【数学建模学习】MatLab2画图
- 格式:doc
- 大小:485.50 KB
- 文档页数:27
实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
详尽全⾯的matlab绘图教程Matlab绘图强⼤的绘图功能是Matlab的特点之⼀,Matlab提供了⼀系列的绘图函数,⽤户不需要过多的考虑绘图的细节,只需要给出⼀些基本参数就能得到所需图形,这类函数称为⾼层绘图函数。
此外,Matlab还提供了直接对图形句柄进⾏操作的低层绘图操作。
这类操作将图形的每个图形元素(如坐标轴、曲线、⽂字等)看做⼀个独⽴的对象,系统给每个对象分配⼀个句柄,可以通过句柄对该图形元素进⾏操作,⽽不影响其他部分。
本章介绍绘制⼆维和三维图形的⾼层绘图函数以及其他图形控制函数的使⽤⽅法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。
⼀.⼆维绘图⼆维图形是将平⾯坐标上的数据点连接起来的平⾯图形。
可以采⽤不同的坐标系,如直⾓坐标、对数坐标、极坐标等。
⼆维图形的绘制是其他绘图操作的基础。
⼀.绘制⼆维曲线的基本函数在Matlab中,最基本⽽且应⽤最为⼴泛的绘图函数为plot,利⽤它可以在⼆维平⾯上绘制出不同的曲线。
1. plot函数的基本⽤法plot函数⽤于绘制⼆维平⾯上的线性坐标曲线图,要提供⼀组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的⼆维曲线。
plot函数的应⽤格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。
例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗⼝中输⼊以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执⾏后,打开⼀个图形窗⼝,在其中绘制出如下曲线注意:指数函数和正弦函数之间要⽤点乘运算,因为⼆者是向量。
例52 绘制曲线这是以参数形式给出的曲线⽅程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执⾏后,打开⼀个图形窗⼝,在其中绘制出如下曲线以上提到plot函数的⾃变量x,y为长度相同的向量,这是最常见、最基本的⽤法。
MATLAB绘制二元函数的图形【实验目的】1.了解二元函数图形的绘制。
2.了解空间曲面等高线的绘制。
3.了解多元函数插值的方法。
4.学习、掌握MA TLAB软件有关的命令。
【实验内容】画出函数22y=的图形,并画出其等高线。
z+x【实验准备】1.曲线绘图的MA TLAB命令MA TLAB中主要用mesh,surf命令绘制二元函数图形。
主要命令mesh(x,y,z)画网格曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点在空间中描出,并连成网格。
surf(x,y,z)画完整曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点所表示曲面画出。
【实验重点】1. 二元函数图形的描点法2. 曲面交线的计算3. 地形图的生成【实验难点】1. 二元函数图形的描点法2. 曲面交线的计算【实验方法与步骤】练习1画出函数22y=的图形,其中]3,3xz+⨯-yx。
∈,[]3,3[(-)用MA TLAB作图的程序代码为>>clear;>>x=-3:0.1:3; %x的范围为[-3,3]>>y=-3:0.1:3; %y的范围为[-3,3]>>[X,Y]=meshgrid(x,y); %将向量x,y指定的区域转化为矩阵X,Y >>Z=sqrt(X.^2+Y.^2); %产生函数值Z>>mesh(X,Y,Z)运行结果为图5.3如果画等高线,用contour,contour3命令。
contour画二维等高线。
contour3画三维等高线。
画图5.3所示的三维等高线的MA TLAB 代码为>>clear;>>x=-3:0.1:3;>>y=-3:0.1:3;>>[X,Y]=meshgrid(x,y);>>Z=sqrt(X.^2+Y.^2);>>contour3(X,Y,Z,10); %画10条等高线>>xlabel('X-axis'),ylabel('Y-axis'),zlabel('Z-axis'); %三个坐标轴的标记>>title('Contour3 of Surface') %标题>>grid on %画网格线运行结果为图5.4如果画图5.4所示的二维等高线,相应的MA TLAB代码为>>clear;x=-3:0.1:3;y=-3:0.1:3;>>[X,Y]=meshgrid(x,y);Z=sqrt(X.^2+Y.^2);>>contour (X,Y,Z,10);>>xlabel('X-axis'),ylabel('Y-axis');>>title('Contour3 of Surface')>>grid on运行结果为如果要画z=1的等高线,相应的MATLAB代码为>>clear;x=-3:0.1:3;y=-3:0.1:3;>>[X,Y]=meshgrid(x,y);Z=sqrt(X.^2+Y.^2);>>contour(X,Y,Z,[1 1])运行结果为练习2 二次曲面的方程如下222222x y z d a b c++= 讨论参数a ,b ,c 对其形状的影响。
第2章 MATLAB二维绘图22.1 二维绘图基本流程22.2 二维图形的基本绘图命令42.2.1 高级绘图命令42.2.2低级绘图命令62.2 二维图形的修饰82.2.1 坐标轴的调整82.2.1.1 调整坐标轴的围82.2.1.2 调整坐标轴的状态92.2.1.3 保存坐标轴的围112.2.1.4 保存坐标轴的状态112.2.2画出或取消网格线122.2.3设置坐标轴的名称122.2.4设置图形标题132.2.5在图形中显示文字142.2.5.1用坐标轴确定文字位置142.2.5.2用鼠标确定位置显示文字152.2.6 图形的标定和颜色条162.2.7 使用绘图工具栏标注图形182.3 填充图形的绘制192.4 多坐标系绘图与图形窗口的分割202.4.1 图形叠印法202.4.2 子图的绘制212.5 特殊坐标图形的绘制222.5.1 绘制极坐标图形232.5.2对数/半对数坐标系绘图232.6 特殊二维图形的绘制242.4.3 直方图242.4.1 柱状图和面积图262.4.2 饼图282.4.4 离散数据绘图282.4.5 等高线图302.4.6 向量图312.7 函数绘图342.7.1 fplot函数342.7.2函数function的定义352.8 工作空间直接绘图362.9 手工绘图方式382.10 小结41第2章 MATLAB二维绘图数据可视化是MATLAB一项重要功能,它所提供的丰富绘图功能,使得从繁琐的绘图细节中脱离出来,而能够专心于最关心的本质。
