当前位置:文档之家› 亲水性氨基硅油的合成与应用性能研究

亲水性氨基硅油的合成与应用性能研究

亲水性氨基硅油的合成与应用性能研究
亲水性氨基硅油的合成与应用性能研究

高性能混凝土配合比设计及路用性能研究

高性能混凝土配合比设计及路用性能研究 发表时间:2016-11-08T10:21:08.737Z 来源:《低碳地产》2016年7月第14期作者:胡兴琼[导读] 高性能混凝土在建筑工程中发挥不可替代的作用,也是使用最为广泛的建筑材料。 中交路桥华南工程有限公司广东佛山 528000 【摘要】高性能混凝土在建筑工程中发挥不可替代的作用,也是使用最为广泛的建筑材料。但是必须严格控制混凝土的配合比,才能真正实现高性能。本文从配合比设计和路用性能两个方面对路面高性能混凝土配合比设计进行研究,旨在优化混凝土的配合比设计参数,实现混凝土高耐久性,并兼顾工作性与强度的设计目标,提高混凝土路面性能,供参考。 【关键词】高性能混凝土;配合比;参数优化设计;试验设计近年来随着建设领域的大规模发展,混凝土材料的性能也日益提高。高性能混凝土是一种新型高技术混凝土 ,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,其高性能包括:良好的工作性能,稳定的力学性能,较高的体积稳定性和高耐久性,也因此得到了土木工程界的广泛应用及关注。鉴于科学合理的进行配合比设计是保证混凝土工作性、强度及后期耐久性的关键前提,因此,关于路用高性能混凝土配合比设计参数的研究具有很重要的价值。下面,笔者将结合试验研究,就高性能混凝土配合比优化设计展开探讨。 1 正交试验设计 高性能混凝土配合比设计的关键设计参数为:水胶比、矿掺比、浆集比、砂率、外加剂掺量。部分应用中为了提高抗折性能,在拌合物中掺加聚合物,如聚丙烯等。路面用混凝土的关键性能技术指标包括:抗折强度、抗压强度、抗冻性及抗渗性能等。目前施工现场多采用复合型高效减水剂,不同外加剂的成分及性能差异较大,针对单一品种外加剂的研究具有很大局限性,对施工实践的指导意义也不强。本文选取水胶比、矿掺比、浆体百分率及砂率进行正交试验设计,通过试验探寻配合比设计参数对路面用高性能混凝土抗折强度、抗折弹性模量、抗冻耐久性指数、氯离子扩散系数及抗渗性能的影响规律。其中,水胶比和矿掺比设计为5个水平,砂率和桨集比为6个水平,共进行49组试验(数据略)。关键配合比设计参数的取值范围如表1所示。 2 试验结果分析 本文采用SPSS软件,对各个设计参数与混凝土性能间的关系进行主效应分析,并进行方差齐性检验。具体分析结果如下: (1)根据试验结果,以氯离子扩散系数为因变量的主体间效应检验结果如表2所示。 不同配合比设计参数对DRCM的具体影响规律如图1~图4所示。

氨基硅油配方及工艺

(1) 氨基含量0.6%,活性羟基封端 硅油合成配方: 602氨基硅烷-----------------------------8Kg DMC-------------------------------------192Kg 5%氢氧化钾水溶液---------------------400g 蒸馏水-------------------------------------200g 设备: 300L不锈钢夹套反应釜,电动搅拌,导热油及电加热设备。 合成工艺: 先将192KgDMC投入反应釜内,开搅拌; 搅拌下加入8Kg氨基硅烷,然后缓慢加入400克氢氧化钾水溶液和200克蒸馏水,加料过程中搅拌不能停; 全部物料加完后,开始加热升温; 料温150℃开始计时,同时注意控温,保持料温150-160℃反应4小时得到产品,反应过程中搅拌不能停。 产品性状: 无色透明粘稠液体,粘度600-1000cs。 乳液配方: 氨基硅油------------------------20Kg AEO3-----------------------------4Kg TX-10----------------------------6Kg 冰醋酸-------------------------0.6Kg 去离子水------------------------70Kg 乳化设备: 200L分散搅拌设备。 乳化工艺: 先投氨基硅油、AEO3、TX-10; 开搅拌,将物料搅匀; 搅拌下缓慢加入冰醋酸; 搅拌下缓慢加水,直到全部水加完; 全部物料搅匀后,停机。 产品性状: 无色透明液体。 产品用途: 用于织物处理,赋予织物很好的柔软性,特别适合棉、毛织物处理。本产品氨基含量较高,略有黄变,不适合处理白色和浅色织物。 用于洗发水中,可以改善头发柔软性。

