当前位置:文档之家› 基于卷积神经网络的电力设备识别方法及系统实现

基于卷积神经网络的电力设备识别方法及系统实现

基于卷积神经网络的电力设备识别方法及系统实现
基于卷积神经网络的电力设备识别方法及系统实现

基于卷积神经网络的电力设备识别方法及系统实现电力设备的正常运行是一个电力系统能够长期安全稳定工作的基础,因此对电力设备进行定期巡检就显得十分重要。以往的巡检方法都存在着各种不同的缺点,造成人力物力上的浪费且效果也有待提升。

近年来随着人工智能技术以及图像处理等技术的逐渐发展与成熟,将其应用到电力设备运行状态的检测中则能很好的弥补了传统方法的不足,该方法具有深远的发展前景。本文利用卷积神经网络以及计算机视觉等相关知识,提出了一种新的对电力设备运行状态自动检测识别的系统,该系统能自动对电力设备的位置进行检测以及对其运行状态进行判别,同时对指针式仪表进行自动读数。

本文主要的研究内容及工作如下:(1)设计并实现了基于卷积神经网络的电力设备自动检测识别算法。使用Faster RCNN+ResNet101模型在高性能计算机上完成对电力设备的识别,同时针对计算能力较弱、可携带式的嵌入式设备树莓派设计MobileNet+SSD模型并实现。

并且制作了针对电力设备检测识别的数据集,分别使用两种模型在此数据集上进行训练测试,其中Faster RCNN+ResNet101模型取得了较高的识别准确率,同时在检测速度上也能勉强达到实时性的要求,MobileNet+SSD模型在树莓派上搭配神经网络计算棒的使用在识别准确率上稍有下降,但该模型的检测速度为

15fps,完全满足系统实时性的需求。(2)对电力系统中常用的指针式仪表设计并实现了一种自动读数的算法。

使用图像处理的相关知识,先对指针式仪表图像进行灰度化、直方图均衡化以及图像去噪的预处理,然后对其进行形态学膨胀操作,接着使用Canny算子检测图像的边缘信息,并使用Hough变换在边缘信息中检测出指针所在直线的位置,

最后根据指针所在的直线使用角度法对其进行自动读数。(3)从软硬件两方面设计并实现了基于卷积神经网络的电力设备自动检测识别监控系统。

使用不同的硬件设备搭配相对应的软件算法,以满足系统在不同情况下的使用需求,并且为系统设计了前端界面,集成了系统的各方面功能,以提供更人性化的人机交互过程。

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

【CN110020684A】一种基于残差卷积自编码网络的图像去噪方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910276255.3 (22)申请日 2019.04.08 (71)申请人 西南石油大学 地址 610500 四川省成都市新都区新都大 道8号 (72)发明人 罗仁泽 王瑞杰 张可 李阳阳  马磊 袁杉杉 吕沁  (51)Int.Cl. G06K 9/62(2006.01) G06N 3/04(2006.01) G06T 5/00(2006.01) (54)发明名称 一种基于残差卷积自编码网络的图像去噪 方法 (57)摘要 本发明公开了一种基于残差卷积自编码网 络的图像去噪方法,为了克服传统浅层线性结构 特征提取能力有限,现有基于深度学习的图像去 噪模型存在泛化能力弱等问题。以残差块、批归 一化层和自编码器组成的残差卷积自编码块为 基本去噪网络结构,提出了多功能去噪残差卷积 自编码神经网络。本发明公开的图像去噪方法, 在保持较高去噪质量和去噪精度的同时,不仅拥 有盲去噪能力,还能去除与训练集类型不相同的 噪声。权利要求书2页 说明书5页 附图2页CN 110020684 A 2019.07.16 C N 110020684 A

