按下启动按钮SB1→KM线圈得电→KM主触头闭合(辅助常开触头同时闭合)→电动机M启动并单向连续运行。当松开SB1时, 它虽然恢复到断开位置, 但由于有KM的辅助常开触头与SB1并联, 在KM动作时,KM的辅助常开触头也动作(即闭合), 因此KM线圈仍保持通电。这种利用接触器本身的常开触头使接触器线圈继续保持通电的控制称为自锁或自保, 该辅助常开触头就叫自锁(或自保)触头。正是由于自锁触头的作用, 在松开SB1时, 电动机仍能继续运转, 而不是点动运转。 (2) 停止控制: 按下停止按钮SB→KM线圈失电→KM主触头断开(KM自锁触头也断开)→电动机M停止运转。当松开SB时, 其常闭触头虽恢复为闭合位置, 但因接触器KM的自锁触头在其线圈失电的瞬间已断开, 并解除了自锁, 所以接触器KM的线圈不能继续得电, 即电动机M停止转动。 3) 连接线路 按图分别连接点动和自锁线路 4) 故障分析 在试运行中发现电路异常现象, 应立即停电后作认真详细检查。常见故障如下: (1) 合上QF后, 指示灯不亮。故障原因: 电源有问题(缺相), 查明处理; 熔断器熔丝熔断, 查出更换; 接线有误, 须仔细检查; 指示灯本身坏, 应更换。 (2) 合上QF后, 烧熔丝或断路器跳闸。故障原因: 指示灯被短接; KM的线圈和SB1同时被短接; 主电路可能有短路(QF到KM主触头这一段)。 (3) 合上QF后, 指示灯亮, 电动机马上运转。故障原因: SB1启动按钮被短接; SB1常开点错接成常闭点。 (4) 合上QF后, 指示灯亮, 但按SB1时, 烧熔丝或断路器跳闸。故障原因: KM的线圈被短接; 主电路可能有短路(KM主触头以下部分)。 (5) 合上QF后, 按SB1, KM不动作, 电动机也不转动。故障原因: SB未闭合或接成常

常见电动机控制电路图

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。 2

与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 3

电动机点动和自锁控制电路

实验报告 实验名称: 电动机点动和自锁控制电路 学生姓名: 轻舞 学 号:XXXXXX 实验类型:口 验证 □综合口设计 口创新实验分组: 实验日期: 实验成绩: 1. 实训目的 (1) 掌握点动和自锁运转控制的工作原理。 (2) 掌握点动和自锁运转控制的接线方法及工艺要求。 (3) 掌握点动和自锁运转控制线路的检查方法及通电运转过程。 (4) 掌握常用电工仪表、 低压电器的选择和使用方法。 2. 实验器材 (1) 电工刀、尖嘴钳、钢丝钳、剥线钳、旋具各 1把。 (2) 四种颜色(BV 或BVV)、芯线截面为1.5mm2和2.5mm2的单股塑料绝缘铜线若干。 (3) 电动机控制实验台 1台。 (4) 三极自动开关1个、熔断器4个、交流接触器1个、三元件热继电器1个、按钮2 个。 (5) 功率为4kW 的三相异步电动机 DM01台 3. 实验前的准备 (1) 了解三相异步电动机运转控制电路的应用 ; (2) 熟练分析三相异步电动机点动和自锁运转控制电路的工作原理及动作过程 ; (3) 明确低压电器的功能、使用范围及接线工艺要求。 4. 实验内容 1) 分析控制原理 电动机点动和自锁运转控制电路是利用按钮、接触器来控制电动机朝单一方向运转的 ,其控 制简单、经济,维修方便,广泛用于大于 5.5kW 以上电动机间接启动的控制。其控制线路如 图1、2 所示。 专业班级:XXXXXXX XXXXXXXXXX