氨基硅油乳化

氨基硅油乳化 {Reference Type}:Journal Article {Author}:李玮 {Year}:1995 {Title}:TS系列氨基硅油乳液应用试验 {Tag}:0 {Journal}:有机硅材料及应用 {Issue}:2 {Pages}:20-22 {Reference Type}:Journal Article {Author}:白杉,周洁 {Year}:2006 {Title}:氨基改性硅乳液在纺织整理中的应用{Tag}:0 {Journal}:天津纺织科技 {Issue}:2 {Pages}:12-15

{Date}:2009-11-01 {Reference Type}:Journal Article {Author}:王树根,苏开第,马永才 {Year}:1998 {Title}:氨基改性羟基硅油乳液的制备与性能 {Tag}:0 {Journal}:印染助剂 {Volume}:15 {Issue}:6 {Pages}:5-9 {Date}:2009-09-20 {Reference Type}:Journal Article {Year}:2009 {Title}:氨基改性有机硅柔软剂的合成及其微乳液的制备研究{Tag}:0 {Date}:2009-10-22

{Reference Type}:Journal Article {Year}:2009 {Title}:氨基改性有机硅微乳化技术的探讨{Tag}:0 {Date}:2009-10-26 {Reference Type}:Journal Article {Author}:钟泰宣 {Year}:1996 {Title}:氨基硅油乳化工艺的研究{Tag}:0 {Journal}:有机硅材料及应用{Issue}:2 {Pages}:9-11 {Reference Type}:Journal Article {Author}:郭丽霞,梅玉娇 {Year}:2000 {Title}:氨基硅油乳化剂的分析与配制{Tag}:0

土工合成材料的发展历史

土工合成材料的发展历史 古代的原始土工材料 据科学考证,数千年前人类就利用芦苇加筋黏土建造房屋,三千多年前,英国人曾在沼泽地带用木排修筑道路。在我国,远在新石器时代,我们的祖先就利用茅草作为土的加筋材料。在河南发现的仰韶遗址距今五六千年,有很多简陋住室的墙壁和屋顶就是利用草泥修筑的。公元前2000~公元前1000年,古巴比伦人曾把织物纤维掺在土中建造庙宇。 实际上,在独立于人类文明的自然界,许多鸟类和昆虫都本能地利用非土材料(草与树枝等)加固泥土巢穴;树木依靠庞大的根系吸收养料水分,同时也加固了赖以立足的地基。这些都是"以非土材料加固土体"原理的自然体现。 现代的土工合成材料 在现代,1930年美国北卡罗来纳州首次使用棉纺织品加固路基土。在第二次世界大战中,英国曾在路基上铺放梢辊和帆布,供装甲车通行;荷兰曾大量利用柳枝、梢料加固堤坝,防止冲刷。合成纤维自1913年在欧洲问世以来,至今已有百年历史,但合成材料用于土木工程却开始于20世纪50年代末。当时,美国人R.J.Barrett在佛罗里达州首次将透水性合成纤维有纺织物铺设在护岸混凝土块下,作为防冲刷保护层,因而他被称为"土工织物之父"。1957年荷兰首先用尼龙纤维有纺织物制成充砂管袋,应用于护岸防冲和堵口工程。 1958年在美国佛罗里达州大西洋海岸防护工程中,聚氯乙烯有纺织物被置于土与石块之间,作为海岸防冲刷。经过27年的观察,其状态仍然良好。1985年,前联邦德国采用合成纤维制成有纺织物砂袋,修筑防波堤。 1959年在日本伊势湾海岸,海堤和围堤因台风遭到灾难性破坏。在海岸修复工程中,利用有纺织物砂袋和合成材料片成功地修建了堤防;在修复围堤沉排工程时,采用维纶编织布成功代替沉排。5年后检查,未发现腐蚀现象,强度几乎没有下降。 1960年荷兰采用尼龙有纺织物充砂垫层,防止海岸淘刷。 1962年美国杜邦公司开发纺粘法长纤维无纺布,以取代短纤维无纺布。从此,欧洲各国都以纺粘法生产长纤维无纺布,并用做道路、护岸等工程中的滤层和导水体。 1963年土工织物正式应用于日本国营铁道的土建工程中。 1967年在海岸保护工程中,丹麦采用透水或不透水砂袋,用水力充填法冲人海滩砂形成充砂长管袋,保护海岸。 1968年法国将针刺无纺布应用于道路工程,英国将热粘无纺布应用于道路工程,前联邦德国将短纤维制成的针刺无纺布用于渠道岸边防护工程。 一般认为,有纺织物于20世纪50年代首先在美国应用,无纺织物的应用在70年代始于欧洲。 20世纪70年代以后,在国外,织物的应用从马路、铁路路基工程逐步扩展到挡土墙、土坝等大型永久性工程。"土工织物"(geotextile)和"土工膜"(geomembrane)是1977年J.P.Giroud 与J.Perfetti首先提出来的。他们把透水的土工合成材料称为"土工织物",不透水的称为"土工膜"。这两个名词被使用了许多年。近十几年来大量的以合成聚合物为原料的其他类型的土工合成材料的纷纷问世,已经超出了"织物"和"膜"的范畴。进入80年代,土工格栅、土工网和土工垫等新材料相继出现,进一步加快了土工合成材料应用技术的发展。1983年J.E.Fluet建议使用"土工合成材料"(geosynthetics)一词来概括各种类型的材料,现在这一名词已被人们所接受。 与世界先进国家相比,土工合成材料在我国的应用大约晚了十几年。在20世纪60年代中期,我国才开始将塑料薄膜用于渠道防渗工程。在70年代,一种由扁丝纤维织成的编织物,即

