当前位置:文档之家› A high-resolution radio survey of the Vela supernova remnant

A high-resolution radio survey of the Vela supernova remnant

A high-resolution radio survey of the Vela supernova remnant
A high-resolution radio survey of the Vela supernova remnant

a r X i v :a s t r o -p h /9807125v 1 13 J u l 1998A high-resolution radio survey of the Vela supernova remnant

(To appear in The Astronomical Journal )

D.C.-J.Bock

Radio Astronomy Laboratory,University of California,Berkeley,CA 94720;and School of

Physics,University of Sydney,NSW 2006,Australia;dbock@https://www.doczj.com/doc/6d5936653.html,

and A.J.Turtle and A.J.Green School of Physics,University of Sydney,NSW 2006,Australia;turtle@https://www.doczj.com/doc/6d5936653.html,.au,agreen@https://www.doczj.com/doc/6d5936653.html,.au ABSTRACT This paper presents a high-resolution radio continuum (843MHz)survey of the Vela supernova remnant.The contrast between the structures in the central pulsar-powered nebula of the remnant and the synchrotron radiation shell allows the remnant to be identi?ed morphologically as a member of the composite class.The data are the ?rst of a composite remnant at spatial scales comparable with those available for the Cygnus Loop and the Crab Nebula,and make possible a comparison of radio,optical and soft X-ray emission from the resolved shell ?laments.The survey,made with the Molonglo Observatory Synthesis Telescope,covers an area of 50square degrees at a resolution of 43′′×60′′,while imaging structures on scales up to 30′.Subject headings:ISM:individual (Vela SNR,Vela X)—supernova remnants —pulsars:individual (PSR B0833-45)

1.Introduction

The Vela supernova remnant (G263.9?3.3)is one of the closest and brightest supernova remnants.Recent measurements support a distance of about 350pc (Dubner et al.1998and references therein).Estimates of its age range from a few thousand years (Stothers 1980)to 29,000yr (Aschenbach,Egger,&Tr¨u mper 1995)with a widely used value being that given by the characteristic age of its pulsar,11,400yr (Reichley,Downs &Morris 1970).Its brightness and large angular size (~8?)have made possible its study at many wavelengths.Yet it has been less intensively studied than other close remnants such as the plerionic Crab Nebula and the shell-type Cygnus Loop,although it is arguably the closest and a key member of the third major class of SNRs,the composite remnants.Among many controversies surrounding its nature has

been that of whether it is a shell or a composite remnant.This paper aims to show that the Vela SNR de?nitely can be seen as a composite remnant on morphological grounds and ought to be considered the Galactic archetype.

Previous radio studies of the Vela SNR region have mainly used lower resolution single dish images over a frequency range from408MHz to8.4GHz(Milne1968a;Day,Caswell,&Cooke 1972,Milne1980;Milne1995;Duncan et al.1996).The earliest observations showed the Vela SNR to comprise three main areas of radio emission,called Vela X,Y,and Z,within a diameter of 5?,corresponding roughly with the bright,?lamentary structure of the nebula Stromlo16(Gum 1955;Milne1968b).Until recently,this5?diameter was thought to indicate the extent of the remnant,with the nebula Vela X containing the pulsar(PSR B0833–45),o?set to one side.This pulsar,discovered in1968,was immediately associated with the Vela supernova remnant(Large et al.1968).Calculations by Bailes et al.(1989)indicate that there is only a0.1%probability that the pulsar and the supernova remnant are in chance superposition.Kundt(1988)deduced from the408MHz survey of Haslam et al.(1982)that the Vela SNR might be much larger,in fact about8?across,with the pulsar approximately at the center.ROSAT and radio observations (Aschenbach1992;Duncan et al.1996)reinforced this model.The discovery that the speed and direction of the pulsar’s proper motion indicates that it was born near the center of the8?Vela SNR shell(Aschenbach et al.1995)solves the o?set problem.This is one of only a few reliable SNR/pulsar associations(Kaspi1996).The most recent single-dish observations(Milne1980; Milne1995)began to resolve Vela X at higher frequencies(5–8.4GHz)and uncovered strongly linearly polarized structure.Higher resolution observations at327MHz with the Very Large Array (VLA)by Frail et al.(1997)showed a bright?lament near the center of Vela X,near the X-ray feature called a‘jet’by Markwardt&¨Ogelman(1995).This feature extends southwards from the pulsar,which is o?set to the north of Vela X.

The radio spectral index of Vela X is?atter than that of the rest of the remnant,leading to the remnant’s classi?cation as a composite,with the Vela X nebula directly powered by the Vela pulsar(Dwarakanath1991;Weiler&Sramek1988).This conclusion has been controversial(Weiler &Panagia1980;Milne&Manchester1986;Weiler&Sramek1988).The Vela SNR lies close

to the Galactic Plane,leading to di?culties in estimating the baselevel both in single-dish and interferometer images.To provide the?rst evidence supporting the classi?cation as a composite on morphological grounds,radio observations are presented in this paper at the highest resolution yet used to image the Vela X region.A subsequent paper will present a multi-wavelength study of Vela X and consider the nature of the central plerion in detail.

These are the?rst high-resolution radio observations to cover a large fraction of the entire Vela SNR,and are the?rst radio observations of the Vela shell at a resolution compatible with currently available optical and X-ray images.Radio observations of the Vela shell published before the present work have been at relatively low resolution.For example,the observations of Duncan et al.(1996)have a resolution of10′,making them di?cult to correlate with high resolution data in other spectral regimes.In this paper it is possible for the?rst time to present a multi-wavelength

study of part of a composite remnant’s shell at scales a small fraction of a parsec.

2.Observations

The Molonglo Observatory Synthesis Telescope(MOST)is an east-west multi-element interferometer located in New South Wales,Australia(Robertson1991).It consists of two

co-linear cylindrical parabolas,each11.6m by778m.In a twelve-hour synthesis observation it images an elliptical?eld of size70′×70′cosec|δ|.1Sixty-three of these synthesis observations covering an area of almost50square degrees comprise this survey.The survey includes the regions of brightest radio emission from the Vela SNR and covers the majority of the X-ray remnant as seen by Aschenbach et al.(1995).The area close to the strong H ii region RCW38has been avoided,due to imaging artefacts.Each observation was made at a frequency of843MHz and a resolution of43′′×43′′cosec|δ|,receiving right-handed circular polarization in a bandwidth

of3MHz.The observations were made over the period1984February3to1996February3. Complete coverage with the elliptical?eld shape necessitates substantial overlaps in the survey which have been used to re?ne the relative calibration between?elds,based on the unresolved sources common to more than one?eld.Twenty-seven of the earlier observations were made for the First Epoch Molonglo Galactic Plane Survey(Whiteoak et al.1989;Green,Cram,&Large 1998)and some of these data appear in the MOST supernova remnant catalogue(Whiteoak& Green1996).The remaining observations,which maintained the same basic grid separation of0.?9, commenced on1992January17.

Those observations initially made in the vicinity(within about1?)of the Vela pulsar were severely limited in dynamic range by the presence of the pulsar in the primary beam.The pulsar is a strong,unresolved continuum source and is variable over time scales of seconds to hours. Its integrated pulsed emission in ungated observations was2.2±0.4Jy,averaged over the entire pulsar period.A source will appear in a MOST image with a symmetric point-spread function only if its intensity remains constant throughout the observation.Any time-dependent variation compromises sidelobe cancellation during synthesis,producing rays within the image emanating from the source,and confusing nearby faint features.To improve the imaging of this region a method of pulsar gating was used which was originally developed by J.E.Reynolds(personal communication,1996)for an observation in1986.

To make the observations,a predicted pulse arrival time was used to generate a gating signal of width20ms in each pulsar period(~89ms).2This was displayed on an oscilloscope simultaneously with the actual detected total power signal of the pulsar.The half-power pulse

width of the pulsar signal was4.5ms,larger than the observed half-power width of2.3ms at 632MHz(McCulloch et al.1978)due to the dispersion(2ms)over the MOST’s bandwidth (following Komesaro?,Hamilton,&Ables1972)and to the e?ect of an integrating low pass?lter present in the signal path before the detection point.The gating signal was adjusted to suppress data acquisition from5ms before until15ms after the peak of the pulse,to allow removal of almost all of the variable pulsed emission.Four observations were made,each with the pulsar near the edge of the?eld to the north,south,east and west.These observations were incorporated in the complete mosaic in place of the non-gated data,for this part of the survey.The observations made with this procedure contain only a40mJy(2%)residual of the pulsed emission,su?cient to preclude associated imaging artefacts.However,some artefacts are present in more remote ?elds,mainly due to the grating response of the MOST to the pulsar.Further details of the pulsar gating procedure are given by Bock(1997).

3.Imaging

Individual images were synthesized from each of the63(12hour)observations using the back-projection algorithm(Perley1979;Crawford1984)as implemented in the standard MOST reduction software.To provide initial calibration for the reduction process,several strong unresolved sources were observed brie?y before and after each target observation.These provide a preliminary gain,phase and beamshape calibration.The images were deconvolved using the H¨o gbom CLEAN algorithm.Some images containing stronger sources were adaptively deconvolved as described by Cram&Ye(1995).This method is similar to self-calibration,but with a reduced set of free parameters.The residual images had pixel rms in the range1–6mJy beam?1.This range re?ects the variation between?elds which were essentially noise-limited and those which were dynamic-range limited.

Preliminary position and?ux calibration used short observations of a number(typically eight)of unresolved calibration sources before and after each Vela target?eld.These sources are a subset of the MOST calibrators from Campbell-Wilson&Hunstead(1994).A re?ned calibration was achieved using unresolved survey?eld sources which are located in the overlapped regions. Measurement of these sources produced small corrections that result in positions mostly consistent to better than1′′in right ascension and2′′in declination and?ux densities accurate to within5%.3 The re?ning corrections could not be applied to some?elds which had too few unresolved sources in common with nearby?elds(for example,those at the edge of the mosaic).The individual?elds were mosaiced into ARC projection(Greisen&Calabretta1995),to facilitate comparison with optical surveys.

The MOST is a redundant array sensitive to the full range of spatial frequencies within the limits set by its extreme spacings.The minimum geometric spacing(42.85λ),implies a maximum detectable angular scale of about1.3?.However,it has been found empirically that the actual synthesized beam of the MOST is best?t with a model including a e?ective minimum spacing of about70λ.This parameter varies between and during observations.Typically,angular scales less than about30′are well imaged.The MOST’s synthesized beam can also vary signi?cantly during an observation due to environmental e?ects and minor telescope performance variations with the result that the theoretical beam used for deconvolution sometimes does not model well the actual beam of an observation.A combination of these e?ects produces a negative bowl artefact around bright extended sources.In the MOST Vela SNR survey,this e?ect causes a background level of about?10mJy beam?1around Vela X and Puppis A.

Extended structure at levels as low as6mJy beam?1is clear in the images.Although the rms in individual pixels is around2mJy beam?1,typical extended structure covers many pixels and is reliably detected at lower levels than would usually be accepted for point sources.The con?rmation of this low level structure in a VLA image of Vela X made at1.4GHz(Bock et al. 1998)validates similar emission seen at843MHz elsewhere in the survey.