(1)启动停止控制:合上电源断路器 QF,按下启动按钮SB1 f KM线圈得电T KM主触头闭合(辅助常开 触头同时闭合)f电动机M启动并点动运行。当松开SB1时,它虽然恢复到断开位置,在松开SB1时,电动机停止。 (2)接线时,先接主回路,它是从380V三相交流电源的输出端 U、V、W开始,经熔断器、 交流接触器的主触头、热继电器到电动机上,用导线按顺序分清颜色串联起来。主电路 连接完整无误后,再连接控制电路。它是从220V三相交流电源某输出端开始,经过熔 断器、常开按钮 SB1接触器的线圈、热继电器的常闭触头到零线。用黑色线连接。

电动机正反转控制电路图及其原理分析

如对您有帮助,请购买打赏,谢谢您! 正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示 图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

常见电动机控制电路图

电机启动常见方法 电机启动常见方法 (1) 1、定时自动循环控制电路 (1) 2、顺序控制电路(例) (3) 3、电动机顺序控制电路 (4) 4、异步电动机可逆控制电路(例) (5) 5、双重连锁可逆控制电路 (6) 6、限位开关控制自动往复电路(1) (7) 7、限位开关控制自动往复电路(2) (9) 8、星形—三角形起动控制电路 (10) 9、自耦变压器减压起动起动控制电路 (12) 10、时间原则能耗制动控制电路 (14) 11、电动机电容制动制动控制电路 (15) 12、4/2极双速电动机起动电路 (16) 13、4/2极双速电动机起动电路(2) (17) 14、CW6140普通车床控制电路 (18) 1、定时自动循环控制电路

说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联

三相异步电动机自锁控制电路

三相异步电动机自锁控制电路 三相异步电动机自锁控制电路 如图3-2所示,三相异步电动机的自锁控制线路的主电路和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压(或零压)保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为

当线路电压下降到一定值(一般指低于额定电压85%以下)时,接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。 失压(或零压)保护:失压保护是指电动机在正常运行中,由于外界某中原因引起突然断电时,能自动切断电动机电源。当重新供电时,保证电动机不能自行启动,避免造成设备和人身伤亡事故。采用接触器自锁控制线路,由于接触器自锁触头和主触头在电源断电时已经断开,使控制电路和主电路都不能接通。所以在电源恢复供电时,电动机就不能自行启动运转,保证了人身和设备的安全。 三相异步电动机的自锁控制线路的控制原理 当按下启动按钮SB2后,电源U1相通过热继电器FR动断接点、停止按钮SB1 的动断接点、启动按钮SB2动合接点及交流接触器KM的线圈接通电源V1相,使交流接触器线圈带电而动作,其主触头闭合使电动机转动。同时,交流接触器KM的常开辅助触头短接了启动按钮SB2的动合接点,保持交流接触器线圈始终处于带电状态,这就是所谓的自锁(自保)。与启动按钮SB2并联起自锁作用的常开辅助触头称为自锁触头(或自保触头)。

三相异步电动机常用控制电路图

三相异步电动机的控制电路 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30%时,都可以直接启动。 1).点动控制 合上开关S ,三相电源被引入控制电路,但电动机还不能起动。按下按钮 SB ,接触器KM 线圈通电, 衔铁吸 合,常开主触点接通,电动机定子接入三相电源起动运转。松开 按钮SB , 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电 而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SB 1,接触器 KM 线圈通电,与SB 1并联的KM 的辅助常开触点 闭合,以保证松开按钮SB 1后KM 串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。

(2)停止过程。按下停止按钮SB 2,接触器 KM 线圈断电,与SB 1并联的KM 的辅助常开 触点断开,以保证松开按钮SB 2后KM 线圈持续失电,串联在电动机回路中的KM 电动机 停转。 与SB 1并联的KM 的辅助常开触点的这种作用称为 自锁。 图示控制电路还可实现短路保护、过载保护和零压保护。 a) 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 b) 起过载保护的是热继电器FR 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下FR 的复位按钮,使FR 的常闭触点复位(闭合)即可。 c) 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。 2.正反转控制 1).简单的正反转控制 (1)正向起动过程。按下起动按