三元共聚硅油的应用性能分析

三元共聚硅油的应用性能分析 摘要:本文以JL-4610和JL-4615为例,对三元共聚硅油的应用性能进行了分析。通过对其手感、黄色变、摩擦耐洗牢度、抗静电性、与分散染料同浴染色及稳定性这六方面的探讨,揭示了三元共聚硅油手感滑软,黄色变小,牢度好,稳定性高等优点,适合在染整后整理中广泛应用。 关键词:三元共聚硅油应用性能分析 引言 在纺织印染助剂中,柔软剂是整理助剂中的一个大类,品种多,产量大。从化学纤维的纺丝、拉伸、卷筒、编织或纤维素纤维的制条、纺纱、织造到纺织品的染色整理等各项工序都要使用柔软平滑剂。各种柔软剂其主要功能是满足各种纺织品的不同手感,不同风格和要求。随着现代生活水平的逐步提高,柔软剂的使用已发展到家庭洗涤工序,称为柔软调理剂。其中三元共聚硅油是一种高分子平滑型柔软剂,采用硅氧烷、多胺、聚醚这三者聚合而成。 自20世纪60年代以来,硅油柔软剂经历了四个发展阶段。从第一代的二甲基硅油、羟基改性有机硅,到第二代的环氧基改性有机硅、聚醚改性有机硅,至第三代的氨基改性有机硅。目前氨基改性有机硅以其突出的柔软平滑手感成为市场上应用最多的有机硅整理剂。但是传统氨基改性有机硅在加工过程中易产生粘辊、粘缸现象,不耐高剪切,相容性差,而且手感发粘等缺点,因此科研人员研发了新型的线形三元共聚有机硅――瞬间亲水整理剂JL-4610及超稳定柔滑亲水整理剂JL-4615以满足市场的需要。本文从手感、色黄变、干湿摩擦牢度、耐洗色牢度、抗静电、与涤纶同浴染色以及稳定性等几方面对新型三元共聚硅油的特点和应用性能进行探讨。 1实验材料与方法 1.1 仪器与设备 电子天平,VPM-1A型轧车,PT-2A销板拉幅机、SW-24AII型耐洗色牢度试验机、Datacoler测色仪、Y5718耐摩擦色牢度试验机、Y(L)3420织物静电测试仪 1.2 试验材料与药品 织物:涤纶毛毯、涤纶机织(红色、墨绿色、白色)、棉针织(翠兰、梅红)、黑色棉机织、涤纶增白布、麂皮绒 助剂:瞬间亲水整理剂JL-4610、超稳定柔滑亲水整理剂JL-4615、普通氨基硅油