The most common artefacts present in the image are grating rings,which are due to the periodic nature of the MOST.They are sections of ellipses of dimension1.?15×1.?15cosec|δ|with a width dependent on the source producing them and are,in general,of variable amplitude since they pass through several individual?elds where the grating rings have di?erent relative gains. The morphology of these artefacts makes them easily distinguishable from the sky emission.Much of the survey is dynamic-range limited;in the less complicated regions the rms noise is of order 1–2mJy beam?1.

An additional non-ideality comes from the mosaicing:the image from each of the63individual observations was deconvolved separately,yet structure outside a given?eld can contribute to sidelobes in that?eld.This manifests itself as discontinuities in the survey image,at the edges of component images or where regions containing artifacts have been masked.

4.Results

An image of the complete MOST survey of the Vela SNR is shown in?gure1.To assist in identifying the various objects and emission regions within the survey,a cartoon covering the same area is presented in?gure2.Key characteristics of the survey are summarized in Table1.

Morphologically,there are several distinct regions apparent in the image.Near the center is the bright nebula known as Vela X,which is thought to be powered by the Vela pulsar (PSR B0833?45:Large,Vaughan,&Mills1968).The nebula is composed of a network of complex ?laments.Signi?cant extended structure is also present but not detected by the MOST.This region is seen more clearly in subsequent images.

Table1:Key parameters of the MOST Vela SNR survey

Parameter Value

In the north and east of the image there are several?laments from the shell of the Vela supernova remnant and at least one unrelated H ii region,RCW32(Rodgers,Campbell,& Whiteoak1960).There are also partial elliptical artefacts due to strong H ii regions outside the survey area.Broadly speaking,we can categorize the extended structure in this area on morphological grounds.To the north-east of the Galactic Plane,much of the structure is di?use and randomly oriented and may be Galactic emission unrelated to the Vela SNR.Most of the extended emission between the Galactic Plane and the Vela X nebula is due to the Vela supernova event.These?lamentary features have some correspondence with optical?laments and X-ray emission in the area(§4.1).They are generally perpendicular to the direction to the center of the SNR and are presumably related to the shell.This is the area known in the literature as Vela Y(Dwarakanath1991;Milne1968a).Directly to the east of Vela X is the radio peak known as Vela Z.This area is confused by the elliptical sidelobe from the bright H ii region RCW38 (Rodgers et al.1960),which is not included in the survey.The area around RCW38is included in the First Epoch Molonglo Galactic Plane Survey(Green et al.1998).On the southern side of the central nebula,another region of shell-like emission(08h32h?49?00′)is probably also part of the Vela SNR.This coincides approximately with the southern boundary of the8?remnant (Aschenbach1992;Duncan et al.1996).

The survey contains many unresolved and barely resolved sources,most of which are presumably background sources.4However,some may be density enhancements in the Vela emission or other Galactic objects,such as compact H ii regions,planetary nebulae,pulsars or small-diameter SNRs.Several of these sources have unusual coincidences with extended structures. From the survey it is unclear whether they are in fact background sources,or whether they are ‘knots’in the SNR emission.Follow-up VLA observations(Bock et al.1998)of four of these sources have not found evidence for a Galactic origin.

The unrelated supernova remnant Puppis A is also contained within the survey.It is an oxygen-rich SNR of age about3700yr(Winkler et al.1988)at an accepted distance of2kpc (Arendt et al.1990).Puppis A has previously been imaged separately with the MOST(Kesteven &Caswell1987;Arendt et al.1990).It falls approximately on the8?X-ray boundary of the Vela SNR.However,no Vela radio emission is obvious in the vicinity.

4.1.The northern shell

The present survey of the Vela SNR covers much of the brightest region of the Vela shell. The image in?gure3is part of the survey showing the northern section of the Vela SNR shell. The following discussion focuses on this area,where the radio emission from the shell is most prominent and not confused by emission from unrelated Galactic objects or by artefacts.

The extended structure in this image is in a series of?lamentary arcs across the image at position angles ranging from70?to170?.The structure is generally concave towards the center of the SNR:there are no signi?cant radial?laments.The majority of the?laments are resolved by the MOST,with widths ranging from1′to6′and peak surface brightnesses up to20mJy beam?1. These?laments generally have a sharp edge on the side away from the center of the remnant, while towards the remnant center they may fade over several arcminutes.The sharper outside pro?le is consistent with the‘projected sheet’picture of?lamentary emission(Hester1987).The e?ect may also indicate that the?laments are in fact edges,spatially?ltered by the MOST so that only the sharp transitions appear.

4.1.1.A multi-wavelength comparison

The availability of three datasets of comparable resolution at widely spaced wavelengths gives us an opportunity to understand the spatial relationship between the underlying physical processes.In addition to the843MHz survey with the MOST,Hαand soft X-ray data are available.The radio image shows primarily the non-thermal synchrotron emission,the optical ?laments are line emission resulting from recombination in cooling processes,while the X-rays are shock heated thermal radiation.

An Hαimage of the northern Vela shell is shown in?gure4(a),overlaid with a contour(at approximately the3σlevel)from the radio image of?gure3.This image is from a test observation (kindly made and reduced by M.S.Bessell)for the MSSSO Wide Field CCD HαImaging Survey (Buxton,Bessell,&Watson1998).The observation was made using a2048×204824μm pixel CCD through a400mm,f/4.5Nikkor-Q lens,at the16-inch(0.4m)telescope facility at Siding Springs Observatory.Pixel spacing in the image is12′′,giving a?eld size of7?square.The portion of this image presented here is taken from the central(5?×5?)region,where vignetting in the1.5nm?lter is not signi?cant.The image has been derived from two frames with a total

exposure time of1400s,which were bias-subtracted and?at-?eld corrected before averaging.No correction has been made for the e?ect of cosmic rays.No continuum observation was made for subtraction.Consequently,the image presented here contains stars and a continuum component in the extended emission.A coordinate system was applied to the image by comparison with a Digital Sky Survey image(Morrison1995)using the KARMA package(Gooch1996).The registration is within the resolution of the radio data.

The Vela SNR was observed as part of the ROSAT All-sky Survey between1990October and1991January.An image of the Vela SNR(0.1–2.4keV,with angular resolution1′)from the survey has been presented by Aschenbach et al.(1995),and part is reproduced in?gure4(b), overlaid with the same radio contour as in?gure4(a).In the?gure,the top section of the X-ray image(black)is the Galactic background.The surface brightness at the edge of the SNR shell is 7×10?15erg cm?2s?1arcmin?2(Aschenbach et al.1995).To the south,the surface brightness increases by a factor of500to the brightest part(white),which is the most intense X-ray emission region in the entire SNR.The?rst grey area(δ=?41?40′)marks the edge of the main shock, seen in projection.

4.1.2.Morphological analysis

By considering only the radio and Hαimages(?gure4(a)),it is possible to see immediately the most striking aspect of the comparison,namely the contrast between the optical and radio emission regions.As will be discussed below,this has a simple theoretical basis,but is contrary to the picture seen in other SNRs in those cases where optical emission has been compared with well-resolved radio shell structure.The brightest radio?laments are(as noted earlier) generally oriented perpendicularly to the direction to the SNR center and are without optical counterparts.Likewise,many of the optical?laments are without radio counterparts.However, one of the brightest optical?laments(with orientation similar to the radio structures),centered on08h36m?42?50′,does have a faint radio counterpart.By contrast,the equally bright optical ?laments in the south-west corner of the image are without radio counterparts in the MOST image.These?laments are generally not oriented perpendicularly to the direction to the SNR center in the same way as the radio?laments.

In addition to the optical?lamentary structure,di?use optical emission is also present.This is concentrated to the eastern side of the image,in the general area of the strong radio?laments, but there is no obvious correlation between the di?use optical emission and the radio?laments. No direct measure of the e?ect of extinction on the Hαimage is available.

The complete X-ray image(Aschenbach et al.1995)shows by its near-circular shape that it delineates the projected edge of those parts of the main shock that are still expanding into a relatively homogeneous medium.The regions of optical and radio emission described so far are interior to this main X-ray shell.At the western side of the main X-ray boundary in?gure4(b),

we see signi?cant optical and radio emission clearly present close to the X-ray edge.Here the radio and optical emission agree quite well,in an arc with apex at08h35m?42?10′,just behind the outer edge of the X-ray emission.

The X-ray emission is quite di?erent in form to the emission we see in the optical and radio regimes.Apart from the main edge,it is relatively di?use and smooth.By contrast,the radio and optical images are dominated by?lamentary structure.However,we note that the radio image has reduced sensitivity to smooth structure,due to the MOST’s spatial response.

The bright optical?lament at08h36m?42?50′traces the exterior(with respect to the remnant expansion)of the brightest peaks of the X-ray emission.Yet not all the optical?laments exhibit this relationship.The di?use optical component has no obvious X-ray counterpart and is strongest where the X-ray emission is not quite so bright,to the east.The radio?laments are also partially correlated with the X-ray emission.Several follow changes in X-ray brightness.However,the most central?lament(08h39m?43?10′)is less well correlated:it crosses a bright region of X-ray emission.

4.1.3.Radiation mechanisms

In SNRs,optical and X-ray emission are both typically due to thermal processes.However, quite di?erent physical conditions are involved.Thermal X-ray emission is the result of fast shocks propagating through a rare?ed medium,with density0.1–1cm?3,shocked to temperatures of 106–107K(Lozinskaya1992).The optical emission typically observed is produced by hydrogen recombination of cooling shocked gas at about104K,with density a few times102cm?3.

One model which has had success explaining optical and X-ray observations of the Cygnus Loop(Hester&Cox1986;Graham et al.1995;Levenson et al.1996)invokes large(~>1014m) molecular clouds with which the expanding shock is interacting.The optical emission comes from the shocked cloud,where the dense material is not heated to temperatures as high as those which are maintained in the less dense X-ray emitting regions.This emission is due to recombinative cooling after the passage of the shock.Behind the optical emission,the X-ray emission is further brightened by the passage of a re?ected(or reverse)shock due to the density contrast between the cloud and the less dense inter-cloud material.Where the main shock does not encounter molecular clouds,we do not expect to see recombinative cooling.Instead the non-radiative shock may be traced by fainter Balmer?laments(Hester,Raymond,&Blair1994).

The present observations of the northern Vela shell?t nicely into this picture.If the majority of optical emission was from the main shock interacting with a relatively uniform medium,but seen here in projection,we would expect also to see it along the entire edge of the X-ray shell,where accentuation of sheet-like emission in projection would be strongest.This is not observed,implying the emission is localized and due to some interaction in density inhomogeneities with a?lling factor much less than unity.The cloud interaction model is further supported by the presence of

X-ray brightened regions(?gure4(b))immediately behind the bright optical?lamentary structure centered on08h36m?42?50′in?gure4(a).We might be seeing this emission in projection, signi?cantly in front of or behind the plane of the explosion center transverse to the line of sight. This would indicate local density enhancements very close to the main shock.Alternatively,it could be nearly in the plane of the explosion center,with a shock velocity signi?cantly reduced by interactions with more dense material.Some of the emission could be from regions already passed and energized by the main shock.