1.一种基于残差卷积自编码网络的图像去噪方法,其特征在于包括如下步骤: 步骤1、将预处理后的原图和对应含噪声的图像作为训练集和测试集,具体步骤如下: (1)将m*m像素的三通道原图预处理为单通道灰度图像,并对图像进行切割; (2)将预处理切割后的灰度图像加入相应噪声; (3)将原图的灰度图像及其对应的加噪图像作为一组数据,以原图像的灰度图像作为标签,制作训练集和测试集; 步骤2、构建残差卷积自编码块,主结构由n+2层卷积层组成,恒等映射部分由卷积自编码结构组成,残差卷积自编码块输出为: x n+2=f(x)+x cae x cae 为输入x经过卷积自编码器提取的潜在特征,f(x)为输入x经过n+2层卷积层输出的结果,n为大于1的正整数,其中,主结构第1层卷积核大小为1*1,激活函数为Swish;第2到第n+1层结构相同,均添加批归一化层,卷积核大小为3*3,激活函数为Relu;第n+2层卷积核大小为1*1,激活函数为Swish; 其中Relu激活函数为: Swish激活函数为: 式中β为x的缩放参数,β>0; 步骤3、网络结构主要由步骤2提出的残差卷积自编码块组成,网络共(n+2)*a+8层,a为大于2的正整数,第一层是一个用来降维的卷积层,中间层由残差卷积自编码块和残差卷积块组成,最后一层为一个全连接层; 步骤4、将步骤1预处理后的训练集,通过列队输入到步骤3搭建的网络模型中,采用误差反向传播,并以均方误差损失函数来衡量真实值与预测值的距离,通过数据集的每次迭代,使用梯度下降来调整神经元之间的权重以降低代价函数,进而优化网络,并以定量的峰值信噪比和定性的视觉感受判断网络去噪效果,初次保存网络模型的各个参数; 均方误差损失函数为: 式中,y i 为通过列队读入的标签数据,z i 为输出去噪后的数据,均方误差越小代表去噪后的数据与标签数据越接近,网络准确率越高; 峰值信噪比公式为: 其中M MSE 是原图和处理图像之间的均方误差,PSNR数值越大表示失真越小; 步骤5、将步骤1预处理后的测试集,输入到步骤4优化训练好的网络模型中,并通过定 权 利 要 求 书1/2页2CN 110020684 A

卷积神经网络CNN原理、改进及应用

一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet 大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。这两种操作形成了CNN的卷积层。此外,卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,即池化层,这种特有的两次特征提取结构减小了特征分辨率。