大粒径沥青混凝土路用性能研究

大粒径沥青混凝土路用性能研究 摘要:通过三轴试验对大粒径沥青混合料的强度构成参数,即粘聚力c和内摩阻 角?准进行了试验研究,研究了大粒径沥青混合料得高温稳定性、水稳定性及力 学性能。研究表明,大粒径沥青混合料具有很好的高温稳定性和抵抗反射裂缝的 性能,具有良好得使用效果,可延长路用使用寿命,因而具有较好得经济和社会 效益。 关键词:大粒径沥青混合料(LSAM);高温稳定性;水稳定性 中图分类号:U414 文献标识码:A 文章编号:1006-4311(2010)09- 0152-02 0 引言 大粒径沥青混合料(Large-stone Asphlt Mixes,简称LSAM)起源于20世纪的 美国,是指含有矿料的最大粒径在25~53mm之间得热拌热铺沥青混合料。它的 铺筑厚度一般为最大粒径的2.5倍,一次性铺筑厚度11~13mm。级配良好得LSAM可以抵抗较大的塑性和剪切变形,承受重载交通的作用,具有较好的抗车 辙能力,很好的提高了沥青路面的高温稳定性。 1 大粒径沥青混凝土内部受力分析 沥青混合料既是一种弹粘塑性体,又是一种多相分散体系。对这种材料进行 内部受力研究,其目的就是要考察沥青和骨料在混合料的形成过程中分别所起的 作用。我们采用Mohr-Coulomb理论,当采用三轴试验进行研究时,其表达式为:在一定的力学加载条件下,如果材料一定,那么其强度参数c、?准值是常数, 最大主应力σ1和最小主应力σ3之间便具有如下线性关系:σ1=kσ3+b。 将上述两式对等起来,我们便可以最终通过试验方法获得材料的强度参数c、?准的值,即有: 在σ1和σ3的平面内,如果直线的斜率k和截距b是确定的,那么材料的强 度参数也是确定的。本研究就是依据上述方法计算两种LSAM的c、?准值,并将 其与以往得传统沥青混凝土一些实验研究结果进行比较。 1.1 试验设计 1.1.1 原材料性能。沥青的技术指标试验:本试验选用壳牌重交通石油沥青, 技术指标针入度(25℃,5s,100g)(1/10mm)为72.5,延度(15℃,5cm/min)大于100cm,软化点49.8℃,密度1.026g/cm3,含蜡量1.4%。选用沥青符合AH-70#的要求。 1.1.2 石料的技术性质。本试验粗集料为石灰岩,细集料为天然砂,填料为石 灰石矿粉,集料各项性能指标均符合规范要求。 1.2 矿料级配及最佳油石比的确定 本试验选用两种LSAM,其中A为紧排骨架密实结构,B为松排骨架密实结构。配时采用逐级回配的方法以中值为目标级配。 经大马歇尔试验确定的LSAM最佳油石比为:A级配类型最佳油石比为3.7%,密度为2.422g/cm3,试件成型密度为2.374g/cm3;B级配类型最佳油石比为3.6%,密度为2.463g/cm3,试件成型密度为2.415g/cm3。 1.3 试件制备 试件成型的压实度标准采用98%,则两种LSAM级配试件成型密度见表2,试

三元共聚硅油的应用性能分析

三元共聚硅油的应用性能分析 摘要:本文以TF-463和TF-468K为例,对三元共聚硅油的应用性能进行了分析。通过对其手感、黄色变、摩擦耐洗牢度、抗静电性、与分散染料同浴染色及稳定性这六方面的探讨,揭示了三元共聚硅油手感滑软,黄色变小,牢度好,稳定性高等优点,适合在染整后整理中广泛应用。 关键词:三元共聚硅油应用性能分析 引言 在纺织印染助剂中,柔软剂是整理助剂中的一个大类,品种多,产量大。从化学纤维的纺丝、拉伸、卷筒、编织或纤维素纤维的制条、纺纱、织造到纺织品的染色整理等