The digital60μm images in the IRAS Sky Survey Atlas(Wheelock et al.1994)support the thermal emission model for the X-ray emission.Much of the X-ray structure does have an infra-red counterpart.However,infra-red images are generally less useful thermal diagnostics than X-ray images near the Galactic Plane,since the infra-red observations are dominated by di?use Galactic emission and confusion from other sources(White&Long1991).

An alternative model for SNR optical/X-ray emission(McKee&Cowie1975),explains SNRs with centrally-peaked X-ray emission(White&Long1991).In this model cold dense clouds with a small?lling factor have been passed by the main shock and are evaporating by conductive heating from the postshock gas.

Both these models rely on molecular clouds to explain the observed features.Molecular clouds have been detected in the direction of the Vela SNR(May,Murphy,&Thaddeus1988).The initial survey was of12CO and13CO J=1→0line emission with a resolution of0.?5.Higher resolution follow-up observations(Murphy&May1991)covered only the eastern part of the Vela SNR shell.

A cloud with a barely resolved peak at08h41m?41?20′is seen,with a distance estimated to be

0.5–2.0kpc,i.e.immediately behind the Vela SNR.However,this cloud appears coincident with a bright H ii region seen optically to the north of?gure4(a),and might not be responsible for the observed optical features in the Vela shell.H i may be a better tracer of density in the Vela shell region.Dubner et al.(1998)?nd a near-circular shell of H i surrounding the northern edge of the remnant,with column densities up to1021cm?2,and estimate the pre-shock gas to have had a density of1–2cm?3.The H i shell traces the X-ray edge of the remnant,enclosing the radio and optical?laments.

In the simple radio emission model for the interaction of supernova explosions with the ISM (Woltjer1972),Vela is in the radiative or snowplow phase of evolution,having swept up signi?cant matter and dissipated much of the original kinetic energy of the explosion.A cool dense shell surrounds a hot interior.This model can account for the faint radio emission seen just behind the X-ray edge,which indicates the presence of compressed magnetic?elds and accelerated particles, probably from the di?usive shock mechanism(Fulbright&Reynolds1990).It does not account for the brighter localized?laments apparently well behind the main shock.

Duin&Van Der Laan(1975)present a consistent picture for the coincidence of radio and optical emission which is observed in“middle-aged”shell remnants.This model,based on observations of IC443,proposes that the magnetic?eld required for synchrotron emission is frozen

into condensations forming in the cooling instabilities which then give rise to the optical emission. We do not?nd signi?cant radio/optical coincidence in our Vela observations.Consequently,if this process is occurring,then we can infer that the cooling material around the radio?laments is not at an appropriate temperature for the emission of recombination radiation.One explanation is for a long period to have elapsed following the passage of the radiative shock,allowing substantial cooling while still preserving the conditions for synchrotron emission(Blandford&Cowie1982). Alternatively,where shock-accelerated particles producing the optical?laments are located,the magnetic?eld may not be su?ciently compressed to cause detectable synchrotron emission.

The applicability of these models may be investigated further with magnetic?eld information, provided by polarimetry.Polarized intensity has been observed in the Vela shell(Duncan et al. 1996),but high resolution measurements at several frequencies will be required to examine the magnetic?eld structure in this area in detail.Blandford and Cowie(1982)note that individual ?laments ought to be polarized parallel to their longest dimensions,although they may be too faint to be detected with current instruments.

Good agreement between optical and radio emission has been found in other middle-aged shell SNRs such as IC443(Duin&Van Der Laan1975),the Cygnus Loop(Straka et al.1986) and HB3(Fesen et al.1995).The situation in Vela is quite di?erent and the reason for this is not apparent.Extinction may be a culprit,obscuring some of the Hαemission.However,the coincidence of di?use optical emission with bright radio?laments,noted above,argues against massive extinction in this direction.

This initial investigation of the optical/radio/X-ray correlations in the region indicates that a fuller investigation would be pro?table.A?rst step would be to obtain optical spectral information to separate non-radiative and radiative?laments,allowing a detailed comparison with the model of Hester&Cox(1986).

4.2.Vela X

A view of the central nebula of the Vela SNR is shown as a greyscale image in?gure5and as a ruled surface plot in?gure6.Each representation emphasizes di?erent characteristics.The greyscale image gives a good overall view of the region,while the ruled surface plot helps to show the nature of the?lamentary structure and highlights the small-diameter sources.

The?rst thing to note in the images is that at the resolution of these observations the nebula is seen to be composed of many?laments or wisps,at a variety of orientations and on many angular scales.Several of the brighter?laments are aligned approximately north-south.It is important to realize that the?ux density detected in this image is only a small fraction of the total ?ux density of the remnant,because of absent low spatial frequency information.The total?ux density of the extended features in the MOST image of Vela X is calculated to be28±2Jy,which becomes130Jy when correction is made for the negative bowl artefact surrounding the nebula.

This is approximately12%of the estimated single dish?ux density of Vela X(Dwarakanath 1991).One bene?t of the MOST acting as a spatial?lter is the prominence it gives to smaller scale structures with size of the order of the X-ray feature seen by Markwardt and¨Ogelman (1995).In?gure5,the central radio?lament overlaid on the X-ray feature by Frail et al.(1997) is marked‘1’.This?lament does not look strikingly di?erent from other?laments in the region, for example the?lament marked‘2’.However,we see in the8GHz Parkes image of Milne(1995) that?lament‘1’is located at the brightest part of the Vela X nebula.Frail et al.(1997)have argued that this radio?lament may be associated with the X-ray feature,but it is morphologically indistinguishable from other?laments in the image.The central radio?lament looks so prominent in the327MHz VLA image of Frail el al.(1997)partially because that image is uncorrected for the VLA primary beam attenuation at the edge of the?eld.Also,the maximum entropy method of deconvolution used for the VLA data promotes the?ux density at low spatial frequencies more than the CLEAN algorithm used to deconvolve the MOST observations.

Several further interesting objects in the region should be noted.In?gure5a?lament(‘3’) extends through the pulsar position(at the head of the arrow)to the south and may connect to ?lament‘1’.The axis of symmetry of these two?laments is closely aligned with the direction of motion of the pulsar(Bailes et al.1989),shown on the image with an https://www.doczj.com/doc/6d5936653.html,ing the proper motion measurement of Bailes et al.,we notice that over its lifetime(assuming an age of12,000yr) the pulsar has moved to its present position from a bright region to the south-east.An excess of high-energyγ-rays has been detected from near this putative birthplace(Yoshikoshi et al.1997). Greater age estimates(e.g.Aschenbach et al.1995;Lyne et al.1996)change this slightly as they increase the distance moved by the pulsar by up to a factor of two.Just to the north of the pulsar is a3′crescent-shaped synchrotron nebula,seen originally by Bietenholz,Frail,&Hankins(1991). They resolved out the extended structure in the region,whereas here we see that the crescent is one bright region of much extended emission around the pulsar.Some very faint structures found around the edge of Vela X appear unusual.Object‘4’has a shape reminiscent of many shell supernova remnants,but if it is associated with Vela X it might be a blowout from the nebula. Object‘5’is a faint streamer apparently connecting Vela X to the Vela shell(cf.?gure1).It might be argued that this is actually a foreground or background projection of the surface of a shock‘bubble’,but it is substantially thinner than any of the shell?laments.

5.Conclusion

The radio survey presented in this paper contains the highest resolution observations yet made of the bulk of the Vela supernova remnant and resolves the structure of the remnant in more detail than has been possible for any other composite remnant.The resolution of this observation of the Vela X region is a factor of two greater than that presented by Frail et al.(1997),and covers the entire plerion,una?ected by primary beam attenuation.The Vela plerion in the radio consists both of di?use and?lamentary emission.Although the survey does not contain information on

the largest spatial scales,this structure may be inferred from single dish observations at higher frequencies(Milne1995;Duncan et al.1996),which show that the?lamentary emission in the survey covers the same area as the more di?use emission from Vela X seen in total power images. The region immediately surrounding the Vela pulsar contains much non-thermal emission in addition to the possible pulsar wind nebula seen by Bietenholz et al.(1991).

The two distinct regions of the Vela SNR,the shell and the plerion,have in the past been considered separate entities because of their di?erent spectral indices.This characteristic puts Vela in the composite class with SNRs such as G326.3?1.8(MSH15?56:Clark,Green,& Caswell1975;Whiteoak&Green1996)and G0.9+0.1(Helfand&Becker1987).In the images presented in this paper,we now see the shell and plerion in?ne detail and they separately show strong similarities with what we see in other SNRs,observed at similar resolutions.The shell ?laments are comparable to those seen in the Cygnus Loop(Green1984;Straka et al.1986), oriented perpendicularly to the direction to the SNR center,with Hαand X-ray counterparts.By contrast,the?lamentary structure within the plerion is more nebulous and has a gross alignment approximately north-south.Its appearance is reminiscent of the?laments in the Crab Nebula (Bietenholz&Kronberg1990).Thus we can identify both a shell and a plerion within the Vela SNR,classifying it unambiguously as a composite remnant.

We propose that it be considered as the archetypal Galactic member of the composite class. In angular extent,the Vela SNR is respectively50and12times larger than G0.9+0.1and

G326.3?1.8,allowing detailed studies at a variety of wavelengths.It is now appropriate to use this object as a key laboratory for studying the properties of SNRs and the interstellar medium.

The investigation of the shell of the Vela SNR in this paper focussed on its northern side. Like parts of the Cygnus Loop,this region can be explained by a model of a fast shock heating interstellar material to X-ray emitting temperatures and interacting with denser clouds to produce Hαrecombination line emission(Hester&Cox1986;Graham et al.1995;Levenson et al.1996). The expanding shock also produces bright non-thermal radio emission not well correlated with these Hα?laments,in contrast with the optical/radio agreement seen in many other middle-aged SNRs.To continue investigating this region,observations of other optical emission lines are needed to separate projected Balmer?laments,produced at the outer shock,from recombination line emission at molecular cloud interactions.High-resolution polarization observations of the radio shell?laments are the obvious next step to investigate the magnetic?eld associated with the non-thermal emission.

Further study of the remnant’s plerionic component,Vela X,should determine how the Vela pulsar transfers its rotational kinetic energy to the nebula.With an age at least ten times that of the Crab Nebula,we might expect the Vela plerion to show evolutionary trends in the relative emission strengths in di?erent wavelength regimes.The absence of obvious correlations between radio emission and the optical?laments(Elliott,Goudis,&Meaburn1976)already contrasts Vela X with the Crab Nebula,where the radio?laments surround the optical?laments(Bietenholz

&Kronberg1991).The recent discovery of a possible X-ray‘jet’,which might be the conduit for energy transfer to the nebula from the pulsar(Markwardt&¨Ogelman1995),further contrasts Vela X with other plerions currently known.

The Molonglo Observatory Synthesis Telescope is operated by the School of Physics,with funds from the Australian Research Council and the Science Foundation for Physics within the University of Sydney.The authors thank D.A.Frail for useful discussions in the course of this work;J.E.Reynolds for assistance with the pulsar gating observations;B.Aschenbach and M. S.Bessell for providing electronic versions of their images;and M.Bailes,P.M.McCulloch and R.N.Manchester for providing Vela pulsar timing data.D.C.-J.B.also acknowledges?nancial support from an Australian Postgraduate Award while at the University of Sydney.