一种基于卷积神经网络的图像分类方法

F 福建电脑 UJIAN COMPUTER 福建电脑2018年第2期 基金项目:国家级大学生创新训练计划项目(201610719001);陕西省大学生创新训练计划项目(1495)。 0引言 图像分类就是利用计算机模拟人类对图像的理解和认知,自动根据图像的内容将图片划分到合适的类别中,它在智能识别、目标检测和信息搜索等计算机视觉领域有着广泛的应用,图像分类问题也一直是计算机视觉的基本问题。目前,关于图像分类的研究大多集中在医学图像、遥感图像等专业领域,而对于自然图像分类的研究较少,虽然分类的算法如K 最近邻算法[1]、决策树算法[2]、神经网络算法[3]、支持向量机算法[4]和一些混合算法[5]能达到较可观的分类效果,但对大数据库的分类,存在训练时间长,准确度低、易出现过拟合等缺点。 由于卷积神经网络[6](Convolutional Neural Network,CNN )具有输入图像不需预处理;特征提取和模式分类同时在训练中产生;权重共享减少了网络训练参数;很强的抗干扰能力等优点。本文首先分析探讨了卷积神经网络结构、原理,提出了一种改进的卷积神经网络,设计了基于该模型的图像分类算法,实验结果表明该模型能提取出大数据库中图像明显特征,可精确地对图像集进行分类。 1卷积神经网络及其改进 CNN 是将卷积运算引入到深度学习模型,属于多层前馈神经网络模型,但与传统不同的是它的输入是二维模式,可以直接处理二维模式,其连接权是二维权矩阵,称为卷积核,基本操作是二维离散卷积和池化。简单地说,CNN 就是能够自动的对于一张图片学习出最好的卷积核以及这些卷积核的组合方式。 1.1CNN 结构 CNN 一般由卷积层、池化层、全连接层和一个输出层(或分类器)组成。每层由多个二维平面块组成,每个平面块由多个独立神经元组成,如图1所示。 卷积层通过卷积运算提取图像的不同特征,包含若干组CNN 训练的参数,即进行学习的卷积核,当前层的卷积核对输入的一组图片做卷积运算,再经过激活函数得到新的特征图像,通常采用卷积离散型将输入原始图像的像素输出为新的像素点,可由公式(1)计算得出: (1) 其中,M β表示输入特征图像的子集;W γαβ表示卷积核;γ表 示网络层数;b γβ表示输出特征映射的偏置,f 表示激活函数,最常用的是sigmoid 函数与双曲正切函数。 卷积层后一般接入池化层来减小数据量,通过池化把输入的特征图像分割为不重叠的矩形区域,而对相应的矩形区域做运算,常见的有最大池化和均值池化。经过交替的卷积层和池化层之后,已经获得了高度抽象的特征图像,全连接层把得到的多个特征映射转化为一个特征向量以完全连接的方式输出,最后对提取的特征进行分类。 1.2CNN 工作原理 在CNN 中,通过神经网络的梯度反向传播算法实现对参数的学习训练,属于有监督学习。在进行学习训练过程中,输入信号的训练输出和实际输出会有一定误差,误差在梯度下降算法中逐层传播,逐层更新网络参数。假设样例(x ,y )的损失函数为C (W ,b ;x ,y ),如式(2)。 (2)为防止过拟合,需增加,L 2范数,如式(3)。 (3) 其中,h W ,b (x )为输入样本x 经过CNN 后的输出,y 为样本的标签真值,λ为控制强度。为了使代价函数尽可能的小,因此需要不断更新每一层的权重W 和偏置项b ,任意一层(假设为γ层)的权重更新如式(4)。 (4) 1.3CNN 的改进 在处理大数据集方面,由于卷积层和池化层数较少,获得的特征图相对不足,因此达不到较好的分类效果。针对该缺点,依据CNN 的卷积层和池化层设置灵活性,不同的结构设置会得到不同结果的特点,对传统CNN 进行了两方面的改进,一方面将卷积层和池化层层数分别增至3层,提高了各层提取图像特征的能力,使分类效果得到改善;另一方面设置卷积核大小为5×5,扫描的步长为2,在提高训练效率的同时也保证了分类精确度。 2基于改进CNN 的图像分类 一种基于卷积神经网络的图像分类方法 张琳林,曹军梅 (延安大学计算机学院陕西延安716000) 【摘要】利用卷积神经网络是深度学习的一种高效识别模型的思想, 将卷积神经网络应用于图像分类中,避免对图像进行复杂的预处理的同时也提高了图像分类的准确度。在分析卷积神经网络结构、 原理及特点的基础上,提出了一种改进的卷积神经网络模型,设计了基于该模型的图像分类算法, 并在大数据库CIFA R-10下进行实验验证,表明图像分类的准确度高,总结了网络模型对图像分类结果的影响因素。 【关键词】卷积神经网络;图像分类;卷积;池化;特征图像图1CNN 的基本结 构 DOI:10.16707/https://www.doczj.com/doc/646997797.html,ki.fjpc.2018.02.021 46··

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

卷积神经网络CNN从入门到精通

卷积神经网络CNN从入门到精通 卷积神经网络算法的一个实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: 局部区域感知 权重共享 空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map 的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与

一文读懂卷积神经网络

一文读懂卷积神经网络 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、 cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。 第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。 第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。 第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。 接下来话不多说,直接奔入主题开始CNN之旅。 卷积神经网络简介(Convolutional Neural Networks,简称CNN) 卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。 一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