常用电气控制电路

常用电气控制电路 Prepared on 22 November 2020

常用电气控制电路 1.控制柜内电路的一般排列和标注规律为便于检查三相动力线布置的对错,三相电源 L1、L2、L3在柜内按上中下、左中右或后中前的规律布置。L1、L2、L3三相对应的色标分别为黄、绿、红,在制作电气控制柜时要尽量按规范布线。二次控制电路的线号,一般的标注规律是:用电装置(如交流接触器)的右端接双数排序,左端按单数排序。 二次控制电路的线号编排如图1所示。动力线与弱点信号线要尽量远离,如传感器、PLC、DCS集散控制系统、PID控制器等信号线,如果不能做到远离,要尽量垂直交叉。弱电线缆最好单独放入一个金属桥架内,所有弱电信号的接地端都在同一点接地,且与强电的接地分离。 常用电气控制电路图1 二次控制电路的线号编排 2.电动机起停控制电路该电路可以实现对电动机的起停控制,并对电动机的过载和短 路故障进行保护,电动机起停控制电路如图2所示。 图2 电动机起停控制电路 在图2中,L1、L2、L3是三相电源,信号灯HL1用于指示L2和L3两相电源的有无,电压表V指示L1和L3相之间的线电压,熔断器FU1用于保护控制电路(二次电路)避免电路短路时发生火灾或损失扩大。合上断路器QF1,二次电路得电,按下起动按钮(绿色)SB2,交流接触器KM1的线圈通电,交流接触器的主触点KM1的辅助触头KM1-1闭合,电动机M1通电运转。由于KM1-1触头已闭合,即使起动按钮SB2抬起,KM1的线圈也将一直有电。KM1-1的作用是自锁功能,即使SB2抬起也不会导致电动机的停止,电动机起动运行。按下停止按钮SB1,KM1的线圈断电,KM1-1和KM1触头放开,电动机停止,由于KM1-1已经断开,即使停止按钮SB1抬起,KM1的线圈也仍将处于断电状态,电动机M1正常停止。当电动机内部或主电路发生短路故障时,由于出现瞬间几倍于额定电流的大电流而使断路器QF1迅速跳闸,使电动机主电路和二次电路断电,电动机保护停止。当电动机发生过载时,电动机电流超出正常额定电流一定的百分比,热继电器FR1发热,一定时间后,FR1的常闭触头FR1-1断开,KM1线圈断电,KM1-1和KM1主触头断开,电动机保护停止。KM1线圈得电时,HL2指示灯亮说明电动机正在运行,KM1的线圈断电后HL2灯灭,说明电动机停止运行。当FR1发生过载动作,常开触头FR1-2闭合,HL3灯亮说明电动机发生了过载故障。假设上述的三相交流电动机M1的功率,额定电流为,工作电压为AC380V,则电动机起停控制电路元件清单见表1。 表1 电动机起停控制电路元件清单 3.电动机正、反转控制电路该电路能实现对电动机的正、反转控制,并有短路和过载 保护措施。电动机正、反转控制电路如图3所示。 常用电气控制电路图3 电动机正、反转控制电路 在图3中,接触器KM2线圈吸合后,因为将L1和L3两相电源线进行了对调,实现了电动机的反转运行。信号灯HL1指示电源线L3和零线N之间的相电压。按下正转起动按钮SB2,交流接触器KM1线圈得电吸合,主触头KM1和常开辅助触头KM1-1闭合,电动机M1正向运转。KM1的常闭辅助触头KM1-2断开,此时即使按下反转起动按钮SB3,由于KM1-2的隔离作用,交流接触器KM2的线圈也不会吸合,KM1-2起安全互锁作用。电动机正向起动后,反向控制交流接触器KM2触头不会吸合,避免了由于KM1和KM2的触头同时吸合而出现电源线L1和L3直接短路的现象。按下停止

相关主题
文本预览
相关文档 最新文档