REFERENCES

Arendt,R.G.,Dwek,E.,Petre,R.,Dickel,J.R.,Roger,R.S.,Milne,D.K.,&Kesteven,M.J., 1990,ApJ,350,266

Aschenbach,B.,1992,in Space Science with particular emphasis on High Energy Astrophysics,ed.

J.Tr¨u mper,(Garching bei M¨u nchen:Max-Planck-Institut f¨u r Extraterrestriche Physik),28 Aschenbach,B.,Egger,R.,&Tr¨u mper,J.,1995,Nature,373,587

Bailes,M.,Manchester,R.N.,Kesteven,M.J.,Norris,R.P.,&Reynolds,J.E.,1989,ApJ,343, L53

Bietenholz,M.F.&Kronberg,P.P.,1990,ApJ,357,L13

Bietenholz,M.F.&Kronberg,P.P.,1991,ApJ,368,231

Bietenholz,M.F.,Frail,D.A.,&Hankins,T.H.,1991,ApJ,376,L41

Blandford,R.D.&Cowie,L.L.,1982,ApJ,260,625

Bock,D.C.-J.,1997,Wide Field Aperture Synthesis Radio Astronomy,PhD Thesis,University of Sydney

Bock,D.C.-J.,Frail,D.A.,Green,A.J.,&Sault,R.J.,1998,in preparation

Buxton,M.,Bessell,M.,&Watson,B.,1998,Publ.Astron.Soc.Australia,15,24

Campbell-Wilson,D.&Hunstead,R.W.,1994,Proc.Astron.Soc.Australia,11,33

Clark,D.H.,Green,A.J.,&Caswell,J.L.,1975,Australian J.Phys.Astrophys.Suppl.,No.37, 75

Cram,L.E.&Ye,T.,1995,Australian J.Phys.,48,113

Crawford,D.F.,1984,in Indirect Imaging,ed.J.A.Roberts,(Cambridge:Cambridge University Press),373

Day,G.A.,Caswell,J.L.,&Cooke,D.J.,1972,Aust.J.Phys.Astrophys.Suppl.,25,1 Dubner,G.M.,Green,A.J.,Goss,W.M.,Bock,D.C.-J.,&Giacani,E.,1998,AJ,in press Duin,R.M.&Van Der Laan,H.,1975,A&A,40,111

Duncan,A.R.,Stewart,R.T.,Haynes,R.F.,&Jones,K.L.,1996,MNRAS,280,252 Dwarakanath,K.S.,1991,J.Astrophys.Astron.,12,199

Elliott,K.H.,Goudis,C.,&Meaburn,J.,1976,MNRAS,175,605

Fesen,R.A.,Downes,R.A.,Wallace,D.,&Normandeau,M.,1995,AJ,110,2876

Frail,D.A.,Bietenholz,M.F.,Markwardt,C.B.,&¨Ogelman,H.,1997,ApJ,475,224 Fulbright,M.S.&Reynolds,S.P.,1990,ApJ,357,591

Gooch,R.,1996,in Astronomical Data Analysis Software and Systems V,ed.G.H.Jacoby& J.Barnes,(San Francisco:Astronomical Society of the Paci?c),80

Graham,J.R.,Levenson,N.A.,Hester,J.J.,Raymond,J.C.,&Petre,R.,1995,ApJ,444,787 Green,D.A.,1984,MNRAS,211,433

Green,A.J.,Cram,L.E.,&Large,M.I.,1998,ApJ,submitted

Greisen,E.W.&Calabretta,M.,1995,Representations of celestial coordinates in FITS, unpublished

Gum,C.,1955,Mem.R.A.S.,67,155

Haslam,C.G.T.,Sto?el,H.,Salter,C.J.,&Wilson,W.E.,1982,A&AS,47,1

Helfand,D.J.&Becker,R.H.,1987,ApJ,314,203

Hester,J.J.&Cox,D.P.,1986,ApJ,300,675

Hester,J.J.,1987,ApJ,314,187

Hester,J.J.,Raymond,J.C.,&Blair,W.P.,1994,ApJ,420,721

Kaspi,V.M.,1996,in Pulsars:Problems&Progress,ed.S.Johnston,M.A.Walker,&M.Bailes, (San Francisco:Astronomical Society of the Paci?c),375

Kesteven,M.J.&Caswell,J.L.,1987,A&A,183,118

Komesaro?,M.M.,Hamilton,P.A.,&Ables,J.G.,1972,Australian J.Phys.,25,759

Kundt,W.,1988,in Supernova Shells and Their Birth Events,ed.W.Kundt,(Berlin: Springer-Verlag),1

Large,M.I.,Vaughan,A.E.,&Mills,B.Y.,1968,Nature,220,340

Large,M.I.,Campbell-Wilson,D.,Cram,L.E.,Davison,R.G.,&Robertson,J.G.,1994,Proc.

Astron.Soc.Australia,11,44

Levenson,N.A.,Graham,J.R.,Hester,J.J.,&Petre,R.,1996,ApJ,468,323

Lozinskaya,T.A.,1992,Supernovae and Stellar Wind in the Interstellar Medium,(New York: American Institute of Physics),chap.8

Lyne,A.G.,Pritchard,R.S.,Graham-Smith,F.,&Camilo,F.,1996,Nature,381,497 Markwardt,C.B.&¨Ogelman,H.,1995,Nature,375,40

May,J.,Murphy,D.C.,&Thaddeus,P.,1988,A&AS,73,51

McCulloch,P.M.,Hamilton,P.A.,Manchester,R.N.,&Ables,J.G.,1978,MNRAS,183,645 McKee,C.F.&Cowie,L.L.,1975,ApJ,195,715

Milne,D.K.&Manchester,R.N.,1986,A&A,167,117

Milne,D.K.,1968a,Australian J.Phys.,21,201

Milne,D.K.,1968b,Australian J.Phys.,21,501

Milne,D.K.,1980,A&A,81,293

Milne,D.K.,1995,MNRAS,277,1435

Morrison,J.E.,1995,in Astronomical Data Analysis Software and Systems IV,ed.R.A.Shaw,

H.E.Payne,&J.J.E.Hayes,(San Francisco:Astronomical Society of the Paci?c),179 Murphy,D.C.&May,J.,1991,A&A,247,202

Perley,R.A.,1979,AJ,84,1443

Reichley,P.E.,Downs,G.S.,&Morris,G.A.,1970,ApJ,159,L35

Robertson,J.G.,1991,Australian J.Phys.,44,729

Rodgers,A.W.,Campbell,C.T.,&Whiteoak,J.B.,1960,MNRAS,121,103

Stothers,R.,1980,PASP,92,145

Straka,W.C.,Dickel,J.R.,Blair,W.P.,&Fesen,R.A.,1986,ApJ,306,266

Weiler,K.W.&Panagia,N.,1980,A&A,90,269

Weiler,K.W.&Sramek,R.A.,1988,ARAA,26,295

Wheelock,S.L.et al.,1994,Sky Survey Atlas Explanatory Supplement,JPL Publication94-11, (Pasadena:JPL)

White,R.L.&Long,K.S.,1991,ApJ,373,543

Whiteoak,J.B.Z.&Green,A.J.,1996,A&AS,118,329

Whiteoak,J.B.Z.,Large,M.I.,Cram,L.E.,&Piestryzynski,B.,1989,Proc.Astron.Soc.

Australia,8,176

Winkler,P.F.,Tuttle,J.H.,Kirshner,R.P.,&Irwin,M.J.,1988,in Supernova remnants and the interstellar medium,ed.R.S.Roger&https://www.doczj.com/doc/6d5936653.html,ndecker,(Cambridge:Cambridge University Press),65

Woltjer,L.,1972,ARAA,10,129

Yoshikoshi,T.et al.,1997,ApJ,487,L65

Fig.1.—The843MHz survey of the Vela SNR.Vela X is the central,nebulous region composed of many?laments in an area about2?across,centered on08h35m?45?30′,with the Vela pulsar (suppressed in this image)o?set from the center of the nebula at a position marked with a cross. The radio shell can be seen most clearly around08h42m?43?00′.The separate SNR,Puppis A, is also included in the survey,at08h22m?43?00′.The image greyscale is saturated outside the intensity range of?20to30mJy beam?1to show the extended structure most clearly.

Fig. 2.—A cartoon of the same area as?gure1,showing key features in the region.The radio peaks(in total power observations)of Vela X,Y and Z are marked at the positions adopted in the literature(Dwarakanath1991;Milne1968a).The names Vela Y and Z are superseded now that these regions have been resolved to show the?lamentary structure.The approximate boundary of the X-ray remnant(Aschenbach et al.1995)is marked with a dotted line.

Fig. 3.—A sub-image of?gure1,showing the northern radio continuum(843MHz)?laments. The intensity scale is linear,from?10(white)to15(black)mJy beam?1.

Fig.4.—A single843MHz contour(at4mJy beam?1)on(a)Hαand(b)X-ray images.The Hαimage is from the MSSSO HαSurvey(Buxton et al.1998),courtesy of M.S.Bessell.The X-ray image was kindly provided by B.Aschenbach(originally published in Aschenbach et al.1995).

Fig.5.—A sub-image of?gure1,showing Vela X,the central nebula of the Vela supernova remnant. The arrow shows the direction and magnitude of the proper motion of the pulsar over12,000yr, assuming constant velocity as measured by Bailes et al.(1989).The arrow’s head is at the present location of the pulsar(suppressed in this image).The numbers refer to features discussed in the text.

Fig.6.—A ruled surface plot of the same area as?gure5,emphasizing the disordered nebulosity of Vela X and highlighting the relative strengths of the point sources and the extended structure. The data have been convolved to a circular beam of120′′×120′′to reduce the noise,which also accentuates the extended emission(by a factor of5.6)relative to the compact sources.

An alternative version of this preprint,which contains higher-quality postscript?gures,is available at https://www.doczj.com/doc/6d5936653.html,/~dbock/papers/.