通过数据可视化的方法,工程科研人员可以对自己的样本数据的分布、趋势特性有一个直观的了解。
本章将重点介绍MATLAB二维图形的绘制方式,并按照完整的步骤来说明一个图形产生的流程,以便将数据以图形形式来识别。
通过本章,读者不仅能掌握二维绘图的基本流程,而且能熟练使用MATLAB中相应的绘图命令、函数来绘制二维图形。
2.1 二维绘图基本流程在MATLAB中绘制图形,通常采用以下7个步骤:(1)准备数据;(2)设置当前绘图区;(3)绘制图形;(4)设置图形中曲线和标记点格式;(5)设置坐标轴和网格线属性;(6)标注图形;(7)保存和导出图形。
help plothelp axisa1=plot();hlod ona2=plot();legend([a1 a2],'图1 名',‘图2 名')hold offx1=-pi:pi/12:pi;x2=-pi:pi/12:pi;y1=sin(x1);y2=cos(x2);plot(x1,y1,x2,y2);axis([-2*pi 2*pi -2 2]);xlabel('x');ylabel('y');title('sin(x) & cos(x)');MATLAB受到控制界广泛接受的一个重要原因是因为它提供了方便的绘图功能.这里主要介绍2 维图形对象的生成函数及图形控制函数的使用方法,还将简单地介绍一些图形的修饰与标注函数及操作和控制MATLAB 各种图形对象的方法.第一节图形窗口与坐标系一.图形窗口1.MATLAB 在图形窗口中绘制或输出图形,因此图形窗口就像一张绘图纸.2.在MATLAB 下,每一个图形窗口有唯一的一个序号h,称为该图形窗口的句柄.MATLAB 通过管理图形窗口的句柄来管理图形窗口;3.当前窗口句柄可以由MATLAB 函数gcf 获得;4. 在任何时刻, 只有唯一的一个窗口是当前的图形窗口( 活跃窗口);figure(h)----将句柄为h 的窗口设置为当前窗口;5.打开图形窗口的方法有三种:1)调用绘图函数时自动打开;2)用File---New---Figure 新建;3)figure 命令打开,close 命令关闭.在运行绘图程序前若已打开图形窗口,则绘图函数不再打开,而直接利用已打开的图形窗口;若运行程序前已存在多个图形窗口,并且没有指定哪个窗口为当前窗口时,则以最后使用过的窗口为当前窗口输出图形.6.窗口中的图形打印:用图形窗口的File 菜单中的Print 项.7.可以在图形窗口中设置图形对象的参数.具体方法是在图形窗口的Edit 菜单中选择Properties 项,打开图形对象的参数设置窗口,可以设置对象的属性.二.坐标系1.一个图形必须有其定位系统,即坐标系;2.在一个图形窗口中可以有多个坐标系,但只有一个当前的坐标系;3.每个坐标系都有唯一的标识符,即句柄值;4.当前坐标系句柄可以由MATLAB 函数gca 获得;5.使某个句柄标识的坐标系成为当前坐标系,可用如下函数:axes(h) h 为指定坐标系句柄值.6.一些有关坐标轴的函数:1)定义坐标范围:一般MATLAB 自动定义坐标范围,如用户认为设定的不合适,可用:axis([Xmin, Xmax, Ymin, Ymax])重新设定;2)坐标轴控制:MATLAB 的缺省方式是在绘图时,将所在的坐标系也画出来,为隐去坐标系,可用axis off;axis on 则显示坐标轴(缺省值).3)通常MATLAB 的坐标系是长方形,长宽比例大约是4:3,为了得到一个正方形的坐标系可用:axis square4)坐标系横纵轴的比例是自动设置的,比例可能不一样,要得到相同比例的坐标系,可用:axis equal第二节二维图形的绘制一. plot 函数plot 函数是最基本的绘图函数,其基本的调用格式为:1.plot(y)------绘制向量y 对应于其元素序数的二维曲线图,如果y 为复数向量,则绘制虚部对于实部的二维曲线图.例:绘制单矢量曲线图.y=[0 0.6 2.3 5 8.3 11.7 15 17.7 19.4 20];plot(y)由于y 矢量有10 个元素,x 坐标自动定义为[1 2 3 4 5 6 7 8 9 10].2.plot(x,y)------绘制由x,y 所确定的曲线.1)x,y 是两组向量,且它们的长度相等,则plot(x,y)可以直观地绘出以x 为横坐标,y 为纵坐标的图形.如:画正弦曲线:t=0:0.1:2*pi;y=sin(t);plot(t,y)2)当plot(x,y)中,x 是向量,y 是矩阵时,则绘制y 矩阵中各行或列对应于向量x的曲线.如果y 阵中行的长度与x 向量的长度相同,则以y 的行数据作为一组绘图数据;如果y 阵中列的长度与x 向量的长度相同,则以y 的列数据作为一组绘图数据;如果y 阵中行,列均与x 向量的长度相同,则以y 的每列数据作为一组绘图数据.例:下面的程序可同时绘出三条曲线.MATLAB 在绘制多条曲线时,会按照一定的规律自动变化每条曲线的的颜色.x=0:pi/50:2*pi;y(1,:)=sin(x);y(2,:)=0.6*sin(x);y(2,:)=0.3*sin(x);plot(x,y)或者还可以这样用:x=0:pi/50:2*pi;y=[ sin(x); 0.6*sin(x); 0.3*sin(x)];plot(x,y)3) 如果x,y 是同样大小的矩阵,则plot(x,y)绘出y 中各列相应于x 中各列的图形.例:x(1,:)=0:pi/50:2*pi;x(2,:)=pi/4:pi/50:2*pi+pi/4;x(3,:)=pi/2:pi/50:2*pi+pi/2;y(1,:)=sin(x(1,:));y(2,:)=0.6*sin(x(2,:));y(3,:)=0.3*sin(x(3,:));plot(x,y)x=x';y=y';figureplot(x,y)在这个例子中,x------3x101,y------3x101,所以第一个plot 按列画出101 条曲线,每条3 个点;而x'------101x3,y'------101x3,所以第二个plot 按列画出3 条曲线,每条101 个点.3.