一文读懂卷积神经网络CNN

一文读懂卷积神经网络CNN ★据说阿尔法狗战胜李世乭靠的是卷积神经网络算法,所以小编找到了一篇介绍该算法的文章,大家可以看一看。★ 自去年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。第一点,在学习Deep learning 和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。接下来话不多说,直接奔入主题开始

CNN之旅。卷积神经网络简介(Convolutional Neural Networks,简称CNN)卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel 和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网 络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid 函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少

卷积神经网络全面解析之算法实现

卷积神经网络全面解析之算法实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN 在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: ?局部区域感知 ?权重共享 ?空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与采样层交

卷积神经网络n代码解析

deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是Rasmus Berg Palm)代码下载:rasmusbergpalm/DeepLearnToolbox 这里我们介绍deepLearnToolbox-master中的CNN部分。 DeepLearnToolbox-master中CNN内的函数: 调用关系为: 该模型使用了mnist的数字作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。 网络结构为: 让我们来看看各个函数: 一、Test_example_CNN: (1) 三、 (2) 四、 (2) 五、 (2) 五、 (2) 六、 (3) 一、Test_example_CNN: Test_example_CNN: 1设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅 2cnnsetup函数初始化卷积核、偏置等

3cnntrain函数训练cnn,把训练数据分成batch,然后调用 cnnff完成训练的前向过程, cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量) cnnapplygrads把计算出来的梯度加到原始模型上去 4cnntest函数,测试当前模型的准确率 该模型采用的数据为, 含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。 把数据转成相应的格式,并归一化。 设置网络结构及训练参数 初始化网络,对数据进行批训练,验证模型准确率 绘制均方误差曲线 二、 该函数你用于初始化CNN的参数。 设置各层的mapsize大小, 初始化卷积层的卷积核、bias 尾部单层感知机的参数设置 * bias统一设置为0 权重设置为:-1~1之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))

深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由 IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助 DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署 DNN 的关键。 论文地址: 本文旨在提供一个关于实现 DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个 DNN 综述——讨论了支持 DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低 DNN 计算成本。本文也会对帮助研究者和从业者快速上手 DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的 DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解 DNN 的关键设计考量;通过基准和对比指标评估不同的 DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同 DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础 [1]。由于 DNN 在语音识别 [2] 和图像识别 [3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些 DNN 被部署到了从自动驾驶汽车 [4]、癌症检测 [5] 到复杂游戏 [6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而 DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而 DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是 GPU),已经成为许多 DNN 处理的砥柱,但提供对 DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对 DNN、理解 DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下: Section II 给出了 DNN 为什么很重要的背景、历史和应用。 Section III 给出了 DNN 基础组件的概述,还有目前流行使用的 DNN 模型。 Section IV 描述了 DNN 研发所能用到的各种资源。 Section V 描述了处理 DNN 用到的各种硬件平台,以及在不影响准确率的情况下改进吞吐量(thoughtput)和能量的各种优化方法(即产生 bit-wise identical 结果)。 Section VI 讨论了混合信号回路和新的存储技术如何被用于近数据处理(near-data processing),从而解决 DNN 中数据流通时面临的吞吐量和能量消耗难题。 Section VII 描述了各种用来改进 DNN 吞吐量和能耗的联合算法和硬件优化,同时最小化对准确率的影响。 Section VIII 描述了对比 DNN 设计时应该考虑的关键标准。

卷积神经网络全面解析之代码注释

卷积神经网络全面解析之代码注释 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好的还可以放到博客上面与大家交流。因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流. 下面是自己对代码的注释: cnnexamples.m [plain]view plain copy 1.clear all; close all; clc; 2.addpath('../data'); 3.addpath('../util'); 4.load mnist_uint8; 5. 6.train_x = double(reshape(train_x',28,28,60000))/255; 7.test_x = double(reshape(test_x',28,28,10000))/255; 8.train_y = double(train_y'); 9.test_y = double(test_y'); 10. 11.%% ex1 12.%will run 1 epoch in about 200 second and get around 11% error. 13.%With 100 epochs you'll get around 1.2% error 14. 15.c https://www.doczj.com/doc/646997797.html,yers = { 16. struct('type', 'i') %input layer 17. struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convol ution layer 18. struct('type', 's', 'scale', 2) %sub sampling layer