This figure "Bock.fig1.jpg" is available in "jpg" format from: https://www.doczj.com/doc/6d5936653.html,/ps/astro-ph/9807125v1

This figure "Bock.fig2.jpg" is available in "jpg" format from: https://www.doczj.com/doc/6d5936653.html,/ps/astro-ph/9807125v1

学术道德与学术规范试题汇编

“学术道德与学术规范”试卷2017春季学期 通过本门课程学习。我已了解了学术规范和惩处内容,在此郑重承诺 我将严格遵守,如有违犯,甘受处罚。 姓名班级学号 (开卷考试、可以携带纸质资料。不允许使用手机,不允许讨论、抄袭别人的试卷。) 一填空题每题2分共20分,直接答在试卷上 1对于在学术交流或合作研究中获得的数据或研究成果,研究者应该未经人同意不得。 2科研不端行为与科学道德学风问题处理的责任主体有申请者、评议评审者、者、项目依托单位、项目推荐者。 3早在1988年,国就颁布了《实验动物保护条例》。 4对于伪造或,且,给予取消申请学位资格的处理。 5有些机构界定了科研不端行为的三项主罪是伪造、捏造和。 6只有符合作者或成果完成人身份要求者才享有论文权。 7对已经取得中国海洋大学学位的研究生,学术不端行为情节严重的, 一经查实,并。 8科研诚信主要指科技人员在科技活动中弘扬追求真理、实事求是、、开放协作为核心的科学精神。 9课题申请材料中,专著要写明作者、书名、、年份。 10学术评价的一般规则中,单向匿名式评价,有利于专家独立思考、独立判断,维护学术评价的性。 二、多选题每题2分共20分,直接答在试卷上 1、“合理使用”必须具备以下的条件有(A.使用的作品已经发表C.应当指明作者姓名、作品名称D.不影响该作品的正常使用)。 2、2002年,美国国家科学基金会对科研不端行为做出的定义是(A.伪造B.篡改C.剽窃)。 3、引用的规范中,学术论文中所使用的他人研究成果,包括(A.观点B.结论C.数据D.公式) 4、一稿多投或稍作修饰重复投稿,给予(A. 延期一年答辩B.批评教育C.延期半年答辩D. 一年内不得申请学位)处理。 5、对科研不端行为人做出的处理措施有(A.警告B.通报批评C.责令定期审查

金融经济学复习资料整合

金融经济学总复习 什么是金融经济学? 金融经济学是一门研究金融资源有效配置的科学,它所要回答的问题是,商品经济的价值规律是否还能完全指导所有的经济主体(个人、机构、企业和政府等)在参与金融活动中所做的决策。它在微观经济学的基本框架内发展了金融理论的主要思想,并以此思想来观察金融活动参与者的行为和他们之间的相互作用,从中探索金融交易过程中所蕴涵的经济学的普遍规律。 ?所研究的核心问题是不确定性金融市场环境下的金融决策和资产定价。 金融产品是指在金融市场交易的有价证券,如银行存单、票据、债券、股票以及各种衍生证券等;或称之为金融工具,实际上金融工具可以理解为市场普遍接受并大量交易的标准化金融产品。 金融产品(证券)的特殊性 ?对未来价值的索偿权:即购买并持有一项金融商品,取得了对该项商品未来收入现金流的所有权。 ?风险性和不确定性 ?由信息决定价格 金融产品的现金流特性 流动性——是指金融商品的变现能力和可交易程度 收益性——是指预期收益,是未来各种可能情况下实际发生的收益的统计平均收益 风险性——实际发生的收益对预期收益(即平均值)的偏离程度,用收益的方差或标准差度量,且二者都是统计平均值 金融决策分析的三大原理或三大支柱 ?货币的时间价值原理:是指当前所持有的一定量货币比未来获得的等量货币具有更高的价值。 ?资产价值评估原理:一价原则 ?风险与收益权衡原理 金融经济学的研究内容 三个核心问题 1.不确定性条件下经济主体跨期资源配置的行为决策; 2.作为经济主体跨期资源配置行为决策结果的金融市场整体行为,即资产定价和衍生金融资产定价; 3.金融资产价格对经济主体资源配置的影响,即金融市场的作用和效率。 三大基础理论体系 (1)个体的投资决策及资产组合理论:证券组合理论 (2)公司融资决策理论:MM定理 (3)资本市场理论:EMH 金融经济学分析方法:绝对定价法与相对定价法 绝对定价根据金融工具未来的现金流特征,运用恰当的贴现率将现金流贴现成现值,该现值即绝对定价法要求的价格。优点:比较直观,便于理解普遍使用;缺点:金融工具(特别是股票)未来的现金流难以确定;恰当的贴现率难以确定 相对定价法:是利用基础产品价格与衍生品价格之间的内在关系,直接根据基础产品价格求出衍生品价格。优点:定价公式没有风险偏好等主管变量,容易测度;贴近市场 ①均衡定价法则: 在给定交换经济、初始财富、经济主体的偏好和财富约束下的期望效用最大、市场完全竞争等条件下,当每个投资者预期效用最大化、没有动力通过买卖证券增加自己的效用时,市场达到均衡,此时的证券价格是均衡价格。均衡定价的经典模型:CAPM ②套利定价法则 通过市场上其它资产的价格来推断某一资产的价格,其前提条件是完美的证券市场不存在套利机会。如果两种期限相同的证券能够在未来给投资者提供同样的收益,那么在到期之前的任何时间,两种证券的价格一定相等,即所谓的“一价原则”。

世界史重大事件时间表(完整版)

大学世界史重大事件时间表(完整版)适用于大学、高中、初中生 世界历史大事年表 大约三百万年前地球上出现人类 公元前3100年左右埃及形成统一的奴隶制国家 公元前3000年左右 两河流域出现奴隶制城市国家 公元前3000年代中期印度河流域哈拉帕文化 公元前2100年左右 埃及奴隶河贫民大起义 公元前1894年古巴比伦王国建立 公元前1000年左右努比亚建立奴隶制国家 公元前594年雅典的梭伦改革 公元前六世纪居鲁士统一波斯,佛教在印度产生 公元前539年 波斯占领巴比伦 公元前525年波斯灭埃及 公元前509年罗马成立贵族专政的奴隶制共和国 公元前330年波斯被马其顿灭亡 公元前三世纪摩揭陀国统一印度大部分地区 公元前73-71年 斯巴达克起义 公元前27年屋大维建立罗马的元首制,共和国转为帝国公元前后朝鲜半岛出现高句丽奴隶制国家 公元初东非阿克苏姆奴隶制国家兴起 公元一世纪基督教产生 公元三世纪日本大和奴隶制国家兴起 313年基督教在罗马取得合法地位 四世纪北非发生“阿哥尼斯特”运动 378年 西哥特人在阿德里亚堡击败罗马军队 395年罗马分裂为东西两部 410年西哥特人一度占领罗马 476年西罗马帝国灭亡,西欧奴隶制度崩溃 六世纪初法兰克王国建立 622年 穆罕默德从麦加出走麦地拉,伊斯兰教纪元 八世纪中叶阿拉伯帝国形成 646年日本大化改新 676年 新罗统一朝鲜

九世纪早期英吉利王国形成 843年查里曼帝国分裂,法兰西、德意志、意大利雏形产生九世纪封建制度在西欧确立 962年神圣罗马帝国建立 1054年基督教会分裂 1066年 法国诺曼底公爵征服英国 十一世纪中叶加纳王国全盛时期 1192年日本幕府政治建立 十三世纪 埃塞俄比亚封建国家兴起 十四世纪马里王国全盛时期,意大利出现资本主义萌芽 十四至十六世纪欧洲文艺复兴运动 1337年英法百年战争开始 1358年法国农民起义 1381年英国瓦特。泰勒起义 1453年东罗马帝国灭亡,英法百年战争结束 十五世纪桑海兴起 十五世纪晚期 英法中央集权国家形成,圈地运动开始 1480年俄罗斯摆脱蒙古控制 1487年迪亚士到达好望角 1492年哥伦布初次航行到美洲 1497-1498年达加马开辟西欧到印度的新航路 1517年 马丁。路德发动宗教改革 1519-1522年麦哲伦船队环航地球 十六世纪 葡萄牙和西班牙殖民者在亚、美强占殖民地 1524-1525 德意志农民起义 1588年 英国海军击败西班牙“无敌舰队” 1592-1598年朝鲜军民抗击日本侵略的卫国战争 1600年 英国东印度公司建立 十七世纪初法国殖民者开始在北美拓殖 1607年英国殖民者开始在北美拓殖 1632年沙俄在西伯利亚修建侵略扩张的基地—雅库次克1640年英国资产阶级革命开始 1649年 英国王查理一世被处死 1660年英国斯图亚特王朝复辟 1688年英国政变,资产阶级和新贵族的统治确立 1689年中俄签定“尼布楚条约”

《学术道德与学术规范》考试题库答案编汇

《学术道德与学术规范》题库可打印版 各类题型按首字拼音升序排列 一、填空题 1、1975年,澳大利亚哲学家彼得?辛格撰写的《动物解放》一书,用大量残酷的动物实验案例展示了受试动物所遭受的巨大痛苦。 2、按照国际通行惯例,大学教授一年必须有9个月时间为学校效力。 3、对研究参与者的风险评估包括伤害、隐私、保密和研究方法的设计。 4、工程师作为一种专业角色有其角色—责任,它又可分为义务—责任和过失—责任。 5、国家自然科学基金委员会监督委员会成立于1998年12月10日。 6、科技的专业目标大致分为知识性目标和应用性目标。 7、科学从本质上讲是一种开放性的累积活动,新的科学发展是对旧有知识传统的继承、发展和超越。 8、科学精神气质中的公有性原则要求科学家公开科研成果,即科学家只拥有科研成果的优先权,而不享有占有权。 9、科学研究的基本伦理原则可分为预防的基本伦理原则和倡导的基本伦理原则。 10、科学研究的基本伦理原则可分为尊重与无害基本伦理原则和客观性与公共福祉优先基本伦理原则。 11、科学哲学家库恩将科学发展划分为常规时期和革命时期。 12、科研不端行为的查处制度包括调查方式、调查机构和调查程序。 13、科研不端行为与科学道德学风问题处理的责任主体有申请者、评议评审者、研究者、项目依托单位、项目推荐者。 14、美国的实验动物立法有《动物福利法》、《实验动物饲养与管理指南》、《人道主义饲养和使用实验动物的公共卫生服务方针》等。 15、人文社会科学研究的基本伦理原则中,尊重个人包含的道德信条有:一是个人享有自治权,二是保护丧失自治力的人。 16、涉及人类受试者的研究伦理原则包括尊重原则、风险(伤害)最小化原则、有利原则和公正原则。 17、现代学术研究主要包括科学技术研究和人文社会科学研究。 18、选题的内涵不只包括一个简单的范围和一般性的问题,还应包括立意和主题。 19、学术评价的标准,包括分类评价、注重质量与合理量化、保护学术自由。 20、学术评价的一般规则包括时间空间双重制约、程序正义原则和匿名与公开相结合的原则。 21、学术评价的一般规则中,单向匿名式评价,有利于专家独立思考、独立判断,维护学术评价的独立性。 22、学术研究是指在实证精神和理性精神指引下用科学的方法进行探索、求知,以获得新的知识、理论以及对新知识、新理论应用的行为。 23、研究中的错误大致分为故意的错误和无意的错误两类。 24、引用的形式,包括直接引用和间接引用。 25、引用未成文的口语实录包括口头演讲、课堂教学实录和采访记录。 26、有些机构界定了科研不端行为的三项主罪是伪造、捏造和剽窃。 27、在过去的一个世纪中,科学从“小科学”和“学院科学”嬗变为(大科学)和(后学院科学)。 28、在数据的收集中,应该做到保证数据的原始性、真实性和完整性。 29、在中国哲学思想中,“道德”一词可追溯到老子的《道德经》。 30、知情同意包括过程和文件两部分。 31、只有符合作者或成果完成人身份要求者才享有署名权。 二、单选题 1、“己所不欲,勿施于人”出自(论语)。 2、“引用”是在自己本身有著作的前提下,基于参证、注释和(评论)的目的,在自己著作中适当使用他人著作的某一部分。 3、《法哲学》一书的作者是(黑格尔)。 4、爱因斯坦讲过一句意味深长的话:“上帝是微妙的,但不故意捉弄人。”他所说的上帝指(自然规律)。 5、保障知识可靠性的前提条件和基础是(诚实守信)。 6、避雷针的发明者是(富兰克林)。 7、避免对参与者造成伤害与不合理的痛苦包括(对第三人权益的保护)。 8、参与社会科学研究者可能会承受(心理)风险。 9、长期以来,我国广大科研人员继承优秀的学术研究传统,发扬热爱祖国等精神,以下不属于上述精神的有(多出成

学术道德考试题库整理新选.