多组变量绘图:plot(x1, y1, 选项1, x2, y2, 选项2, ……)上面的plot 格式中,选项是指为了区分多条画出曲线的颜色,线型及标记点而设定的曲线的属性.MATLAB 在多组变量绘图时,可将曲线以不同的颜色,不同的线型及标记点表示出来.这些选项如下表所示:各种颜色属性选项'r' 红色'm' 粉红'g' 绿色'c' 青色'b' 兰色'w' 白色'y' 黄色'k' 黑色各种线型属性选项'-' 实线'--' 虚线':' 点线'-.' 点划线各种标记点属性选项'.' 用点号绘制各数据点'^' 用上三角绘制各数据点'+' 用'+'号绘制各数据点'v' 用下三角绘制各数据点'*' 用'*'号绘制各数据点'>' 用右三角绘制各数据点' .' 用'.'号绘制各数据点'<' 用左三角绘制各数据点's'或squar 用正方形绘制各数据点'p' 用五角星绘制各数据点'd'或diamond 用菱形绘制各数据点'h' 用六角星绘制各数据点这些选项可以连在一起用,如:'-.g'表示绘制绿色的点划线,'g+'表示用绿色的'+'号绘制曲线.注意:1)表示属性的符号必须放在同一个字符串中;2)可同时指定2~3 个属性;3)与先后顺序无关;4)指定的属性中,同一种属性不能有两个以上.例:t=0:0.1:2*pi;y1=sin(t);y2=cos(t);y3=sin(t).*cos(t);plot(t,y1, '-r',t,y2, ':g',t,y3, '*b')该程序还可以按下面的方式写:t=0:0.1:2*pi;y1=sin(t);y2=cos(t);y3=sin(t).*cos(t);plot(t,y1, '-r')hold onplot(t,y2, ':g')plot(t,y3, '*b')hold off注:在MATLAB 中,如画图前已有打开的图形窗口,则再画图系统将自动擦掉坐标系中已有的图形对象,但设置了hold on 后,可以保持坐标系中已绘出的图形.还可以进一步设置包括线的宽度(LineWidth), 标记点的边缘颜色(MarkerEdgeColor),填充颜色(MarkerFaceColor)及标记点的大小(MarkerSize)等其它绘图属性.例:设置绘图线的线型,颜色,宽度,标记点的颜色及大小.t=0:pi/20:pi;y=sin(4*t).*sin(t)/2;plot(t,y,'-bs','LineWidth',2,... %设置线的宽度为2'MarkerEdgeColor','k',... %设置标记点边缘颜色为黑色'MarkerFaceColor','y',... %设置标记点填充颜色为黄色'MarkerSize',10) %设置标记点的尺寸为104.双Y 轴绘图:plotyy()函数.其调用格式为: plotyy(x1,y1,x2,y2)------绘制由x1,y1 和x2,y2 确定的两组曲线,其中x1,y1 的坐标轴在图形窗口的左侧,x2,y2 的坐标轴在图形窗口的右侧.Plotyy(x1,y1,x2,y2, 'function1','function2')------功能同上,function 是指那些绘图函数如:plot,semilogx,loglog 等.例如:在一个图形窗口中绘制双Y 轴曲线.x=0:0.3:12;y=exp(-0.3*x).*sin(x)+0.5;plotyy(x,y,x,y,'plot','stem')stem:绘制stem 形式的曲线(上端带圈的竖线).绘图结果:两条图线自动用不同的颜色区分,两个坐标的颜色与图线的颜色相对应,左边的Y 轴坐标对应的是plot 形式的曲线,右边的Y 坐标对应的是stem 形式的曲线.二.对数坐标图绘制函数:在对数坐标图的绘制中,有三种绘图函数:semilogx,semilogy 和loglog 函数.1)semilogx( )------绘制以X 轴为对数坐标轴的对数坐标图. 其调用格式为:semilogx(x,y,'属性选项')其中属性选项同plot 函数.该函数只对横坐标进行对数变换,纵坐标仍为线性坐标.2)semilogy( )------绘制以Y 轴为对数坐标轴的对数坐标图. 其调用格式为:semilogy(x,y,'属性选项')该函数只对纵坐标进行对数变换,横坐标仍为线性坐标.3)loglog( )------ 绘制X,Y 轴均为对数坐标轴的图形.其调用格式为:loglog(x,y,'属性选项')该函数分别对横,纵坐标都进行对数变换.例:x=0:0.1:6*pi;y=cos(x/3)+1/9;subplot(221), semilogx(x,y);subplot(222), semilogy(x,y);subplot(223), loglog(x,y);4)MATLAB 还提供了一个实用的函数:logspace( )函数,可按对数等间距地分布来产生一个向量,其调用格式为:x=logspace(x1,x2,n)这里,x1 表示向量的起点;x2 表示向量的终点;n 表示需要产生向量点的个数(一般可以不给出,采用默认值50).在控制系统分析中一般采用这种方法来构成频率向量w.关于它的应用后面还要讲到.三.极坐标图的绘制函数:绘极坐标图可用polar( )函数.其调用格式如下:polar(theta, rho,'属性选项')------theta:角度向量,rho:幅值向量,属性内容与plot 函数基本一致.例如:极坐标模型为:3145/)/)cos((+ =θρ, ],[πθ80∈则绘出极坐标图的程序为:theta=0:0.1:8*pi;p=cos((5*theta)/4)+1/3;polar(theta,p)四.绘制多个子图:subplot( )函数MATLAB 允许在一个图形窗口上绘制多个子图(如对于多变量系统的输出),允许将窗口分成nxm 个部分.分割图形窗口用subplot 函数来实现,其调用格式为:subplot(n,m,k)或subplot(nmk)------n,m 分别表示将窗口分割的行数和列数,k 表示要画图部分的代号,表示第几个图形,nmk 三个数可以连写,中间不用符号分开.例如:将窗口划分成2x2=4 个部分,可以这样写:subplot(2,2,1),plot(……)subplot(2,2,2),……subplot(2,2,3),……subplot(2,2,4),……注:subplot 函数没有画图功能,只是将窗口分割.