当前位置:文档之家› 弹性波

弹性波

弹性波
弹性波

弹性波

科技名词定义

弹性波elastic wave

当物体某部分突然受力时,该处将产生弹性变形,并以波的形式向周围传播,使整个物体产生弹性变形,这种波称为弹性波。

弹性理论部分

弹性理论部分 学习内容 1.弹性的涵义 2.需求价格弹性 3.其它弹性涵义与公式 学习重点 1.价格弹性又称需求弹性,指某商品需求量的变化率与该商品的自身价格变化率之比,因此,需求弹性的大小是在说明需求量的变动对价格变动的反应程度。 2.一般而言,需求完全无弹性、需求完全有弹性和需求弹性为1都是需求弹性的特例,在现实生活中非常少见。现实生活中常见的是,需求富有弹性和需求缺乏弹性的情况。 3。需求弹性的因素包括消费者对某种商品的需求程度,商品的可替代程度,商品本身用途的广泛性,商品使用时间的长短,商品在家庭支出中所占的比例等。 4.别弹性和斜率的不同。 5.价格变动比较小或只是略微有些变动时,我们可以进行外推。也就是说,我们往往有关于较小的价格变动的影响的信息。但是,当价格变动的幅度比较大时,这种外推法就十分危险。其原因在于,一般而言,需求曲线上不同点的弹性是不同的。 6.性的计算――点弹性和弧弹性。 7.需求价格弹性是主要的一种弹性,还要了解需求收入弹性、需求交叉弹性和供给弹性。需求收入弹性指某商品需求量的变化比率与消费者收入变化比率之比;需求交叉弹性是指某商品的需求量的变化率与相关商品价格变化率之比;供给弹性一般指供给价格弹性。供给价格弹性又称供给弹性,指某商品供给量的变化率与商品自身价格变化率之比,它反映的是供给量的变动对价格变动的反应程度。 主要概念 弹性,需求价格弹性,需求收入弹性,需求交叉弹性,供给弹性; ①.弹性:需求价格弹性又称需求弹性,指某商品需求量的变化率与该商品的自身价格变化率之比,因此,需求弹性的大小是在说明需求量的变动对价格变动的反应程度。 ②.需求价格弹性:需求价格弹性又称需求弹性,指某商品需求量的变化率与该商品的自身价格变化率之比,因此,需求弹性的大小是在说明需求量的变动对价格变动的反应程度。 ③.需求收入弹性(income elasticity of demand),指某商品需求量的变化比率与消费者收入变化比率之比, ④.需求交叉弹性:需求交叉弹性是指某商品的需求量的变化率与相关商品价格变化率之比。 ⑤.供给弹性:供给弹性一般指供给价格弹性。供给价格弹性又称供给弹性,指某商品供给量的变化率与商品自身价格变化率之比,它反映的是供给量的变动对价格变动的反应程度。 一、判断 1.在产品和劳务有相近的替代晶时需求的价格弹性比较大。() 2.在同一条需求曲线上需求的价格弹性是固定的。()

冲击弹性波

升拓无损检测技术—冲击弹性波 (四川升拓检测技术有限责任公司,四川成都610045) 摘要:冲击弹性波则是用锤或其他激振装置与测试对象冲击产生,是弹性波的一种。因为其具有激振能量大、操作简单、便于频谱分析等特点,是一种非常适合无损检测的媒介。 关键词:无损检测技术,冲击弹性波,波的分类,反射特性,升拓无损检测 无损检测运用广范,在国内许多行业和部门,例如机械、粉末冶金、建筑、公路、铁道、隧道、桥梁、石油天然气、石化、化工、航空航天、船舶、电力、核工业、兵器、煤炭、有色金属、医疗机构、核工业、海关等领域均有运用。四川升拓检测技术有限责任公司的无损检测技术主要致力于工程质量、结构安全和广域防灾减灾等方面的设备、系统的开发和销售。以振动、波动、声响、冲击等作为测试和监测媒介。 无损检测技术,又称非破坏检查技术,在不破坏物质原有状态及化学性质的前提下,利用物质中因有缺陷或组织结构上的差异存在而使其物理性质的物理量发生变化的现象,以不使检查物使用性能和形态受到操作为前提,通过一定的检测手段来测试、显示和评估这些变化,从而了解从而了解和评价材料、产品、设备构件等被测物的性质、状态或内部结构等所采用的检查方法。 无损检测技术是第二次世界大战后迅速发展起来的一门新兴的工程科学,它最突出的特点是“无损伤”。其发展过程经历了三个阶段:无损探伤阶段、无损检测阶段和无损评价阶段。首先,无损探伤阶段主要是探测和发现缺陷;其次,无损检测阶段不仅仅是探测缺陷,还包括探测试件的一些其他信息,例如、材质、结构、性质、状态等,并试图通过测试,掌握更多的信息;再次,无损评价阶段不仅要求发现缺陷,探测试件的材质、结构、性质、状态,还要求获取更全面,更准确的综合的信息,例如缺陷(裂缝、剥离、内部空洞、蜂窝等)、几何尺寸(厚度、埋深)、位置、取向、内含物、残余应力等,结合成像技术、自动化技术、计算机数据分析和处理等技术,材料力学、断裂力学等知识综合应用,对试件或产品的质量和性能给出全面、准确的评价。无损检测技术常用的方法有冲击弹性波检测(包含超声波检测和声波检测)、射线检测,超声波检测,磁粉检测,渗透检测、涡流检测、声发射检测等方法。进入21世纪以后,为满足生产的需求,并伴随着现代科学技术的发展,特别是计算机技术、数字化与图像识别技术、人工神经网络技术和机电一体化技术的快速发展,无损检测的方法和种类日益繁多,除了上面提到的几种方法外,射线、激光、红外、微波、液晶、等技术都被应用于无损检测。