各项工序都要使用柔软平滑剂。各种柔软剂其主要功能是满足各种纺织品的不同手感,不同风格和要求。随着现代生活水平的逐步提高,柔软剂的使用已发展到家庭洗涤工序,称为柔软调理剂。其中三元共聚硅油是一种高分子平滑型柔软剂,采用硅氧烷、多胺、聚醚这三者聚合而成。 自20世纪60年代以来,硅油柔软剂经历了四个发展阶段。从第一代的二甲基硅油、羟基改性有机硅,到第二代的环氧基改性有机硅、聚醚改性有机硅,至第三代的氨基改性有机硅。目前氨基改性有机硅以其突出的柔软平滑手感成为市场上应用最多的有机硅整理剂。但是传统氨基改性有机硅在加工过程中易产生粘辊、粘缸现象,不耐高剪切,相容性差,而且手感发粘等缺点,因此科研人员研发了新型的线形三元共聚有机硅――低温成膜高渗透柔滑整理剂TF-463及超稳定柔滑整理剂TF-468K以满足市场的需要。本文从手感、色黄变、干湿摩擦牢度、耐洗色牢度、抗静电、与涤纶同浴染色以及稳定性等几方面对新型三元共聚硅油的特点和应用性能进行探讨。 1实验材料与方法 1.1 仪器与设备 电子天平,VPM-1A型轧车,PT-2A销板拉幅机、SW-24AII型耐洗色牢度试验机、Datacoler测色仪、Y5718耐摩擦色牢度试验机、Y(L)3420织物静电测试仪 1.2 试验材料与药品 织物:涤纶毛毯、涤纶机织(红色、墨绿色、白色)、棉针织(翠兰、梅红)、黑色棉机织、涤纶增白布、麂皮绒 助剂:低温成膜高渗透柔滑整理剂TF-463、超稳定柔滑整理剂TF-468K、普通氨基硅油 1.3 实验方法 1.3.1手感评价 将不同硅油分别以10g/L的浓度浸轧到涤针织织物上(浸轧的工艺为:配液→常温浸轧→定型(190℃×60S)),再将整理过的布样放至室内回潮冷却,最后由人为从柔软、蓬松、滑度等方面综合评价,得到评价结果。 1.3.2色变、黄变评价 根据 1.3.1中的方法用不同硅油在增白布或容易变色的织物上进行柔软整理,用DatacoLor测色仪测试其与空白样的白度、△L*、△a*、△b*和△E。

01土工合成材料应用技术规范【GB50290-98】条文说明

, 中华人民共和国国家标准 土工合成材料应用技术规范 条文说明

目次总则 基本规定 设计原则 施工检验 反滤及排水 一般规定 反滤准则 设计方法 软土地基处理中排水带设计与施工 防渗 防渗结构 工程防渗设计与施工 加筋 加筋土挡墙设计 加筋土垫层设计与施工 加筋土坡设计与施工 防护 一般规定 软体排防冲 土工模袋护坡 土工织物充填袋筑防护堤 路面与道面反射裂缝的防治 其它防护工程

总则 年代初我国即开始土工织物等土工合成材料的应用 和据不完全统这种材料修建的工程 材料与技术的优点愈来愈为工程其是近几年来在防洪抢险中的大量应用及其成土工程人员的高度但是该技术在我国的应用尚不普及为了在规范设计与施工中使之得到正确 土工合成材料具有功能其复合制品更能满足工程的多种需要故在各种工程建设中皆有广泛用 应用土工合成材料工程措施只是主体工程中的一个组成 部分当符合国家现行的其它有关

术语 参考了美国际土工合成材料 布 所列术语是本规范中出现的主要术语包括材料试验参数

基本规定 材料 所列分类系统系根据类法编写 所列为一般的测试项目应按工程需要选 土工合成材料特性常随温等试验条件 验应尽量模拟预计现场条件进 土工合成材料的强度在实际工程中会不同程度地因机械 与生物作用以及在长期使用中的蠕变等 应根据工程经验经统计确定其公式的各系数取 值亦可参见表 表土工织物强度的影响系数 土工合成材料极易受紫外线照射降解的特别注意 设计原则 土工合成材料在工程中发挥的作用大多是综合性 用作加筋时也设计时可以以加筋为依 兼顾 土工合成材料是一种制品易于受到施工损