第三节图形的修饰与标注MATLAB 提供了一些特殊的函数修饰画出的图形,这些函数如下: 1)坐标轴的标题:title 函数其调用格式为:title('字符串')------字符串可以写中文如:title('My own plot')2)坐标轴的说明:xlabel 和ylabel 函数格式:xlabel('字符串')ylabel('字符串')如:xlabel('This is my X axis') ylabel('My Y axis')3)图形说明文字:text 和gtext 函数A.text 函数:按指定位置在坐标系中写出说明文字.格式为:text(x1, y1, '字符串', '选项') x1,y1 为指定点的坐标;'字符串'为要标注的文字;'选项'决定x1,y1 的坐标单位,如没有选项,则x1,y1 的坐标单位和图中一致;如选项为'sc', 则x1,y1 表示规范化窗口的相对坐标,其范围为0到1.如:text(1,2, '正弦曲线')B.gtext 函数:按照鼠标点按位置写出说明文字.格式为:gtext('字符串')当调用这个函数时,在图形窗口中出现一个随鼠标移动的大十字交叉线,移动鼠标将十字线的交叉点移动到适当的位置,点击鼠标左键,gtext 参数中的字符串就标注在该位置上.4)给图形加网格:grid 函数在调用时直接写grid 即可.上面的函数的应用实例:例:在图形中加注坐标轴标识和标题及在图形中的任意位置加入文本.t=0:pi/100:2*pi;y=sin(t);plot(t,y),grid,axis([0 2*pi -1 1])xlabel('0 leq itt rm leq pi','FontSize',16)ylabel('sin(t)','FontSize',20)title('正弦函数图形','FontName','隶书' ,'FontSize',20) text(pi,sin(pi),'leftarrowsin(t)=0','FontSize',16)text(3*pi/4,sin(3*pi/4),'leftarrowsin(t)=0.707','FontSize',16)text(5*pi/4,sin(5*pi/4),' sin(t)=-0.707rightarrow',... 'FontSize',16,'HorizontalAlignment','right')5)在图形中添加图例框:legend 函数其调用格式为:A.legend('字符串1', '字符串2', ……)------以字符串1,字符串2……作为图形标注的图例.B.legend('字符串1', '字符串2', ……, pos)------pos 指定图例框显示的位置.图例框被预定了6 个显示位置:0------取最佳位置;1------右上角(缺省值);2------左上角;3------左下角;4------右下角;-1------图的右侧.例:在图形中添加图例.x=0:pi/10:2*pi;y1=sin(x);y2=0.6*sin(x);y3=0.3*sin(x);plot(x,y1,x,y2,'-o',x,y3,'-*')legend('曲线1','曲线2','曲线3')6)用鼠标点选屏幕上的点:ginput 函数格式为:[x, y, button]=ginput(n)其中:n 为所选择点的个数;x,y 均为向量,x 为所选n 个点的横坐标;y 为所选n个点的纵坐标.button 为n 维向量,是所选n 个点所对应的鼠标键的标号:1------左键;2------中键;3------右键.可用不同的鼠标键来选点,以区别所选的点.此语句可以放在绘图语句之后,它可在绘出的图形上操作,选择你所感兴趣的点,如峰值点,达到稳态值的点等,给出点的坐标,可求出系统的性能指标.第四节MATLAB 下图形对象的修改MATLAB 图形对象是指图形系统中最基本,最底层的单元,这些对象包括:屏幕(Root), 图形窗口(Figures), 坐标轴(Axes), 控件(Uicontrol), 菜单(Uimenu),线(Lines),块(Patches),面(Surface),图像(Images),文本(Text)等等.根据各对象的相互关系,可以构成如下所示的树状层次:RootFiguresAxes Uicontrol Uimenu Uicontextmenu (对象菜单)Images Line Patch Surface Text对各种图形对象进行修改和控制,要使用MATLAB 的图形对象句柄(Handle).在MATLAB 中,每个图形对象创立时,就被赋予了唯一的标识,这个标识就是该对象的句柄.句柄的值可以是一个数,也可以是一个矢量.如每个计算机的根对象只有一个,它的句柄总是0,图形窗口的句柄总是正整数,它标识了图形窗口的序号等.利用句柄可以操纵一个已经存在的图形对象的属性,特别是对指定图形对象句柄的操作不会影响同时存在的其它图形对象,这一点是非常重要的.一.对图形对象的修改可以用下面函数:1)set 函数:用于设置句柄所指的图形对象的属性.Set 函数的格式为:set(句柄, 属性名1, 属性值1, 属性名2, 属性值2, ……) 例:h=plot(x,y)set(h, 'Color', [1,0,0])------将句柄所指曲线的颜色设为红色.2)get 函数:获取指定句柄的图形对象指定属性的当前值.格式为:get(句柄, '属性名')如: get(gca, 'Xcolor')------获得X 轴的当前颜色属性值. 执行后可返回X 轴的当前颜色属性值[0,0,0](黑色).3)如果没有设置句柄,则可以使用下列函数获得:gcf:获得当前图形窗口的句柄;gca:获得当前坐标轴对象的句柄;gco:获得当前对象的句柄.如:A.要对图形窗口的底色进行修改,可用:set(gcf, 'Color', [1,1,1])------将图形窗口底色设为白色B.要把当前X 轴的颜色改为绿色,可用:set(gca, 'Xcolor', [0,1,0])C.还可对坐标轴的显示刻度进行定义:t=-pi:pi/20:pi;y=sin(t);plot(t,y)set(gca,'xtick',[-pi:pi/2:pi],'xticklabel',['-pi','-pi/ 2','0','pi/2','pi'])本例中用'xtick'属性设置x 轴刻度的位置(从-pi~pi,间隔pi/2,共设置5 个点),用'xticklabel'来指定刻度的值,由于通常习惯于用角度度量三角函数,因此重新设置['-pi','-pi/2','0','pi/2','pi']5 个刻度值.二.一些常用的属性如下:1)Box 属性:决定图形坐标轴是否为方框形式,选项为'on'(有方框), 'off'(无方框);2)'ColorOrder'属性:设置多条曲线的颜色顺序,默认值为:[1 1 0;1 0 1;0 1 1;1 0 0;0 1 0;0 0 1]黄色粉色天蓝红色绿色兰色颜色向量还有:[1 1 1]------白色;[0 0 0]------黑色.3)坐标轴方向属性:'Xdir','Ydir','Zdir',其选项为:'normal'------正常'reverse'------反向4)坐标轴颜色和线型属性:'Xcolor','Ycolor','Zcolor'------ 轴颜色, 值为颜色向量如何在画好曲线后再在图上标刻度就是想在一些特定的点边上标上一串30.60.90~7200递增的数据,共有96个点要标!!im = imread(url);imshow(im)然后输入:text(100,100,'\o ','Color','red');matlab,用imread 读入一个图片,我想在图上的一些坐标点上做标记。