冲击弹性波检测技术基本原理

冲击弹性波检测技术基本原理 (宁波升拓检测技术服务有限公司浙江宁波) 摘要: 弹性波:是在固体材料中传播的物质粒子的微小振动传播形成的波,也曾被称为“机械波”、“应力波”、“地震波”等。由于变形微小,物体处于弹性状态,因此被称为弹性波;冲击弹性波:通过人工锤击、电磁激振等物理方式激发的弹性波; 无损检测技术,又称非破坏检查技术,就是在不破坏待测物质原来的状态、化学性质等前提下,利用物质中因有缺陷或组织结构上的差异存在而会使其某些物理性质的物理量发生变化的现象,以不使被检查物使用性能和形态受到损伤为前提,通过一定的检测手段来测试、显示和评估这些变化,从而了解和评价材料、产品、设备构件等被测物的性质、状态或内部结构等所采用的检查方法 随着现代工业的迅速发展,对产品质量、结构安全性和使用可靠性提出了更高的要求,由于无损检测技术具有不破坏试件,检测快捷简便、精度高等优点,所以其应用日益广泛。至今,无损检测技术在国内许多行业和部门,例如机械、粉末冶金、建筑、公路、铁道、隧道、桥梁、石油天然气、石化、化工、航空航天、船舶、电力、核工业、兵器、煤炭、有色金属、医疗机构、核工业、海关等,都得到广泛应用。 冲击弹性波无损检测技术的发展历程 早在1960年代,弹性波(Elastic wave)的概念即被提出,并在物探等领域得到了广泛的应用。1980年代开始,包括“Impact Echo”法在内的弹性波无损检测方法,在ASTM的多个规程中得到了体现(C597、C1383、D2845等) 2000年,日本土木学会设立了“弾性波法の非破壊検査研究小委員会”,提出了冲击弹性波“Impact Elastic Wave”的概念。2009年,日本无损检测协会(日本非破壊検査協会、JSNDI)颁布了基于弹性波的技术标准(NDIS 2426,コンクリート構造物の弾性波による試験方法,Non-destructive testing of concrete-elastic wave method),并将超声波、打声法等均归为弹性波的范畴。标准的第1、2、3部分别为超声波、冲击弹性波(Impact elastic wave method)和打声法。 本公司开发的各类检测和监测设备,均以振动和冲击弹性波为检测媒介,并正逐步形成相应的技术体系。 冲击弹性波的基本概念 振动和波的概念 首先,要分清楚两个容易混淆而又相互关联的概念,即振动和波。振动表示局部粒子的运动,其粒子在平衡位置做往复运动。而波动则是全体粒子的运动的合成。在振源开始发振产生的扰动,以波动的形式向远方向传播,而在波动范围内的各粒子都会产生振动。换句话说,在微观看主要体现为振动,而在宏观来看则容易体现为波动。

第三章弹性理论

第三章弹性理论 一、学习要求 重点掌握 ●需求的价格弹性与计算 ●需求富有弹性与缺乏弹性 ●需求弹性与总收益的关系 一般掌握 ●需求的收入弹性与计算 ●需求的交叉弹性与计算 二、主要问题归纳 ◆弹性理论重点把握需求价格弹性。需求弹性是指一种物品需求量对其价格变动反应程度的衡量,用需求量变动的百分比除以价格变动的百分比来计算。需求富有弹性的商品价格下降总收益增加,价格上升总收益减少。需求缺乏弹性的商品价格下降总收益减少,价格上升总收益增加。 ◆需求弹性可以分为需求无弹性、需求无限弹性、需求单位弹性、需求富有弹性和需求 缺 乏弹性。其中最常见的是需求缺乏弹性和需求富有弹性。需求缺乏弹性是弹性系数小于1,即需求量变动的百分比小于价格变动的百分比。需求富有弹性是弹性系数大于1,即需求量变动的百分比大于价格变动的百分比。 ◆不同商品需求弹性大小不同,这主要取决于对不同商品的需求强度、替代品多少、商 品 本身用途广泛性、时间长短、在支出中所占比例等因素。 ◆需求收入弹性是指,消费者的收入变化对某物品需求量变动的影响。一般而言,正常物品需求收入弹性大于零,低档物品需求收入弹性小于零。奢侈品需求收入弹性大于1,生活必需品需求收入弹性小于1。 ◆恩格尔是19世纪德国统计学家,他在研究人们的消费结构变化时发现了一条规律, 即 一个家庭收入越少,这个家庭用来购买食物的支出所占的比例就越大,反过来也是一样。而这个家庭用以购买食物的支出与这个家庭的总收入之比,就叫恩格尔系数。 ◆需求的交叉弹性简称交叉弹性。是指在影响商品X需求量的各种因素包括该商品自身 价格 都不变的条件下,另一种相关商品Y价格变动引起的对X商品需求量的变动程度。相关商品可以分为替代商品和互补商品两种。 ◆替代商品是指两种商品可以相互替代来满足同一种欲望,它们之间是相互替代的互补商品是指两种商品共同满足一种欲望,它们之间是互相补充的。两种替代品的需求交叉弹性大于零,两种互补品的需求交叉弹性小于零。 三、关键术语 价格弹性需求富有弹性需求缺乏弹性收入弹性恩格尔系数交叉弹性