1、平台登录地址:,帐号为:学号,初始密码为:学号。 2、在线学习环节:点击“浏览资料”,资料全部浏览完毕后方能进入测试环节。 3、在线测试环节:点击“参加考试”,考试若不通过可以再次考试。 4、签署承诺书环节:点击“考试成绩”,若通过,在“诚信书下载”一栏下载打印签署苏州大学研究生科研诚信与学术规范承诺书。 开放时间:2015年11月1日-2015年12月15日。 请2015级研究生在2015年12月15日前完成自主学习和测试,以及承诺书的签署。测试成绩计入研究生思想政治课成绩,研究生科研诚信与学术规范承诺书需一式三份(研究生本人、导师、研究生培养单位各一份)。注意事项红字 特别提醒:学术诚信教育网络教学是2015级研究生思想政治课程的重要组成部分,完成平台学习和测试才能获得思想政治理论课的学分,请2015级研究生重视此项网络教学工作,并在规定的时间内完成。 请各研究生培养单位根据通知要求,认真做好2015级研究生科学道德和学术诚信教育管理工作,并请在2015年12月20日前做好承诺书的归档工作。 特此通知。

学术规范是在学术共同体内部所构建的一 种。 A 行政化的操作 B 自觉的约束机制 C 政治上的要求 D 道德上的强迫机制 正确 2. 以下说法符合“学术失范”定义的是。 A 技术层面违背规范的行为,或由于缺乏必要的知识而违背行为准则的做法。 B 根据学术发展规律制定的有关学术活动的基本准则,反映了学术活动长期积累的经验。 C 学术共同体成员应该遵守的基本学术道德规范和在从事学术活动中必须承担的社会责任和义务,以及对这些道德规范进行理论探讨后得出的理性认识。 D 学术共同体及其成员在学术研究中表现出来的特殊的社会风气。 正确 3.

金融经济学(王江)习题解答

金融经济学习题解答 王江 (初稿,待修改。未经作者许可请勿传阅、拷贝、转载和篡改。) 2006 年 8 月

第2章 基本框架 2.1 U(c) 和V (c) 是两个效用函数,c2 R n+,且V (x) = f(U(x)),其中f(¢) 是一正单调 函数。证明这两个效用函数表示了相同的偏好。 解.假设U(c)表示的偏好关系为o,那么8c1; c22R N+有 U(c1) ? U(c2) , c1 o c2 而f(¢)是正单调函数,因而 V (c1) = f(U(c1)) ? f(U(c2)) = V (c2) , U(c1) ? U(c2) 因此V(c1)?V(c2),c1oc2,即V(c)表示的偏好也是o。 2.2* 在 1 期,经济有两个可能状态a和b,它们的发生概率相等: a b 考虑定义在消费计划c= [c0;c1a;c1b]上的效用函数: U(c) = log c0 + 1 (log c1a + log c1b) 2 3′ U(c) = 1 c01?°+21 1 c11a?°+ 1 c11b?°1?°1?°1?° U(c) = ?e?ac0?21? e?ac0+e?ac0 ¢ 证明它们满足:不满足性、连续性和凸性。 解.在这里只证明第一个效用函数,可以类似地证明第二、第三个效用函数的性质。 (a) 先证明不满足性。假设c?c0,那么 有c0 ? c00; c1a ? c01a; c1b ? c01b 而log(¢)是单调增函数,因此有 log(c0) ? log(c00); log(c1a) ? log(c01a); log(c1b) ? log(c01b) 因而U(c)?U(c0),即coc0。

学术道德与学术规范题库(按拼音排序)剖析

学术道德与学术规范题库(各类题按首字拼音升序排列) 二、单选题 1、“己所不欲,勿施于人”出自(论语)。 2、“引用”是在自己本身有著作的前提下,基于参证、注释和(评论)的目的,在自己著作中适当使用他人著作的某一部分。" " 3、《法哲学》一书的作者是(黑格尔)。 4、爱因斯坦讲过一句意味深长的话:“上帝是微妙的,但不故意捉弄人。”他所说的上帝指(自然规律)。 5、保障知识可靠性的前提条件和基础是(诚实守信)。 6、避雷针的发明者是(富兰克林)。 7、避免对参与者造成伤害与不合理的痛苦包括(对第三人权益的保护)。 8、参与社会科学研究者可能会承受(心理)风险。 9、长期以来,我国广大科研人员继承优秀的学术研究传统,发扬热爱祖国等精神,以下不属于上述精神的有(多出成果)。 10、处理科技共同体内部伦理问题的基本伦理原则是(客观性) 11、单向匿名式评价,有利于专家独立思考、独立判断及(维护学术评价的独立性)。 12、道德的观点,从它的型态上看就是(主观意志)的法。 13、动物的基本权利从根本上讲可以有(生存权利)。 14、动物试验中有很多不无争议和值得讨论的问题,有(痛苦和损害)。 15、对具体的高科技活动进行批判性的反思,透过风险与效益分析、权利与利益分析和文化与价值分析揭示其中的价值伦理问题,其中包括案例研究,这属于(描述性研究)。 16、对于在学术交流或合作研究中获得的数据或研究成果,研究者应该未经人同意不得泄露)。 17、高质量和负责任的研究要求研究者方法得当、(注重细节)、获得许可、完整记录等。 18、个人发表学术论著,有权按照(自己意愿)署名。 19、工程师的义务-责任是(积极的)、向前看的责任。 20、工程师作为一种专业角色有其角色—责任,它又可分为义务—责任和(过失-责任)。 21、坚持承担科研人员与其科研群体之间的相互责任和义务,不仅是指学术上的交往而且也指(人际间的交往)。 22、建立科学健康的竞争机制的关键是建立和完善(同行评议制度)。 23、将民主与科学并列为中国转向现代社会的首要动力的事件是(新文化运动)。 24、进行涉及人类受试者或实验动物的研究,科研人员的责任在于(避免给实验对象造成不必要的伤害)。 25、具体准确地把握新的科技伦理问题中所涉及的特定的科学事实及其价值伦理内涵,分析其中涌现出的伦理冲突的实质,以此作为进一步研究的依据与出发点,它属于4A策略中的(把握事实)。 26、科技工作者、科研机构和政府应该致力于知识的公平生产、传播和使用,指的是科研的(公正原则)。 27、科学理论是关于世界的(简化模型)。 28、科学哲学家波普尔认为,科学始于(问题)。 29、科学中的革命精神重心在于(超越和建设)。 30、科研不端行为的查处制度不包括(调查手段)。 31、科研不端行为与科学道德学风问题处理提到的评审原则中,不正确的是(普遍受惠)。 32、科研诚信和道德学风建设的主要法律法规及规范性文件不包括(以上都不对)。 33、科研诚信主要指科技人员在科技活动中弘扬追求真理、实事求是、(崇尚创新)、开放协作为核心的科学精神。 34科研工作选题立项、执行以及报告方面的学术诚实,是指诚实地对待自己研究工作的意义)。 35、科研人员应该遵守的基本规范是(对于为自己研究中的重要事实陈述或假设提供支持)。

《金融经济学》复习题(西财)

《金融经济学》复习题 、名词解释 1、什么是金融系统? 答:金融系统由经济环境、市场参与者和金融市场构成。 2、什么是委托人-代理人问题? 答:委托人-代理人问题是指委托人的目标和决策与代理人的目标和决策不一致,代理人和 委托人之间可能存在利益冲突。在极端的情况下,代理人可能损害委托人的利益,例如股票 经纪人与客户之间的代理问题、公司股东和管理者之间的代理问题等。 3、解释内涵报酬率。 答:内涵报酬率是指使未来现金流入的现值等于现金流出现值的贴现率,即使得NPV恰好为 零的利率。 4、解释有效投资组合。 答:有效投资组合是指在既定风险程度下,为投资者提供最高预期收益率的投资组合;或在 既定收益情况下风险最低的组合。 5、分别解释远期合约和期货合约。 答:远期合约是交易双方在将来的一定时间,按照合约规定的价格交割货物、支付款项的合 约。期货合约是指在有组织的交易所交易的标准化远期合约。交易所介于买卖双方之间,双 方各自同交易所单独订立合约。 6、解释无风险资产。 答:无风险资产是指,在投资者的决策和交易区间内收益率完全可预期的证券或资产。 7、什么是互换合约? 答:互换合约是双方互相交换一定时期内一定价格的一系列支付。 &简要介绍市盈率倍数法。 答:市盈倍数方法可以用来快速测算公司股票的价值:首先通过其他可比公司的数据推导出适当的市盈倍数,再将其与该公司股票预期的每股盈利相乘,由此就得到该公司股票的价值。 9、什么是NPV法则? 答: NPV等于所有的未来流入现金的现值减去现在和未来流出现金现值的差额。如果一个项 目的NPV是正数,就采纳它;如果一个项目的NPV是负数,就不采纳。 10、解释衍生证券。 答:衍生证券是一种金融工具,其价值取决于更基础的金融资产如股票、外汇、商品等,主要包括远期、期货、互换和期权,其主要功能是管理与基本资产相关的风险暴露。 11、什么是一价原则? 答:一价原则指在竞争性的市场上,如果两个资产是等值的或者未来能获得相同的现金流,它们的市场价格应倾向于一致。一价原则体现的是套利的结果。 12、解释风险厌恶。 答:指理性的经济人在面临公平赌博的时候总是拒绝的,而如果需要他接受这样的波动,就 需要给他一定的补偿。 13、什么是套期保值? 答:在衍生品市场上进入一个与现货市场反方向的头寸,当现货市场损失时衍生品市场可以 盈利,当然当现货市场盈利时衍生品市场也会亏损。我们称这种旨在消除未来不确定性的行为为套期保值。14、解释远期利率。

中国历史上重大事件时间(整理后)

中国 一、原始社会(约170万年前到约公元前21世纪) 约0.5-0.7万年前河姆渡、半坡母系氏族公社 约0.4-0.5万年前大汶口文化中晚期,父系氏族公社 约4000多年前传说中的炎帝、黄帝、尧、舜、禹时期 二、奴隶社会(公元前2070年到公元前476年) 夏公元前2070年到公元前1600年 商公元前1600 年到公元前1046年 西周公元前1046年到公元前771年 春秋公元前770年到公元前476年 三、封建社会(公元前475年到公元1840年) 战国(公元前475年到公元前221年) 公元前356年商鞅开始变法 秦(公元前221年到公元前206年) 公元前221年秦统一,秦始皇确立郡县制,统一货币、度量衡和文字 公元前209年陈胜、吴广起义爆发 公元前207年巨鹿之战 公元前206年刘邦攻入咸阳,秦亡 公元前206年—公元前202年楚汉之争 西汉(公元前202年到公元8年) 公元前202年西汉建立 公元前138年张骞第一次出使西域 公元8年王莽夺取西汉政权,改国号新东汉(25年到220年) 25年东汉建立 105年蔡伦改进造纸术 132年张衡发明地动仪 184年张角领导黄巾起义 200年官渡之战 208年赤壁之战 三国(220年到280年) 220年魏国建立 221年蜀国建立 222年吴国建立 263年魏灭蜀 265年西晋建立,魏亡 西晋(265年到316年) 280年东晋灭吴 316年匈奴攻占长安,西晋结束东晋(317年到420年) 317年东晋建立 383年淝水之战 南北朝(420年到589年) 420年南朝宋建立 隋(581年到618) 581年隋朝建立 589年隋统一南北方 605年开始开通大运河 611年隋末农民起义开始 唐(618年到907年) 618年唐朝建立,隋朝灭亡627年-649年贞观之治