卷积神经网络全面解析之代码详细讲解

卷积神经网络全面解析之代码详解 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Convolutional Neural Networks (LeNet)。 一、CNN卷积神经网络原理简介 要讲明白卷积神经网络,估计得长篇大论,网上有很多博文已经写得很好了,所以本文就不重复了,如果你了解CNN,那可以往下看,本文主要是详细地解读CNN的实现代码。 CNN的最大特点就是稀疏连接(局部感受)和权值共享,如下面两图所示,左为稀疏连接,右为权值共享。稀疏连接和权值共享可以减少所要训练的参数,减少计算复杂度。 至于CNN的结构,以经典的LeNet5来说明:

这个图真是无处不在,一谈CNN,必说LeNet5,这图来自于这篇论文:Gradient-Based Learning Applied to Document Recognition,论文很长,第7页那里开始讲LeNet5这个结构,建议看看那部分。 我这里简单说一下,LeNet5这张图从左到右,先是input,这是输入层,即输入的图片。input-layer到C1这部分就是一个卷积层(convolution 运算),C1到S2是一个子采样层(pooling运算),关于卷积和子采样的具体过程可以参考下图: 然后,S2到C3又是卷积,C3到S4又是子采样,可以发现,卷积和子采样都是成对出现的,卷积后面一般跟着子采样。S4到C5之间是全连接的,这就相当于一个MLP的隐含层了(如果你不清楚MLP,参考《DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解》)。C5到F6同样是全连接,也是相当于一个MLP的隐含层。最后从F6到输出output,其实就是一个分类器,这一层就叫分类层。 ok,CNN的基本结构大概就是这样,由输入、卷积层、子采样层、全连接层、分类层、输出这些基本“构件”组成,一般根据具体的应用或者

卷积神经网络总结

1 卷积神经网络 卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。这个优点在网络的输入是多维图像时表现得更为明显, 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性. 在典型的CNN 中,开始几层通常是卷积层和下采样层的交替, 在靠近输出层的最后几层网络通常是全连接网络。卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数, 预测过程主要是基于输入图像和网络参数计算类别标签。卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等) 和反向传播算法等。在本节中, 我们先介绍典型CNN 的网络结构和反向传播算法, 然后概述常用的其他CNN 网络结构和方法。神经网络参数的中文名称主要参考文献 [18] 卷积神经网络的结构和反向传播算法主要参考文献[17] 。 网络结构 卷积层 在卷积层, 上一层的特征图(Feature map) 被一个可学习的卷积核进行卷积, 然后通过一个激活函数(Activation function), 就可以得到输出特征图. 每个输出特征图可以组 合卷积多个特征图的值[17] : ()l l j j x f u = 1j l l l l j j ij j i M u x k b -∈= *+∑ 其中, l j u 称为卷积层l 的第j 个通道的净激活(Netactivation), 它通过对前一层输出 特征图1l j x -进行卷积求和与偏置后得到的, l j x 是卷积层l 的第j 个通道的输出。()f 称为激活函数, 通常可使用sigmoid 和tanh 等函数。j M 表示用于计算l j u 的输入特征图子集, l ij k 是卷积核矩阵, l j b 是对卷积后特征图的偏置。对于一个输出特征图l j x ,每个输入特征图1l j x -对应的卷积核l ij k 可能不同,“*”是卷积符号。 ; 下采样层 下采样层将每个输入特征图通过下面的公式下采样输出特征图[17]: ()l l j j x f u = 1()l l l l j j j j u down x b β-=+ 其中, l j u 称为下采样层l 的第j 通道的净激活, 它由前一层输出特征图1 l j x -进行下采样

相关主题
文本预览
相关文档 最新文档