三种碰撞真的遵从动量守恒定律吗

三种碰撞真的遵从动量守恒定律吗? 柏青山(退休教师) 吉林大学物理学院公共物理教学中心长春130026 Email:yang.changbiduan@https://www.doczj.com/doc/6f5788952.html, 摘要:质点是一个非常严谨的概念,是力学规律成立的条件,而碰撞遵从动量守恒定律又是在 质点系不受外力作用的条件下,由牛顿的第二、第三定律给出的结论。由于三种碰撞都不能看成质 点间的碰撞,那么在教材中对它们给出遵从动量守恒定律的结论就值得怀疑。在此,笔者对完全弹 性碰撞、完全非弹性和非完全弹性碰撞给出不遵从动量守恒定律的证明,以便与诸位讨论。 关键词:质点概念动量和能量守恒定律弹性波 1。重申质点概念 质点是具有物体全部质量的几何点,它是物体的力学模型。由于这个模型只有物体的质量,排除了物体其它所有性质,也就指明了质点动力学所研究的是作用力与物质惯性的关系,是力学规律得到揭示及其数学表述能严格化的条件。但由于在真实的世界中并不存在质点,质点就变成应用力学规律时对物体的要求,即要求物体无转动、无变形和无内能。对于后两条换种提法,就是要求物体接受外力作用要有同时性、整体性,即要求物体内对外力作用要有无穷大的传播速度。也就是说,只有对近似满足这些条件的一类物体,才能看成质点,才能应用力学规律来近似地解决它们的运动问题。然而,我们对这个最基本的质点概念缺少深刻而严谨的认识,以至在应用力学规律上出现了三种碰撞遵从动量守恒定律的错误。 2。三种碰撞遵从动量守恒定律吗? 在任何一本力学的教材中,都把碰撞问题当作一种重要的作用类型来介绍。对于两体的完全弹性碰撞、完全非弹性和非完全弹性碰撞都仅在体系不受外力作用的条件下,就直接作出遵从动量守恒定律的结论。我们知道,物体碰撞遵从动量守恒定律的结论,是对质点体系在不受外力作用的条件下,由牛顿第二、第三定律作出的。因此,两个物体的碰撞能否遵从动量守恒定律,就要依据这两个物体能否近似看成质点和该体系是否有外力作用来判定。可是,完全弹性碰撞的物体有变形过程、有内能,它不能看成质点间的碰撞,因为能看成质点的物体只能是近似的刚体而不是弹性体;完全非弹性和非完全弹性碰撞的物体都有不能恢复的变形、有内能,也不能近似成质点。可见,仅就它们的称呼而论,都叫出了与质点的不同,也就否定了它们是质点间的碰撞。两个条件缺一,我们又怎能从理论上对这三种碰撞作出遵从动量守恒定律的结论?这一结论是来自大量实验总结吗?在牛顿的时代根本不具备广泛作这类实验的条件,如今也不见有人提供这方面大量的实验证据。在愚者所看到的大部分实验类的书中,尽管有完全弹性碰撞和完全非弹性碰撞的气垫实验,但认真推敲之时就会发现,完全弹性碰撞实验并不是两个弹性物体直接碰撞,而是加上了弹簧作为碰撞的中间媒介;完全非弹性碰撞实验也没有一个是真正的非弹性物体,而是在弹性物体上加了彼此能衔住的装置或粘合物。对于完全弹性碰撞实验,根据前面指明的一个物体能看成质点,“就是要求物体接受外力作用要有同时性、整体性,即要求物体内对外力作用要有无穷大的传播速度”。这对一个指定的物体而言,就变为对外力作用的要求。在一般情况下,它要求外力作用在物体中传播的时间内能看作是个常量,在外力作用总的时间上要比任意时刻的外力作用在物体中的传播时间相对漫长,只有近似满足这两个条件的外力在对物体作用效果上才不失观测上的平均意义。就是说,只有在这样平缓外力作用下的弹性物体才能看成质点。而这个实验中的弹簧所起的作用就是将弹性物体间的碰撞力变成了平缓的推力,把弹性物体质点化,使完全弹性碰撞变为质点间的碰撞了。对这一问题,愚者已作过把两弹性物体看成质点,利用弹簧的性质给出遵从质点式动量和机械能守恒定律的证明,完全用不上弹性物体的性质。那么,对于一个丝毫不能反映弹性物体性质的碰撞实验,又怎么能称作弹性物体的完全弹性碰撞实验?对于完全非弹性碰撞