03 函数作图1 平面图形(1)竖直条形图调用格式为:bar(x,y)(2)用描点法绘制函数y f ( x) 随x 从a 到b 间的图形.调用格式为:x=a:h:b ;y=f(x) ;plot(x,y)(3)在同一坐标系下绘制多个函数图形.调用格式为:x=a:h:b ;plot(x,y1,x,y2,…)(4)绘制函数y=f(x)随x 从a 到b 间的图形.调用格式为:explo t(‘f(x)’, [a,b])(5)x 从xa 到xb和y 从ya到yb间隐函数 f ( x, y) 0 的图形.调用格式为:ezplo t(‘x’,’y’,[xa, x b , y a , y b ])(6)绘制t 从ta 到tb间参数方程x x(t ),y y(t )的函数图形.调用格式为:ezplo t(‘x’,’y’,[ta, t b ])(7)在一坐标系下可以绘制一个或多个显函数图形,对变化剧烈的函数,用此命令来进行较精确的绘画.调用格式为:fplot(’fun(x)’,[a,b])fplo t (‘[f1(x),f2(x),…]’,[a,b])其中fun(x)可以是自定义函数,[f1(x),f2(x),…]是函数组.(8)绘制散点图.调用格式为:scatter(x,y)2 空间图形(1)空间曲线.调用格式为:plot3(x,y,z)(2)产生一个以向量x 为行,向量y 为列的矩阵.调用格式为:meshgrid(x,y)(3)空间曲面.调用格式为:surf(x,y,z)(4)网格曲面.调用格式为:mesh(x,y,z)例 1 一次考试成绩0~10 分有0 人,10~20 分有0 人,20~30 分1 人,30~40 分有1 人,50~60 分有2 人,60~70 分有18 人,70~80 分有20 人,80~90 分有9 人,90~100 分有6 人.绘出成绩分析竖直条形图.【matlab 命令】>> x=0:10:90;>> y=[0,0,1,1,0,2,18,20,9,6];>> bar(x,y)【输出结果】20002图1例1输出图像例 2 绘制显函数图形.x(1)设 y 1x 3 2x , y2000 cos2sin x请分别作出这两个函数在区间 x[20,40] 的图像,然后将它们的图像在一个平面直角坐标系中,并判断方程 y 1x 3 2 x 1500cos x2sin x 有几个实数解.(2)在 x[0,4] 上画出分段函数方法一:【matlab 命令】>> x=-20:0.1:40;>> y1=x.^3-35*x.^2+100*x+1500; >> y2=2000*(cos(x/2)-sin(x)); >> figure(1)>> plot(x,y1,'b-'); >> figure(2) >> plot(x,y2,'k');f ( x )32 x 2x 20 x 2 x 2的图像>> figure(3)>> plot(x,y1,'b-',x,y2,'k')【输出结果】图2例2(1)函数y1图3 例 2(1)函数 y 2 输出图像图4例 2(1)函数 y 1 和 y 2 输出图像 从图中知:有 7 个交点,也就是有 7 个实数根.说明:绘制图形着色时,g 表示绿色,r 表示红色,b 表示蓝色,k 表示黑色.方法二:【matlab 命令2】%自定义函数M文件fx1 function y1=fx1(x)y1=x^3-35*x.^2+100*x+1500%自定义函数M文件fx2 function y2=fx2(x)y2=2000*(cos(x/2)-sin(x));Matlab命令窗口输入以下命令: >> figure(1)>> fplot('fx1(x)',[-20,40]); >> figure(2)>> fplot('fx2(x)',[-20,40]); >> figure(3)>> fplot('[fx1(x) , fx2(x)] ', [-20,40]); 【输出结果2】结果同上.【matlab 命令3】>> x=0:0.01:2;>> y=(2*x-x.^2).^(1/3);>> plot(x,y,'k','linewidth',2)>> hold on>> x=2:0.01:4;>> y=x-2;>> plot(x,y,'k','linewidth',2)【输出结果3】图5例2(2)函数f(x)的输出图像例3绘制隐函数和参数方程所确定函数的图形.(1)在x [3,3] 上画隐函数x 2 2 9 的图像.(2)在t [0,2] 上画参数方程x cos3 t ,y sin 3 t 的图像.【matlab 命令1】>> ezplot('x^2+y^2-9',[-3,3])>> axis equal【输出结果1】图6例3(1)输出图像说明:axis on 显示坐标轴,axis off 取消坐标轴,grid on 表示加网格线,grid off 表示不加网格线,clf 清楚图形窗口中的图形.也可以通过编辑图像的方法改变或增加设置,比如在图形窗口中,菜单栏Tools中鼠标选中Edit-Plot,可改变图像的颜色.【matlab 命令2】>> ezplot('cos(t)^3','sin(t)^3',[0,2*pi])【输出结果2】图7例3(2)输出图像例4将图4,5,6,7在同一个图形窗口表现出来.【matlab 命令】clfsubplot(2,2,1)x=-20:0.1:40;y1=x.^3-35*x.^2+100*x+1500;y2=2000*(cos(x/2)-sin(x));plot(x,y1,'b-',x,y2,'k');subplot(2,2,2)x=0:0.01:2;y=(2*x-x.^2).