科学道德与学术规范测试题

一、单项选择题 每题2分,只有一个正确答案,正确作答得2分,错选不得分。 1. 在资料选取的过程中,研究者正确的态度和做法是()。 A.对研究资料进行区分和甄别 B.对所有资料都加以运用 C.忽视不利于证明自己的先验假设的资料 D.选取那么能够佐证自己的先验假设的资料 得分:2 答题情况:正确

正确答案:A 2. ()是指学术共同体成员应该遵守的基本学术道德规范和在从事学术活动中必须承担的社会责任和义务,以及对这些道德规范进行理论探讨后得出的理性认识。 A.学术伦理 B.学术规范 C.学术风气 得分:0 答题情况:不正确 正确答案:A 3. 已经在正式公开出版的会议论文集或类似出版物形式发表的全文,再次发表()。

A.属于一稿多投 B.不属于一稿多投 C.属于重复发表 得分:2 答题情况:正确 正确答案:A 4. 评价专家发现评价对象与本人有利害关系或者存在妨碍公正评价的其他因素时,()。 A.应主动申请回避 B.同样可以参与评价 C.应保持评价的公正性

得分:2 答题情况:正确 正确答案:A 5. 超过刊物退稿时间而突然发稿形成一稿两投,责任()。 A.在作者不在刊物 B.在刊物不在作者 C.既不在刊物也不在作者 得分:2 答题情况:正确 正确答案:B 6. 间接引用往往注入作者自身对原文的理解而为一种独特的表述,因此它也是一种()活动。

A.剽窃 B.知识创造 C.抄袭 得分:2 答题情况:正确 正确答案:B 7. 在科研活动中骗取经费、装备和其他支持条件等科研资源,滥用科研资源、浪费科研资源,是否属于学术不端行为()。 A.是 B.否

金融经济学简答题

1边际替代率:MRS,是无差异曲线的斜率,表示初期的消费减少1元,下期消费增加的量的相反值。它揭示了为保持相同的总效用,放弃当前一个单位的消费量必须要多少单位额外的未来消费量来补偿。还等于个人的主观时间偏好率。数学公式为MRS 上面C0线面C1 等于 aC1/a C1| u=常数 2分离定理分离定理:给定完善的资本市场,生产决策由客观的市场标准唯一决定,而与影响个人消费决策的个人主观偏好无关。即投资决策和消费决策是分离的。 含义:对任何一个理性的投资者,尽管他或她的最终投资组合选择不相同,但对风险资产的选择是相同的:每个投资者以无风险利率借或贷,然后把所筹集到的或所剩下的资金按相同的比例投资到不同的风险资产上。这一相同的比例由切点T表示的投资组合来决定。 3确定性的五个定理 (1)完备性(可比性)定理:对于任意两个消费计划a,b。要么a优于b,要么b优于a;或者两个都成立也就是说a,b是无差异的。换一句话说就是任何选择都可以比较好坏。 (2)传递性公理:如果a优于b,并且b优于c。则可以推出a优于c。(3)独立性公理:如果x和y无差异,则α概率下得到的x,(1-z)概率下得到的z,与, z概率下得到的y,(1-z)概率下得到的z 也是无差异的。 假设消费计划c和c'相对于某一状态有相同的消费路径x。并且c优于c' ,那么,如果我们把 X换成另外一个消费路径y,c与c' 的排序不变。 (4)可测性如果偏好y的程度小于x但大于z,那么此时存在唯一的a(一种概率)使得个体认为y与某种投机活动是无差异的,这种投机活动以概率a得到得到结果x,以概率(1-a)得到结果z.如果x大于y大于等于z,或者x大于等于y大于z,则此处存在唯一的a使得y和G(x,z:a)无差异 (5)有序性如果y和u均处于x和z的中间,那么我们可以设定这样一系列投机活动,即个体认为y同由x(概率为a1)与z组成的投机活动无差异,同样u 同由x(概率为a2)与z组成的另一次投机活动无差异,如果a1大于a2,则y优于u。 4风险态度:如果投资者不喜欢任何零均值(即公平博弈)彩票,则称其为风险厌恶者。 风险厌恶与凸凹性有关,如果效用函数为凹的则风险厌恶;反之凸效用函数为风险喜好;直线为风险中性。1、风险厌恶,U[E(W)]>E[U(W)],图形下凹;2、风险中性,U[E(W)]=E[U(W)],图形直线;3、风险偏好,U[E(W)]y,则U(x)>U(y)。2、风险资产排序,U[G(x,y:a)]= aU(x)+(1-a)U(y)

中国与西方历史重大事件时间表

中国的 一、原始社会(约170万年前到约公元前21世纪)约170万年前元谋人生活在云南元谋一带 约70-20万年前北京人生活在北京周口店一带 约1.8万年前山顶洞人开始氏族公社的生活 约0.5-0.7万年前河姆渡、半坡母系氏族公社 约0.4-0.5万年前大汶口文化中晚期,父系氏族公社 约4000多年前传说中的炎帝、黄帝、尧、舜、禹时期二、奴隶社会(公元前2070年到公元前476年) 夏公元前2070年到公元前1600年 公元前2070年禹传予启,夏朝建立 商公元前1600年到公元前1046年 公元前1600年商汤灭夏,商朝建立 公元前1300年商王盘庚迁都殷 西周公元前1046年到公元前771年 公元前1046年周武王灭商,西周开始 公元前841年国人暴动 公元前771年犬戎攻入镐京,西周结束 春秋公元前770年到公元前476年 公元前770年周平王迁都洛邑,东周开始 三、封建社会(公元前475年到公元1840年)

战国(公元前475年到公元前221年) 公元前356年商鞅开始变法 秦(公元前221年到公元前206年) 公元前221年秦统一,秦始皇确立郡县制,统一货币、度量衡和文字公元前209年陈胜、吴广起义爆发 公元前207年巨鹿之战 公元前206年刘邦攻入咸阳,秦亡 公元前206年—公元前202年楚汉之争 西汉(公元前202年到公元8年) 公元前202年西汉建立 公元前138年张骞第一次出使西域 公元8年王莽夺取西汉政权,改国号新 东汉(25年到220年) 25年东汉建立 73年班超出使西域 105年蔡伦改进造纸术 132年张衡发明地动仪 166年大秦王安敦派使臣到中国 184年张角领导黄巾起义 200年官渡之战 208年赤避之战

学术道德与规范试题.

一、单选题 1.中文引文注释的必要内容中,未刊文献需注明( B )。 A.文献大标题 B.时间 C.访问时间 D.以上都不对 2、《教育部关于加强学术道德建设的若干意见》中指出,当前要通过扎实有效的工作,加对广大教师、教育工作者和学生的学术道德教育,培养__A__的学态度和学术精神,努力使他们成为良好学术风气的维护者,严谨治学的力行者,优良学术道德的传承者 A:求真务实、勇于创新、坚韧不拔、严谨自律 B:勇于创新、坚韧不拔、求真务实、严谨自律 C:严谨自律、求真务实、勇于创新、坚韧不拔 D:坚韧不拔、勇于创新、严谨自律、求真务实 3、博士论文一般不少于___C___万字。 A 2 B 3 C 5 D 10 4、《江西理工大学研究生学术规范》是根据《中华人民共和国著作权法》、《中华人民共和国专利法》、___C_____等国家法律制定的。 A 《中华人民共和国治安管理处罚条例》 B 《中华人民共和国物权法》 C 《中华人民共和国民法通则》 D 《中华人民共和国劳动法》 5、应该及时公开在江西理工大学完成的或主要利用学校资源做出的发明创造(包括有可能获得专利的发明),这些发明的所有权归___C___。 A 发明者 B 导师

C 学校 D 国家 6、研究生在江西理工大学学习期间完成的研究成果发表,完成单位应署名江西理工大学,在申报或发表时必须征得____C____同意。 A 研究生院 B 所在学院 C 导师 D 所有署名人 7、学校对违纪研究生作出的处分可采取适当的方式在___B____予以公布。 A 媒体上 B 校内 C 学院范围内 D 本专业内 8、硕士学位论文篇幅一般为__B__字。 A 1~2万 B 2~3万 C 3~5万 D 大于5万 9、博士学位论文必须是一篇(或由一组__B_篇以上论文组成一篇)系统的、完整的、有创造性的学术论文。 A 2 B 3 C 4 D 5 10、违纪人员对复议决定有异议的,在接到学校复查决定书之日起__C__个工作日内,可以向学校所在省级教育行政部门、省级学位委员会提出书面申诉。 A 7 B 10 C 15 D 30 11、文献综述应包括___C___等几方面内容。 A 综述前言、综述正文、文献资料 B 综述正文、综述总结、文献资料 C 综述题目、综述正文、文献资料 D 综述题目、综述正文、综述总结

(完整版)高中历史重大事件时间表

世界近代史 ●西方资本主义的发展 十四世纪意大利出现资本主义萌芽 十五世纪晚期英法中央集权国家形成,圈地运动开始 14-15世纪欧洲出现资本主义萌芽 1840年前后英国率先完成工业革命 18世纪60年代到19世纪中后期自由资本主义阶段 19世纪中后期垄断资本主义开始出现 1933年罗斯福新政后,国家垄断资本主义开始出现 二战结束到20世纪70年代初期西方资本主义国家普遍奉行国家干预的经济政策,出现了经济发展的“黄金时期” 20世纪70年代后美英等国逐渐发展出一种将政府干预与市场相结合的、国有制与私有制并存的“混合经济” ●西方人文主义的发展 十四至十六世纪欧洲文艺复兴运动在意大得兴起 十六世纪以后,文艺复兴从意大利传播到欧洲其他国家 十六世纪 1517年,马丁·路德拉开宗教改革序幕 十七至十八世纪 17世纪时,英国出现了早期启蒙运动 18世纪中叶,启蒙运动在法国进入高潮。 伏尔泰、孟德斯鸠、卢梭 ●新航路开辟: 1487-1488迪亚士远航到达非洲南部沿海 1492 哥伦布远航到达美洲 1497-1498 达伽马远航到达印度 1519-1522 麦哲伦船队环球航行 ●资产阶级代议制度的确立 1640 英国资产阶级革命开始 1688年英国光荣革命,资产阶级和新贵族的统治确立 1775-1783北美独立战争 1776北美大陆会议发表《独立宣言》,宣布美利坚合众国独立 1787年美国1787年宪法 1870-1871普法战争 1871年德意志统一最终完成德意志帝国宪法 1875年法兰西第三共和国宪法,在法律上正式确立共和政体 ●三次工业革命 18世纪60年代英国工业革命开始 1785瓦特的改良蒸汽机投入使用 19世纪70年代第二次工业革命开始 19世纪70年代,人类进入“电气时代” 19世纪七八十年代,内燃机问世