弹性理论应用案例#

弹性理论 ——“旧帽换新帽一律八折” 在市场上各商家之间“挥泪大甩卖”、“赔本跳楼价”的价格大战从未仔细考虑过究竟是为什么,只是觉得很开心,因为在可以节省大量金钱,前几天路径一家安全帽专卖店,看到它打出这样的广告——“旧帽换新帽一律八折”。店家的意思是,如果你买安全帽时交一顶旧安全帽的话,当场退二成的价格;如果直接买新帽,对不起只能按原定价格买。这一种促销方式让人觉得好奇,是不是店家加入了什么基金会或是店家和供帽厂家有什么协定,回收旧安全帽可以让店家回收一些成本,因此拿旧帽来才有二折的优惠呢?如果大家是这么想,那可就猜错了,大凡这种以旧换新的促销活动主要是针对不同消费者的需求弹性而采取的区别定价方法,即:给定一定的价格变动比例,购买者需求数量变动较大称为需求弹性较大,变动较小称为弹性较小。对需求弹性较小的购买者制定较高价格,对需求弹性较大的顾客收取较低价格。而这家安全帽专卖店的促销作法正是这个理论的实际应用,实际上,店家拿到你那顶脏脏旧旧的安全帽,并沒有什么好处,常常是在你走后往垃圾筒一丟了事。既然沒好处,店家为何还要多此一举呢?答案是——店家以顾客是否拿旧安全帽,来区别顾客的需求弹性。简单地说,沒拿旧安全帽来的顾客说明他沒有安全帽,由于法令规定:驾驶摩托车必须要戴安全帽,故而无论价格的高低,购买摩托车的人一定要买顶安全帽,因此这种顾客的需求曲线较陡,弹性较小。相对地,拿旧安全帽来抵二折价款的顾客表明他本来就有一顶安全帽,如果安全帽的价格便宜他有以旧换新的需求,而如果价格太贵他也可以以后再买,因为已有了一顶安全帽,对该商品的需求沒有迫切性。因此,这类的顾客需求曲线较平坦,弹性较大。 综上所述不难看出,该安全帽专卖店采用这种“旧帽换新帽八折”的促销活动,针对不同消费者的需求定价的方法,不仅不会使其减少营业收入,反而会吸引那些本不想购买新帽的消费者前来购买,增加了收益。因此,我认为:认真研究消费者心理,了解市场需求,针对本行业的特点,制定出适合自己的价格策略,一定会给单位、公司带来丰厚的利润。 需求的收入弹性——企业与消费者必须面对的另一个问题。 消费者的收入是决定需求的一个不亚于价格的因素。所谓的需求收入弹性是指,消费者的收入变化对某物品需求量变动的影响。用公式表示:Ed=△Q/Q/△P/P需求的收入弹性与需求的价格弹性一样也有几种分类,最主要还是收入富有弹性和缺乏弹性。一般来讲收入增加对商品的需求量增加,符合这种特性的是正常商品。但收入增加后生活必需品增加比例小于收入增加的比例;收入增加后奢侈品的增加大于收入增加的比例。这两种情况无论收入弹性系数大小都是正值。但也有一些商品,比如,旧货、低挡面料的服装、处理品等商品是随着消费者的收入的增加而减少。收入弹性系数大小都是负值。通俗地说,收入增加了我们不会多吃粮食、食盐、对牙膏的增加也有限;对旧货、低档面料的服装、处理品非但不增加,而减少;收入增加后我们增加了的住房、汽车、化妆品、名牌服饰等需求的增加。近年来我们的收入不断增加,低档品从我们的生活中逐渐消失,而高档品的消费越来越多,这种变化的情况符合恩格尔定律。 恩格尔是19世纪德国统计学家,他在研究人们的消费结构变化时发现了一条规律,即一个家庭收入越少,这个家庭用来购买食物的支出所占的比例就越大,反过来也是一样。而这个家庭用以购买食物的支出与这个家庭的总收入之比,就叫恩格尔系数。这是因为食品属于缺乏弹性,我们收入增加几乎不增加食物,收入增加后增加的几乎是弹性大的商品。由此

岩体中弹性波传播尺度效应的初步分析

第33卷 第9期 岩 土 工 程 学 报 Vol.33 No.9 2011年9月 Chinese Journal of Geotechnical Engineering Sep. 2011 岩体中弹性波传播尺度效应的初步分析 徐松林1,郑 文1,刘永贵1,席道瑛2,李广场3 (1. 中国科学技术大学中国科学院材料力学行为和设计重点实验室,安徽 合肥 230027;2. 中国科学技术大学地球及空间科学系, 安徽 合肥 230026;3. 浙江华东工程安全技术有限公司,浙江 杭州 310014) 摘要:含缺陷岩体具有尺度效应,此类岩体中传播的弹性波也有尺度效应。对现场测点EC37-201-06,在3.0×3.2 m2的范围内采用动态有限元方法进行了15种尺度的弹性波传播规律的分析研究。对现场测点EC37-101-06,在1.2×1.2 m2的范围内采用准静态有限元方法进行了60种尺度的弹性波波速与围压及计算尺度的关系的计算分析。前者采用了射线理论分析思想,而后者采用等效介质分析思想,得到了相应的弹性波的尺度效应,但二者规律有差异。为建立二者间的联系,也为了工程应用,基于量纲理论分析方法,给出了一个半理论的波速与入射波频率的计算公式。与现场声波和地震波测试结果,以及考虑随机分布单节理散射模型的计算结果进行比较,初步分析结果表明,此公式基本可行。 关键词:岩石动力学;弹性波;尺度效应;节理岩体;量纲分析 中图分类号:TU45 文献标识码:A 文章编号:1000–4548(2011)09–1348–09 作者简介:徐松林(1971–),男,湖北人,博士,副教授,从事材料冲击作用下响应的研究。E-mail: slxu99@https://www.doczj.com/doc/6f5788952.html,。 A preliminary analysis of scale effect of elastic wave propagation in rock mass XU Song-lin1, ZHENG Wen1, LIU Yong-gui1, XI Dao-ying2, LI Guang-chang3 (1. CAS Key Laboratory for Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027, China; 2. Department of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China; 3. Zhejiang East China Engineering Safety Technology Corporation Ltd., Zhejiang 310014, China) Abstract:The propagation rules of elastic wave in rock mass with defects take on scale effect, just like the rock mass. The dynamic finite element method (DFEM) is employed to investigate the propagation rules of elastic waves at site-EC37-201-06. The whole computation area is 3.0×3.2 m2 and 15 kinds of computation scales are applied. A static finite element method (FEM) is used to study the relations of elastic wave velocities to the confined pressure and computation scales at site-EC37-101-06. The whole computation area is 1.2×1.2 m2 and 60 kinds of computation scales are applied. The ray theory is used in the former method, and the effective media theory is used in the later. The scale effect of elastic waves is obtained, but there are differences for the two methods. To establish their relations and provide a simple model for engineering computation, a semi-theoretical phase velocity equation is proposed based on the dimensionless method. Compared with the in-situ sonic velocities, seismic velocities and velocities computed by the theoretical model with randomly distributed joints, the proposed equation can be well used in rock mass. Key words: rock dynamics; elastic wave; scale effect; joint rock; dimensional analysis 0 引 言 作为天然的地质体,原位岩体含有大量的节理、裂隙等缺陷,岩体具有较强的尺度效应。岩石研究一般有4种尺度[1],即矿物颗粒尺度、岩石尺度、岩体尺度和地质尺度。在工程应用和研究中主要涉及3种尺度:微观(micro-scale)、细观(meso-scale)和宏观尺度(macro-scale),与上述的前3个尺度相当。不同尺度的作用机制和研究方法不同,如微观尺度研究的是矿物间的相互作用,而宏观尺度研究的是岩体作为等效介质的响应,存在较大的差异,但是不同尺度研究之间的联系尚无定论。本文进行弹性波传播的尺度效应的研究,拟将弹性波的波长作为不同尺度间的联系进行初步探索,另外,也可通过此研究解释现场声波和地震波数据的离散性和差异性。 岩体中弹性波传播的尺度效应研究目前尚不系统。实验研究方面主要关注岩石颗粒、随机分布裂纹等缺陷的影响[2-7]。只有Gettemy等[7]对比分析了San ─────── 基金项目:国家自然科学基金项目(40874093);中央高校基本科研业务费专项资金项目 收稿日期:2010–06–23