^(1/3);plot(x,y) holdon x=2:0.01:4;y=x-2;plot(x,y)subplot(2,2,3)ezplot('x^2+y^2-9',[-3,3])axis equal subplot(2,2,4)ezplot('cos(t)^3','sin(t)^3',[0,2*pi])【输出结果】图8 例4输出图像例5已知平面内8个散点的坐标(1,15,2,20(3,27(4,36(5,49,(6,65(7,87(8,117,在直角坐标系中绘制点图.【matlab 命令】 clf x=1:8; y=[15.3,20.5,27.4,36.6,49.1,65.6,87.8,117.6]; scatter(x,y,'ko') 【输出结果】图9例6 在区间[0,10] 上画出参数曲线x sin t, y cos t, z t .【matlab 命令】clft=0:pi/50:10*pi;plot3(sin(t),cos(t),t)【输出结果】图10例7画函数Z ( X Y) 2 的图形.【matlab 命令】clfx=-3:0.1:3; y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=(X+Y).^2;surf(X,Y,Z)shading flat【输出结果】图11例8画出马鞍曲面Z X 2 Y2 在不同视角的网格图.【matlab 命令】clfx=-3:0.1:3; y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=X.^2-Y.^2;mesh(X,Y,Z)【输出结果】图123 习题1.某城市一年12个月的日平均气温(单位: 0C )分别为:-10,-6,5,10,20,25,30,24,22,19,10,6,试画出条形图. 2.作出函数 f ( x )cos(e x ) e x / 2) 在区间 x [4,4] 的图形3.作隐函数 sin( xy ) 0 在 [6,6] 内的图形.cos x 2 x 2 4.已知分段函数 y x x 1 ,作出 15 x 15 的函数图形. 2 sin( x 1) 1x 15.在同一直角坐标系中,作出函数 y5 的图形和函数 x 3 的图形.6.已知sin( x 2 2 )7.绘制空间图形:(墨西哥帽子).x 2 2。
MatLab软件在数学建模中画图编程MatLab&数学建模第⼆讲MatLab图形绘制功能⼀、⼆维平⾯图形基本绘图函数hold on命令⽤于在已画好的图形上添加新的图形plot是绘制⼀维曲线的基本函数,但在使⽤此函数之前,我们需先定义曲线上每⼀点的x及y座标。
下例可画出⼀条正弦曲线:x=0:0.001:10;%0到10的1000个点的x座标y=sin(x);%对应的y座标plot(x,y);%绘图Y=sin(10*x);plot(x,y,'r:',x,Y,'b')%同时画两个函数若要改变颜⾊,在座标对後⾯加上相关字串即可:x=0:0.01:10;plot(x,sin(x),'r')若要同时改变颜⾊及图线型态(Line style),也是在坐标对後⾯加上相关字串即可:plot(x,sin(x),'r*')⽤axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围axis([0,6,-1.5,1])MATLAB也可对图形加上各种注解与处理:xlabel('x轴');%x轴注解ylabel('y轴');%y轴注解title('余弦函数');%图形标题legend('y=cos(x)');%图形注解gtext('y=cos(x)');%图形注解,⽤⿏标定位注解位置grid on;%显⽰格线fplot的指令可以⽤来⾃动的画⼀个已定义的函数分布图,⽽⽆须产⽣绘图所须要的⼀组数据做为变数。
其语法为fplot('fun',[xmin xmax ymin ymax]),其中fun 为⼀已定义的函数名称,例如sin,cos等等;⽽xmin,xmax,ymin,ymax则是设定绘图横轴及纵轴的下限及上限。
以下的例⼦是将⼀函数f(x)=sin(x)/x 在-20>>fplot('sin(x)./x',[-2020-0.41.2])【例】画椭圆1232222=+y x a =[0:pi/50:2*pi]';%⾓度π20-X =cos(a)*3;%参数⽅程Y =sin(a)*2;plot(X,Y);xlabel('x'),ylabel('y');title('椭圆')图形窗⼝的分割⼀般⽤命令subplot: subplot(2,2,1);subplot(2,3,4);MATLAB还有其他各种⼆维绘图函数,以适合不同的应⽤,详见下表。
MATLAB 的二维绘图基础了解了MATLAB 的矩阵和向量概念与输入方法之后,MATLAB 的二维绘图再简单也不过了。
假设有两个同长度的向量 x 和y, 则用plot(x,y) 就可以自动绘制画出二维图来。
如果打开过图形窗口,则在最近打开的图形窗口上绘制此图,如果未打开窗口,则开一个新的窗口绘图。
〖例〗正弦曲线绘制:>> t=0:.1:2*pi;%生成横坐标向量,使其为0,0.1,0.2,...,6.2y=sin(t); % 计算正弦向量plot(t,y) %绘制图形这样立即可以得出如图所示的二维图[4.1(a)]plot() 函数还可以同时绘制出多条曲线,其调用格式和前面不完全一致,但也好理解。
>> y1=cos(t); plot(t,y,t,y1); %或plot(t,[y; y1]), 即输出为两个行向量组成的矩阵。
图形见 4.1(b)。
plot() 函数最完整的调用格式为:>> plot(x1,y1,选项1, x2,y2, 选项2, x3,y3, 选项3, ...)其中所有的选项如表 4.1 所示。
一些选项可以连用,如'-r' 表示红色实线。
由MATLAB 绘制的二维图形可以由下面的一些命令简单地修饰。
如>> xlabel('字符串') % 给横坐标轴加说明>> ylabel('字符串') % 给纵坐标轴加说明,%并自动旋转90度>> title('字符串') % 给整个图形加图题得出的图形如右图所示。
axis() 函数可以手动地设置x,y 坐标轴范围还可以使用plotyy() 函数绘制具有两个纵坐标刻度的图形。
坐标系的分割在MATLAB 图形绘制中是很有特色的,比较规则的分割方式是用subplot() 函数定义的,其标准调用格式为subplot(n,m,k)其中,n 和m 为将图形窗口分成的行数和列数,而k 为相对的编号。