武汉大学《学术道德与学术规范》2019年考试试题及答案

一、单选题(题数:30,共100.0 分) 1 选题避免低水平重复,关键在于( )(3.3 分)3.3 分 A、要确有可能得出新的发现,或确有可能解决实践中的新问题 B、充分了解已有研究成果,避免重复研究相同的问题 C、运用新方法、新手段展开研究和解决实践中的新问题 我的答案:A 2 石同学在撰写申报课题时,在网上买了一篇选题相近的论文,稍作修改做为自己的申请报告提交。这种行为正确吗?(3. 3 分) 3.3 分 A、正确 B、错误 我的答案:B 3 依据《学位论文作假行为处理办法》,学位申请人员的学位论文出现购买、由他人代写、剽窃或者伪造数据等作假情形的,如学位授予单位做出如下处理,哪项是不正确的?(3.3 分)3.3 分 A、取消其学位申请资格 B、已经获得学位的,学位授予单位可以保留其学位 C、从做出处理决定之日起至少 3 年内,各学位授予单位不得再接受其学位申请 D、学位申请人员为在读学生的,其所在学校或者学位授予单位可以给予开除学籍处分 我的答案:B 4 现代网络技术发达的情况下,图书馆的文献资源都可以通过百度等搜索引擎找到,图书馆可有可无。该说法是否正确?(3.3 分) 3.3 分 A、正确 B、错误 我的答案:B 5 在学术活动和学术交流中泄露秘密事项,不属于侵犯《保守国家秘密法》,这个观点是对还是错?(3.3 分) 3.3 分 A、正确

B、错误 我的答案:B 6 论文检测不通过不影响正常毕业。此说法对吗?(3.3分) 3.3 分 A、正确 B、错误 我的答案:B 7 有关人体受试者保护的规定,以下说法错误的是( )(3.3 分) 3.3 分 A、签订合约 B、知情同意 C、充分了解 D、应该获得酬劳 我的答案:D 8 谁对成果承担相应的学术责任、道义责任和法律责任?(3.3 分)3.3 分 A、署名者 B、整理者 C、出版者 我的答案:A 9 刘同学将自已相同的研究成果在国际会议上宣讲,同时进行改头换面发表,是“一稿多投” 行为。此说法对吗?(3.3 分)3.3 分 A、正确 B、错误 我的答案:A 10 科技查新是对( )进行检索的基础上出具报告。(3.3 分)3.3 分 A、文献

中国历史重大事件时间表

一、原始社会(约170万年前到约公元前21世纪)二、奴隶社会(公元前2070年到公元前476年) 约170万年前元谋人生活在云南元谋一带夏公元前2070年到公元前1600年 约70-20万年前北京人生活在北京周口店一带公元前2070年禹传予启,夏朝建立 约1.8万年前山顶洞人开始氏族公社的生活商公元前1600 年到公元前1046年 约0.5-0.7万年前河姆渡、半坡母系氏族公社公元前1600年商汤灭夏,商朝建立 约0.4-0.5万年前大汶口文化中晚期,父系氏族公社公元前1300年商王盘庚迁都殷 约4000多年前传说中的炎帝、黄帝、尧、舜、禹时期西周公元前1046年到公元前771年 公元前1046年周武王灭商,西周开始 公元前841年国人暴动 公元前771年犬戎攻入镐京,西周结束 春秋公元前770年到公元前476年 公元前770年周平王迁都洛邑,东周开始 三、封建社会(公元前475年到公元1840年) 战国(公元前475年到公元前221年)公元前356年商鞅开始变法 秦(公元前221年到公元前206年) 公元前221年秦统一,秦始皇确立郡县制,统一货币、度量衡和文字 公元前209年陈胜、吴广起义爆发公元前207年巨鹿之战 公元前206年刘邦攻入咸阳,秦亡公元前206年—公元前202年楚汉之争 西汉(公元前202年到公元8年)公元前202年西汉建立 公元前138年张骞第一次出使西域公元8年王莽夺取西汉政权,改国号新 东汉(25年到220年)25年东汉建立 73年班超出使西域105年蔡伦改进造纸术 132年张衡发明地动仪166年大秦王安敦派使臣到中国 184年张角领导黄巾起义200年官渡之战 208年赤避之战三国(220年到280年)220年魏国建立 221年蜀国建立222年吴国建立 230年吴派卫温等率军队到台湾263年魏灭蜀 265年西晋建立,魏亡西晋(265年到316年) 280年东晋灭吴316年匈奴攻占长安,西晋结束 东晋(317年到420年)317年东晋建立 383年淝水之战南北朝(420年到589年) 420年南朝宋建立494年年到北魏孝文帝迁都洛阳 隋(581年到618)581年隋朝建立 589年隋统一南北方605年开始开通大运河 611年隋末农民起义开始,山东长白山农民起义爆发唐(618年到907年) 618年唐朝建立,隋朝灭亡627年-649年贞观之治 713年-741年开元盛世755年-763年安史之乱 875年-884年唐末农民战争五代(907年到960年) 907年后梁建立,唐亡,五代开始916年阿保机建立契丹国 北宋(960年到1127年)960年北宋建立 1005年宋、辽澶渊之盟1038年元昊建立西夏 11世纪中期毕升发明活字印刷术1069年王安石开始变法 1115年阿骨打建立金1125年金灭辽

学术道德规范考试试题答案

研究生学术道德规范考试试题答案 一、选择题 1、A 2、D 3、D 4、D 5、A 6、B 7、ABCD 8、ABCD 9、ABC 10、ABCD 二、填空题 1、暂缓学位授予,不授予学位,撤销学位授予 2、对研究成果的贡献大小,本人完成的部分,成果主持人 3、导师 4、剽窃,自我抄袭,篡改实验数据 5、直接引用,间接引用 三、简答题 1、答:“用而不引”是引用他人的作品内容而没有注明出处,其危害是侵犯原作者的合法权益;“引而不用”是指在参考文献中有写出引用某人的作品,但实际却没有在自己的作品中体现出来,其危害是欺骗世人。 2、答:(1)抄袭、剽窃、侵占他人学术成果(包括论文、专著、报告、程序、数据、图片、设计等); (2)伪造、篡改原始实验数据、调查数据或软件计算结果,隐瞒不利数据进而伪造研究结果; (3)在公开发表的论文中引用他人的著述而不加以注明; (4)虽然参加过课题组的研究工作,但在未取得课题组负责人同意的情况下,私自使用或发表研究成果;研究生毕业后,未经导师或课题组负责人许可,将在校期间的研究成果以个人或其他单位的名义公开发表,侵占学校研究成果或知识产权; (5)由他人代写或代替他人撰写学位论文或学术论文,组织人员冒名代替他人撰写论文; (6)在未参与工作的研究成果中署名,或未经他人同意在发表的论文中署上该人的名字,或未经项目负责人同意标注资助项目信息等; (7)学术论文一稿多投或重复发表;

(8)采取伪造或涂改等手段制作推荐信、成绩单、评阅(评定、鉴定、审批)意见、获奖证明、待发表论文的接收函或录用证明、导师或他人的签名等;(9)盗用、贩卖或擅自传播课题组的技术专利、专有数据、保密文件资料、有偿使用的软件等未公开的技术成果; (10)其他学术界公认的学术不端行为。 四、论述题 答:他的行为属于严重抄袭行为。研究生如发生这种学术不端的行为,一经查实,当事人应承担相应法律责任,视情节轻重承担停止侵害、消除影响、赔礼道歉、赔偿损失等民事责任。同时,学校党委研究生工作部和研究生处除对其进行批评教育外,还要视其情节轻重、负面影响大小、认错态度和表现等,给予退学处理或警告、严重警告、记过、留校察看、开除学籍等相应的处分,并取消其当学年的各类奖学金、荣誉称号及奖励、助学贷款、公派出国等申请资格。学校学位评定委员还会做出是否暂缓学位授予、不授予学位和撤销学位授予等相应的处理。而对已结束学业并离校的研究生,在校期间发生学术不端行为的情况和处理决定将及时通告研究生本人及所在单位或部门;在校期间发生严重学术不端行为的,学校将撤销和追回已发放的毕业证书和已授予的学位证书,并报有关部门备案。

中国历史事件时间表

中国重大历史事件时间表 一、原始社会(约170万年前到约公元前21世纪) 约170万年前元谋人生活在云南元谋一带 约70-20万年前北京人生活在北京周口店一带 约1.8万年前山顶洞人开始氏族公社 约0.5-0.7万年前河姆渡、半坡母系氏族公社的生活 约0.4-0.5万年前大汶口文化中晚期,父系氏族公社 约4000多年前传说中的炎帝、黄帝、尧、舜、禹时期 二、奴隶社会(公元前2070年到公元前476年) 夏公元前2070年到公元前1600年 公元前2070年禹传予启,夏朝建立 商公元前1600 年到公元前1046年 公元前1600年商汤灭夏,商朝建立 公元前1300年商王盘庚迁都殷 西周公元前1046年到公元前771年 公元前1046年周武王灭商,西周开始 公元前841年国人暴动 公元前771年犬戎攻入镐京,西周结束 春秋公元前770年到公元前476年 公元前770年周平王迁都洛邑,东周开始 三、封建社会(公元前475年到公元1840年) 战国(公元前475年到公元前221年) 公元前356年商鞅开始变法 秦(公元前221年到公元前206年) 公元前221年秦统一,秦始皇确立郡县制,统一货币、度量衡和文字公元前209年陈胜、吴广起义爆发 公元前207年巨鹿之战 公元前206年刘邦攻入咸阳,秦亡 公元前206年—公元前202年楚汉之争 西汉(公元前202年到公元8年) 公元前202年西汉建立 公元前138年张骞第一次出使西域 公元8年王莽夺取西汉政权,改国号新 东汉(25年到220年) 25年东汉建立 73年班超出使西域 105年蔡伦改进造纸术

132年张衡发明地动仪 166年大秦王安敦派使臣到中国 184年张角领导黄巾起义 200年官渡之战 208年赤避之战 三国(220年到280年) 220年魏国建立 221年蜀国建立 222年吴国建立 230年吴派卫温等率军队到台湾 263年魏灭蜀 265年西晋建立,魏亡 西晋(265年到316年) 280年东晋灭吴 316年匈奴攻占长安,西晋结束 东晋(317年到420年) 317年东晋建立 383年淝水之战 南北朝(420年到589年) 420年南朝宋建立 494年年到北魏孝文帝迁都洛阳 隋(581年到618) 581年隋朝建立 589年隋统一南北方 605年开始开通大运河 611年隋末农民起义开始,山东长白山农民起义爆发唐(618年到907年) 618年唐朝建立,隋朝灭亡 627年-649年贞观之治 713年-741年开元盛世 755年-763年安史之乱 875年-884年唐末农民战争 五代(907年到960年) 907年后梁建立,唐亡,五代开始 916年阿保机建立契丹国 北宋(960年到1127年) 960年北宋建立 1005年宋、辽澶渊之盟 1038年元昊建立西夏 11世纪中期毕升发明活字印刷术 1069年王安石开始变法 1115年阿骨打建立金 1125年金灭辽 南宋(1127年到1276年)

相关主题
文本预览
相关文档 最新文档