弹性波和塑性波

第一题:推导波动方程,简述弹性波和塑性波的主要区别?要求给出主要的推导步骤,主要的方程,以及弹性波和塑性波的本质区别。 圆柱杆中的弹性波的传播,如图所示为撞击杆以速度V 撞击长圆柱杆,并在圆柱杆中产生了自左向右传播的压缩应力波。T 时刻,这个扰动的波阵面在x 位置处。分析时忽略横向即杆Oy 方向的应变和惯性。在t 时刻,考察波阵面在截面AB 和A`B`的情况,截面A`B`离起始位置的距离为x+δx,对AA ’BB ’部分。 这里需要设定几个假设: 1、忽略细长杆的横向应变和横向惯性效应; 2、忽略杆的重力和材料阻尼; 3、变形前后横截面为平面,即平截面假定。 应用牛顿第二定律,有 图:波在杆中的传播 (a )冲击前;(b )冲击后 F ma = 22x A A x A x x t σσσδρδ??????--+= ???????? ? 22u x t σρ??=?? 而变形是弹性的且假定满足胡克定律:

=E σε 其中ε为应变,定义为/u x ??,负号表示压应变,因此有 22u u E x x t ρ?????=??????? 和 2222u E u t x ρ??=?? 上式即为弹性波的波动方程,其中0E C ρ=为波速。 二、弹性波和塑性波的区别 当物体某部分突然受力时,该处将产生弹性变形,并以波的形式向周围传播,使整个物体产生弹性变形,这种波称为弹性波。 当物体受到超过弹性极限的冲击应力扰动后产生的应力和应变的传播、反射,并使得物体产生塑性变形,这种波称为塑性波。 由于固体材料弹性性质和塑性性质的不同,因此在均匀的弹塑性介质中传播的塑性波和弹性波是有区别的,主要表现在: 1、塑性波波速与应力有关,它随着应力的增大而减小,较大的变形将以较小的速度传播,而弹性波的波速与应力大小无关; 2、在应力σ和应变ε的关系满足()σσε=时,塑性波波速总比弹性波波速小; 3、塑性波在传播的过程中波形会发生变化,而弹性波则保持波形不变。 弹性波和塑性波的这些本质区别可以从波动方程中看出,在波动方程中的C 表示的就是应力波的传播速度,其中 弹性波的波速为:001d C C d σε ρ==,,Y d d E σσε≤= 塑性波的波速为:001d C C d σερ= <,,Y d d E σσε>< 其中Y 表示材料的屈服强度,E 表示材料的弹性模量。 从上式中我们很容易看出,无论的弹性波还是塑性波的波速都取决于材料的应力—应变曲线的斜率d d σε,显然在弹性阶段和塑性阶段是不同的。塑性波的波速是应变的函数,它