.实验报告(201 /201 学年第学期)课程名称实验名称二维图形与三维图形的绘制实验时间年月日实验室指导教师学生姓名学号班级专业实验报告三、实验内容及原理(包括硬件原理图、算法、逻辑框图,关键代码等,可续页)(一)二维图形的绘制1、绘制二维曲线的基本函数:○1plot函数plot函数的基本调用格式为:plot(x,y);其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。
例,绘制参数方程曲线。
程序如下:含多个输入参数的plot函数调用格式为:p lot(x1,y1,x2,y2,…,xn,yn);含选项的plot函数调用格式为:plot(x1,y1,选项1,x2,y2,选项2,…,xn,yn,选项n);例,用不同线型和颜色在同一坐标内绘制曲线y=2e-0.5x sin(2πx)及其包络线。
程序如下:○2双纵坐标函数plotyyplotyy函数是MATLAB 5.X新增的函数。
它能把函数值具有不同量纲、不同数量级的两个函数绘制在同一坐标中。
调用格式为:plotyy(x1,y1,x2,y2);其中x1-y1对应一条直线,x2-y2对应另一条曲线。
横坐标的标度相同,纵坐标有两个,左纵坐标用于x1-y1数据对,右纵坐标用于x2-y2数据对。
2、绘制二维图形的其他函数在线性直角坐标系中,其他形式的图形有条形图、阶梯图、杆图和填充图等,所采用的函数分别是:bar(x,y,选项);stairs(x,y,选项);stem(x,y,选项);fill(x1,y1,选项1,x2,y2,选项2,…);例,分别以条形图、填充图、阶梯图和杆图形式绘制曲线y=2e-0.5x。
程序如下:(二)三维图形的绘制1、绘制三维曲线的基本函数plot3函数与plot函数用法十分相似,其调用格式为:plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n); 例,绘制空间曲线。
程序如下:2、绘制三维曲面的函数surf函数和mesh函数的调用格式为:surf(x,y,z,e);mesh(x,y,z,e);例,绘制两个直径相等的圆管的相交图形。
MatLab & 数学建模授课:唐静波(九江学院理学院)第二讲MatLab图形绘制功能一、二维平面图形基本绘图函数hold on 命令用于在已画好的图形上添加新的图形plot是绘制一维曲线的基本函数,但在使用此函数之前,我们需先定义曲线上每一点的x及y座标。
下例可画出一条正弦曲线:x=0:0.001:10; % 0到10的1000个点的x座标y=sin(x); % 对应的y座标plot(x,y); % 绘图Y=sin(10*x);plot(x,y,'r:',x,Y,'b') % 同时画两个函数•若要改变颜色,在座标对後面加上相关字串即可:x=0:0.01:10;plot(x,sin(x),'r')若要同时改变颜色及图线型态(Line style),也是在坐标对後面加上相关字串即可:plot(x,sin(x),'r*')用axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围axis([0,6,-1.5,1])MATLAB也可对图形加上各种注解与处理:xlabel('x轴'); % x轴注解ylabel('y轴'); % y轴注解title('余弦函数'); % 图形标题legend('y = cos(x)'); % 图形注解gtext('y = cos(x)'); % 图形注解 ,用鼠标定位注解位置 grid on; % 显示格线fplot 的指令可以用来自动的画一个已定义的函数分布图,而无须产生绘图所须要的一组数据做为变数。
其语法为fplot('fun',[xmin xmax ymin ymax]),其中 fun 为一已定义的函数名称,例如 sin , cos 等等;而 xmin , xmax , ymin , ymax 则是设定绘图横轴及纵轴的下限及上限。
以下的例子是将一函数 f(x)=sin(x)/x 在-20<x<20,-0.4<y<1.2之间画出: >> fplot('sin(x)./x',[-20 20 -0.4 1.2])【例】画椭圆1232222=+y xa = [0:pi/50:2*pi]';%角度 π20- X = cos(a)*3; %参数方程 Y = sin(a)*2;plot(X,Y);xlabel('x'), ylabel('y'); title('椭圆')图形窗口的分割一般用命令subplot: subplot(2,2,1);subplot(2,3,4);MATLAB还有其他各种二维绘图函数,以适合不同的应用,详见下表。
当资料点数量不多时,长条图是很适合的表示方式:close all; % 关闭所有的图形视窗x=1:10;y=rand(size(x));bar(x,y);如果已知资料的误差量,就可用errorbar来表示。
下例以单位标准差来做资料的误差量:x = linspace(0,2*pi,30);y = sin(x);e = std(y)*ones(size(x));errorbar(x,y,e)对於变化剧烈的函数,可用fplot来进行较精确的绘图,会对剧烈变化处进行较密集的取样,如下例:fplot('sin(1/x)', [0.02 0.2]); % [0.02 0.2]是绘图范围若要产生极座标图形,可用polar:theta=linspace(0, 2*pi);r=cos(4*theta);polar(theta, r);对於大量的资料,我们可用hist来显示资料的分情况和统计特性。