弹性波及其应用

《弹性波理论及其应用》教学大纲 编写人:陆铭慧审核人:卢超 学时:48 学分:3 第一部分大纲说明 1.课程说明:09004 2.课程类型:非学位课 3.课程性质:专业选修课 4.学时/学分:48/3 5.课程目标:通过学习超声的产生、接收和在媒质中的传播规律,超声的各种效应,以及超声在基础研究和国民经济各部门的应用等内容,使学习者对超声的性质有比较清楚的理解,能够处理工业应用中的一般超声问题。 6. 教学方式:课堂讲授、自学与讨论相结合 7. 考核方式:考查 8.预修课程:数学物理方法,弹性力学基础,声学基础,声学检测技术 10、教材及教学参考资料: 参考资料: 1、《超声学》,应崇福主编,北京:科学出版社, 1990年12月出版。 2、《固体中的声场和波》,(美)B.A. 奥尔特,北京:科学出版社,孙承平译,1982年12月出版。 3、《超声手册》,冯若主编,南京:南京大学出版社,1999年10月出版。 4、《压电换能器和换能器阵》,栾桂冬等编著,北京:北京大学出版社,2005年7月出版。 5、《固体中的超声波》,(美)J.L.罗斯,北京:科学出版社,何存富等译。 6、《声波导》,(英)M.R.雷特伍特著,上海:上海科学技术出版社,严仁博译,1965年7月出版。 第二部分教学内容和教学要求 由于固体的特性和声波形式的多样型,使得声波在固体介质中传播具有复杂的特性。在

弹性固体中传播的不仅有纵波,还有横波以及与介质形状有关的导波等。了解和掌握固体中各种波型的激发和传播规律,对无损检测、压电换能器设计、声成像等研究具有指导意义。 第1章引言 教学内容: 1.1 弹性波研究的早期重要工作 1.2 弹性波研究的近、现代发展状况 1.3 超声波及其特点 教学要求: 了解弹性波研究的历史,超声波的特点。 教学建议: 1. 教学重点:超声波的特点。 2.教学方法:讲解与自学结合。 第2章无限大弹性介质中的波 教学内容: 2.1 弹性介质中的应力、应变、弹性常数 2.2 弹性介质中的波动方程及其解-体波 2.3 表面波 2.4 声波的传播特性 2.4 声波的散射 教学要求: 了解和掌握弹性介质中的波动方程及其解、声波在弹性介质中的传播特性、波型转换。教学建议: 1. 重点与难点:平面波动方程及其解。 2. 教学中应注意:体波与表面波的概念。 3.教学方法:讲解与讨论结合。 第3章波导介质中的波 教学内容: 3.1 引言 3.2 固体板中的连续波 3.3 固体板中的脉冲波 3.4 管中的声波 教学要求: 了解导波的产生条件和频散特性。 教学建议: 1. 重点与难点:导波的频散特性、相速度和群速度的概念。 2. 教学中应注意:相速度和群速度的表述。 3.教学方法:讲解与讨论结合。 第4章声波的产生与接收 教学内容: 4.1 产生和接收超声的方法

弹性波理论

地震波交错网格高阶差分数值模拟研究 摘要: 地震波数值模拟技术是勘探地球物理学中的重要组成部分,研究通过弹性波一阶速度——应力方程,采用交错网格高阶有限差分法实现了地震波在各向同性介质中的高精度的数值模拟,并采用完全匹配层( PML) 吸收边界来消除边界反射,可取得较好的效果。通过模型的正演计算和复杂模型的处理结果表明,交错网格高阶有限差分法数值模拟是一种快速有效的地震波数值模拟方法。 关键词: 地震勘探; 交错网格; 有限差分; 数值模拟 引言 地震数值模拟是模拟地震波在介质中传播的一种数值模拟技术,随着地震波理论在天然地震和地震勘探中的应用,地震模拟技术便应运而生,并随着地震波理论和计算机技术的发展,地震数值模拟技术自20世纪60年代以来也得到了飞速发展,形成了目前具有有限差分法、有限元法、虚谱法和积分方程法等各种数值模拟方法的现代地震数值模拟技术。 有限差分法是偏微分方程的主要数值解法之一。在各种地震数值模拟方法中,最早出现的数值模拟方法是有限差分法。Alterman和Karal(1968)首先将有限差分法应用于层状介质弹性波传播的数值模拟中。此后,Boore(1972)又将有限差分法用于非均匀介质地震波传播的模拟。Alford等(1974)研究了声波方程有限差分法模拟的精确性。Kelly等(1976)研究了用有限差分法制作人工合成地震记录的方法。Virieux(1986)提出了应用速度——应力一阶方程交错网格有限差分法模拟P——SV波在非均匀介质中的传播。交错网格方法提高了地震模拟的精度和稳定性,并消除了部分假想。 有限元法也是偏微分方程的数值解法之一。Lysmer和Drake(1972)最早将有限元法应用于地震数值模拟。Marfurt(1984)研究对比了模拟弹性波传播的有限差分法和有限元法的精度。Seron等(1990,1996)给出了弹性波传播有限元模拟方法。Padovani等(1994)研究了地震波模拟的低阶和高阶有限元法。Sarma等(1998)给出了三维声波模拟的虚谱法。 积分方程法是建立在波动方程的积分表达式的基础上的,其理论基础是惠更斯原理。积分方程法也是有限元法之后发展起来的一种地震数值模拟方法。Pao 和Varatharajulu(1976)提出了弹性波散射的积分表达式。Bennett和Mieras(1981)给出了流体目标声波散射的时间域积分方程解。Bouchon(1987)给出了裂隙或孔洞弹性波绕射的离散波数法模拟方法。Bouchon等(1989)研究了具有不规则界面的多层介质中波传播的边界积分方程——离散波数法。Bakamjian(1992)给出了三维地震波传播模拟的边界积分方程法。符力耘和牟永光(1994)提出了弹性波正演模拟的边界元法。符力耘等(1997)提出了非线性Fredholm积分方程的正演问题。符力耘(2003)给出了含起伏地表的广义Lipmann—Schwinger积分方程的数值模拟方法。 射线追踪方法是建立在波动方程的高频近似基础上的一种地震数值模拟方法(cerveny等,1977)。这种方法实际只计算了最奇异部分的解,即旅行时和振幅函数的特征曲线,它们分别是程函方程和传播方程的解。这种方法计算效率高。但是,一些复杂的本构方程由于积分方程法和射线追踪法不满足假设条件而限制

《连续介质力学》期末复习提纲--弹性波理论部分

<连续介质力学> 期末复习提纲—弹性波理论部分 1、无界线弹性体中的波传播 (1)Helmholtz 定理 a. 定理内容 b. 位移场的分解---无旋部分与无散部分 (1)(2u u u =+ ,其中(1)0u ??= ,(2)0u ??= c. 转动向量与体积膨胀率的位移场表示 (2)21122 u ωψ=??=-? , (1)2u θφ=??=? (2)无界线弹性体中的P 波与S 波 a. 体积膨胀率与转动向量满足的波动方程 (★) 2212211 112,f c c c λμ θθ ρ +?+??== 2 2 2222211,2f c c c μωωρ ?+??== b. Helmholtz 势满足的波动方程 222 2 22221211,b B c t c t φφφψ???+=?+=?? c. 位移场无旋部分与无散部分满足的波动方程 2 (1) (1)2 (2) (2) 221 2 1 1 ,u b u u B u c c ?+?=?+??= d. 纵波与横波的相速度及其比值 (★) 2 1121221222) 21c c c c c c c c ν??=- ????===?? ???= -?? ??? ?????? 2、无界线弹性体中的平面波 (1)波阵面、平面波与球面波 (2)一般平面波及其描述 (★)

a. 一般平面波位移场的形式 (★) (,)()u x t f x n ct d =?- b. 纵横波满足的条件及相速度公式 (★) 2 0()()()0d n n d c c P wave S wave c d n d n μρλμ?=±?=---++?= c. 一般平面波的能量密度与能通量密度向量 (★) ① 平面纵波的情况 (★) 能量密度: [][][] 222211112 21111 2211()()22 ()p ij ij i i e u u c f x n c t c f x n c t c f x n c t ετρρρρ=+''=?-+?-'=?- 能通量密度向量:[]2 311()p ij i j u e n c f x n c t ?τρ'=-=?- 二者关系: 1p p c n ?ε= ② 平面横波的情况 (★) 能量密度: [][][] 2222212122 211 12 2 11()()22 ()s ij ij i i e u u c f x n c t c f x n c t c f x n c t ετρρρρ=+''= ?-+?-'=?- 能通量密度向量:[ ]2 321()s ij i j u e n c f x n c t ?τρ'=-=?- 二者关系: 2s s c n ?ε= (2)平面简谐波及其描述 (★) a. 描述平面简谐波的物理量 (★) kc ω=,2T π ω = ,12T ωαπ= =,22c cT k ππ ωΛ=== 2k n n c ωπ==Λ , 22 2i i k k k k k c ω?===

弹性波动力学3

Rayleigh Wave (R-Wave) Animation Deformation propagates. Particle motion consists of elliptical motions (generally retrograde elliptical) in the vertical plane and parallel to the direction of propagation. Amplitude decreases with depth. Material returns to its original shape after wave passes. 自由固界面的边界条件 法向应力为零: 0xx x T ==切向应力为零: ψ

的增加而减小. 方程 Animation courtesy of Dr. Dan Russell, Kettering University https://www.doczj.com/doc/6f5788952.html,/~drussell/demos.html

点运动轨迹 s Rayleigh wave retrograde (counter-clockwise) motions P > S > Rayleigh wave velocity

Figure 10.8 Figure 10.9 表面波对地震勘探是干扰波 多层固体表面的Rayleigh 波 ∞ 3500 3500 6000 3 2300030005000252700200035001层厚(m ) 密度(kg /m 3) 横波速度(m /s ) 纵波速度(m /s ) 层序号凡友华、刘家琦, 层状介质中瑞雷面波的频散研究,哈尔滨工业大学学报,Dispersion The typical dispersive behavior of surface waves solid –group velocities; dashed –phase velocities 声表面波的产生 使纵波以接近于第二临界角入射,利用模式转换产生表面波。 11sin i Rayleigh S V V V V θ=≈

应力波理论复习资料

复习内容: 概念:应力波;物质坐标,空间坐标,物质微商,空间微商,物质波速;特征线;强间断,弱间断,冲击波,波的弥散效应;层裂;弹性卸载假设;卸载边界;应变间断面;应力松弛;蠕变;粘性弥散;Hugoniot 弹性极限;固体高压状态方程;冲击绝热线; 主要内容: 一、Lagrange 方法推导一维应力纵波的波动方程。 解: 在Lagrange 坐标中建立图示一维应力波长度为dX 的微元的受力图,截面X 上作用有总力F(X,t),截面X+dX 上作用有总力F(X+dx,t),有 dX X t X F t X F dX X F ??+=+) ,(),()( 根据牛顿第二定律,有 dX X t X F t X F dX X F dX A t v O o ??=-+=??),(),()(ρ 解之,有 dX t v A dX X t X F ??=??00),(ρ 而0),(A t X F σ=,故上式可以化为 X t v ??= ??σ ρ0 (a) 对于一维应力纵波,)(εσ 连续可微,记 ε σ ρd d C 01= 则 ερσd C d 20= 代入(a)式,可得 X C t v ??=??ε2 (b)