下面几个命令可用来验证randn产生的高斯乱数分:x=randn(5000, 1); % 产生5000个μ=0,σ=1 的高斯乱数hist(x,20); % 20代表长条的个数rose和hist很接近,只不过是将资料大小视为角度,资料个数视为距离,并用极座标绘制表示:x=randn(1000, 1);rose(x);stairs可画出阶梯图:x=linspace(0,10,50);y=sin(x).*exp(-x/3);stairs(x,y);stems可产生针状图,常被用来绘制数位讯号:x=linspace(0,10,50);y=sin(x).*exp(-x/3);stem(x,y);stairs将资料点视为多边行顶点,并将此多边行涂上颜色:x=linspace(0,10,50);y=sin(x).*exp(-x/3);fill(x,y,'b'); % 'b'为蓝色feather将每一个资料点视复数,并以箭号画出:theta=linspace(0, 2*pi, 20);z = cos(theta)+i*sin(theta);feather(z);compass和feather很接近,只是每个箭号的起点都在圆点:theta=linspace(0, 2*pi, 20);z = cos(theta)+i*sin(theta);compass(z);二、三维立体图形三维绘图函数contour 二维等值线图,即从上向下看contour3等值线图contour3 等值线图fill3 填充的多边形mesh 网格图meshc 具有基本等值线图的网格图meshz 有零平面的网格图pcolor 二维伪彩色绘图,即从上向下看surf图plot3 直线图quiver 二维带方向箭头的速度图surf 曲面图surfc 具有基本等值线图的曲面图surfl 带亮度的曲面图waterfall 无交叉线的网格图三维绘图工具axis 修正坐标轴属性clf 清除图形窗口clabel 放置等值线标签close 关闭图形窗口figure 创建或选择图形窗口getframe 捕捉动画桢grid 放置网格griddata 对画图用的数据进行内插hidden 隐蔽网格图线条hold 保留当前图形meshgrid 产生三维绘图数据movie 放动画moviein 创建桢矩阵,存储动画shading 在曲面图和伪彩色图中用分块、平滑和插值加阴影subplot 在图形窗口内画子图text 在指定的位置放文本title 放置标题view 改变图形的视角xlabel 放置x轴标记ylabel 放置y轴标记zlabel 放置z轴标记函数viewview(az,el) 设置视图的方位角az和仰角elview([az,el])view([x,y,z]) 在笛卡儿坐标系中沿向量[x,y,z]正视原点设置视图,例如view([0 01])=view(0,90)view(2) 设置缺省的二维视图,az=0,el=90view(3) 设置缺省的三维视图,az=-37.5,el=30[az,el]=view 返回当前的方位角az和仰角elview(T) 用一个4×4的转置矩阵T来设置视图T=view 返回当前的4×4转置矩阵plot3命令将绘制二维图形的函数plot的特性扩展到三维空间图形。
函数格式除了包括第三维的信息(比如Z方向)之外,与二维函数plot相同。
plot3一般语法调用格式是plot3(x,y,z,S),这里x,y和z是向量或矩阵,S是可选的字符串,用来指定颜色、标记符号和/或线形(s可以省略)。
三维螺旋线例子:t=0:pi/50:10*pi;plot3(sin(t),cos(t),t)grid %添加网格plot3可画出空间中的曲线:t=linspace(0,20*pi, 501);plot3(t.*sin(t), t.*cos(t), t); %注意用点乘 .*亦可同时画出两条空间中的曲线:t=linspace(0, 10*pi, 501);plot3(t.*sin(t), t.*cos(t), t, t.*sin(t), t.*cos(t), -t);正弦曲线图x=linspace(0,3*pi); % 0到3pi 间100个数据点z1=sin(x);z2=sin(2*x);z3=sin(3*x);y1=zeros(100); % 含有100个数据的0数组y3=zeros(100);y2=y3/2;plot3(x,y1,z1,x,y2,z2,x,y3,z3);利用在x-y平面的矩形网格点上的z轴坐标值,MATLAB定义了一个网格曲面。
MATLAB通过将邻接的点用直线连接起来形成网状曲面,其结果好象在数据点有结点的鱼网。
mesh可画出立体网状图.画出由函数形成的立体网状图:x=linspace(-2, 2, 25); % 在x轴上取25点y=linspace(-2, 2, 25); % 在y轴上取25点[xx,yy]=meshgrid(x, y); % xx和yy都是21x21的矩阵zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵mesh(xx, yy, zz); % 画出立体网状图曲面图,除了各线条之间的空档(称作补片)用颜色填充以外,和网格图看起来是一样的。
这种图一般使用函数surf来绘制。
surf和mesh的用法类似:x=linspace(-2, 2, 25); % 在x轴上取25点y=linspace(-2, 2, 25); % 在y轴上取25点[xx,yy]=meshgrid(x, y); % xx和yy都是21x21的矩阵zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵surf(xx, yy, zz); % 画出立体曲面图MATLAB提供了一个peaks函数,可产生一个凹凸有致的曲面,包含了三个局部极大点及三个局部极小点,其方程式为:要画出此函数的最快方法即是直接键入peaks:peaksz = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...- 1/3*exp(-(x+1).^2 - y.^2)我们亦可对peaks函数取点,再以各种不同方法进行绘图。
meshz可将曲面加上围裙:[x,y,z]=peaks;meshz(x,y,z);waterfall可在x方向或y方向产生水流效果:[x,y,z]=peaks;waterfall(x,y,z);下列命令产生在y方向的水流效果:[x,y,z]=peaks;waterfall(x',y',z');meshc同时画出网状图与等高线:[x,y,z]=peaks;meshc(x,y,z);surfc同时画出曲面图与等高线:[x,y,z]=peaks;surfc(x,y,z);contour3画出曲面在三度空间中的等高线:contour3(peaks, 20);contour画出曲面等高线在XY平面的投影:contour(peaks, 20);剔透玲珑球[X0,Y0,Z0]=sphere(30); %产生单位球面的三维坐标X=2*X0;Y=2*Y0;Z=2*Z0; %产生半径为2的球面的三维坐标surf(X0,Y0,Z0); %画单位球面shading interp %采用插补明暗处理hold on; mesh(X,Y,Z);hold off %画外球面hidden off %产生透视效果axis off %不显示坐标轴动态图形动画效果彗星状轨迹图【*例】简单二维示例。