因为t u v ??=,X u ??=ε,代入(b)式,则得到了一维应力波在Lagrange 坐标系中的波动方程: 022 222=??-??X u C t u 二、 用方向导数法求下列偏微分方程组的特征方程和特征相容关系 (1)???????=??+??+??=??+??+??0)(02x c x v v t v x v x v t ρρρρρ 解:对一阶偏微分方程组进行线性组合, ①×λ+②其中λ为待定系数,整理可得: 0)()(2=??+??++??+??+t v X v v t X c v ρρλρρλρλ (a) 根据特征线求解方法,特征线特征方程为 ρ ρλρλλv c v dt dx +=+=Γ2)( 解之,得c ±=λ, c v dt dx ±=Γ)( ,即特征线的微分方程为: dt c v dx )(±= 将其积分即可得到特征线方程。 由(a)式,整理有 0)()(2=????? ???+??++??+??+t v X v v t X c v λρρρλλ 即 0=+dt dv dt d ρρλ 将λ值代入上式,可得特征线上的相容关系为: dv c dv d ρ λρρ =- = (2)??? ????=??+-??+??=??+-??+??0)1(0)1(2x c x v v t v x v x v t εεεεε 解: 对一阶偏微分方程组进行线性组合,①×λ+②,其中λ为待定系数,整理可得: 0])1([])1([2=??+??++-+??+??+-t v x v v t x c v ελελεελ (a) 根据特征线求解方法,特征线特征方程为 1 )1()1()(2v c v dt dx ++-=+-=Γελλελ

比较分析弹性波与超声波的异同点

弹性波VS超声波 (四川升拓检测技术LJM2015) 从事工程检测工作的朋友肯定都听说过弹性波和超声波这两个名词,然而可能只有一小部分人能清楚的说出这两种波之间的异同点,大部分人都只能说略知一二罢了,要认清这两种波,我们先从他们的基本概念入手吧。 弹性波:当某处物质粒子离开平衡位置,即发生应变时,该粒子在弹性力的作用下发生振动,同时又引起周围粒子的应变和振动,这样形成的振动在弹性介 质中的传播过程称为“弹性波”。 超声波:一种频率高于20000赫兹的声波。说白了就是频率高于20000 赫兹的弹性波。 从上面的名称解释可以看出,其实超声波和弹性波没有太多的区别,他们都是使物体内部粒子振动然后进去传播。 然后起主要的不同点是: 1、弹性波比超声波的频率要低,弹性波频几赫兹到十几千赫兹都有,而超声波频率高于20000赫兹; 2、弹性波是由激振装置在固体表面击打产生的,而超声波的产生以钛酸钡,水晶,PZT等压电材料为主,在探头的两面镀银为电极加上电压,使探头在厚度方向产生伸缩进而激发超声波; 3、弹性波的能量远远大于超声波,弹性波在工程检测中探测距离可以达到几十上百米,然而超声波频率高,所以衰减快,探测最远距离大概只有1米左右; 4、锤击激振产生的冲击弹性波波长几十厘米甚至更长,而超声波波长短,一般是几厘米。因此,超声波的分辨率高,对细微的缺陷比较敏感; 5、弹性波在介质中传播时波速比较稳定,然而超声波波速一般偏高; 6、冲击弹性波测试一般采用加速度传感器,传感器在各种固定方式下,其 频响曲线都有较长平坦部分,有利于频谱分析和能量分析,而超声波的探头在保持高灵敏度的同时,其频率响应特性一般较差,测试频域内几乎没有平坦部分,也就是说,超声波测试仪器对频率分析和振幅分析都比较困难。

弹性力学简介

第一章弹性力学简介 本课程主要介绍有限单元法在固体力学问题中的应用, 因此要用到弹性力学的某些基本概念和基本方程。本章将简单介绍这些概念和方程,作为学习有限单元法的预备知识。 §1-1 弹性力学的研究内容 1. 研究内容 材料力学: (内容) 杆件在外力或温度作用下的应力、变形、材料的宏观力学性质、 破坏准则等。 (任务) 解决杆件的强度、刚度、稳定性问题。 结构力学: (内容) 杆件系统(杆系结构)在外力或温度作用下的应力、变形、位 移等变化规律。 (任务) 解决杆系的强度、刚度、稳定性问题。 弹性力学: (内容) 弹性体在外力或温度作用下的应力、变形、位移等分布规律。 (任务) 解决弹性体的强度、刚度、稳定性问题。 2. 弹性力学与材料力学、结构力学的区别 (1) 研究对象 材料力学: 杆件(直杆,小曲率杆) 结构力学: 杆件系统或结构 弹性力学: 一般弹性实体结构,三维弹性固体,板状结构,杆件等。 (2) 研究方法 材料力学: 借助于直观和实验现象作一些假定,如平面假设等,然后由静力 学、几何关系、物理方程三方面进行分析。 结构力学: 同材料力学方法。 弹性力学: 仅由静力平衡、几何方程、物理方程三方面分析,放弃了材料力 学中的大部分假定。 (3) 数学理论基础 材料力学与结构力学: 研究对象是杆件或杆件系统,以平面假设确定横截面变形。 是一维数学问题,求解的基本方程是常微分方程。 弹性力学: 研究对象是完全弹性体。只能从微分单元体入手,是三维数学问题,综合分析的结果是偏微分方程边值问题。 3. 材料力学与弹性力学结果比较 如下图简支梁:

简支梁弹性力学结果材料力学结果从图中可以看出,当l >> h时,误差是很小的。

相关主题
文本预览
相关文档 最新文档