氨基硅油的合成及工艺对比讨论

氨基硅油的合成及工艺对比讨论 袁金亮,周昭亮,傅向东 (广州市旭美化工科技有限公司,广东广州 510665) 摘要:以二甲基硅氧烷混合环体(DMC)或八甲基环四硅氧烷(D4)或端羟基聚二甲基硅氧烷及N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷为原料,通过本体聚合的方法制备氨基硅油。通过对影响聚合的催化剂、偶联剂、反应温度及反应时间等因素的讨论,确定了适宜的聚合条件。对比分析不同原料合成氨基硅油的产率以及简单分析其乳化与应用的差异。 关键词:二甲基硅氧烷混合环体(DMC);八甲基环四硅氧烷(D4 );端羟基聚二甲基硅氧烷;氨基硅氧烷;本体聚合;氨基硅油; 氨基硅油即氨基改性聚硅氧烷现已广泛应用于纺织、制革及日化等行业,尤其是纺织印染行业的用量很大[1]。如用作纺织柔软整理剂,可赋予织物柔软、滑爽和丰满的效果,还具有良好的弹性手感。 氨基改性聚硅氧烷分子量较大,同时交联性使纤维产生弹性。由于氨基的极性强、易与纤维中的羟基和羧基发生化学反应,使聚硅氧烷主链发生取向定位并吸附于纤维表面,降低了纤维之间的摩擦系数,从而给予纤维极好的柔软、平滑、耐洗性[2]。同时,氨基的引入提高了聚硅氧烷的亲水性,使其易于乳化,只要采用适当配方和工艺就能得到微乳液,使纤维产生丰满感。 氨基硅油对提高织物附加值具有积极的作用,国外公司如日本信越、德国瓦克等,都在努力开发高品质的氨基硅油。国内对氨基硅油的研究也在不断加强,但还存在乳液漂油、泛黄等问题[3]。 用端羟基聚二甲基硅氧烷(俗称线性体)直接与氨基硅氧烷聚合制备氨基硅油或用二甲基硅氧烷混合环体(DMC)或八甲基环四硅氧烷(D4)开环聚合制备氨基硅油已逐渐普及,本实验将采用端羟基聚二甲基硅氧烷或二甲基硅氧烷混合环体(DMC)或八甲基环四硅氧烷(D4)与N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷偶联剂通过本体聚合制备氨基硅油[4]。 1. 实验部分 1.1 主要原料和仪器装置 二甲基硅氧烷混合环体(DMC),浙江合盛化工有限公司;八甲基环四硅氧烷(D4),瓦克化学有限公司;端羟基聚二甲基硅氧烷(WS 62M),瓦克化学有限公司;N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷(N602),南京曙光硅烷化工有限公司;γ-氨丙基甲基三乙氧基硅烷(KH550),江苏晨光偶联剂有限公司;γ―甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570),N-环己基-γ-氨丙基甲基二甲氧基硅烷(KH-702),中科院有机硅研究院;异构C13醇聚氧乙烯醚(5,7),巴斯夫;KOH,化学纯;甲醇钠,工业级;醋酸:化学纯;布料:精纺涤纶织物,平纹织物,规格为25cm×12cm;电动搅拌器;水浴锅;水循环真空泵,三口烧瓶;温度计。 1.2 实验原理 在碱催化剂条件下,通过D4开环后与偶联剂聚合,反应得到氨基硅油,

道路长期使用性能研究.doc

第一章前言 1.1研究的目的和意义: 1996年6月山西省第一条高速公路太旧高速公路建成通车,由此山西省的高速公路建设进入了一个快速发展阶段,以后陆续开工建设的原太高速、太原东山过境、晋阳、南过境、运风、晋焦、长邯、运三,夏汾、太原西北环、大运、汾柳、太长等高速公路,到2005年底我省高速公路通车里程达到了1686公里,目前在建的高速公路有晋济、大同西北环等,到2005年底,在已通车的1686km高速公路中,沥青路面为1437km,占总量85.2%。沥青路面使用性能的好坏直接影响到我省高速公路的整体服务水平。 山西省“十一五”高速公路网规划:预计到“十一五”末,山西省高速公路将达4051公里,其中通车里程将超过3000公里,形成“人”字骨架、九横九环的公路格局。公路网建成后将覆盖了山西省所有大中城市、区域经济中心、交通枢纽和旅游名胜。其中连接了预计到2020年、所有城镇人口在15万以上的市县区,连通了山西省周边19个大中城市。该规划实施后,山西省高速公路纵贯南北、横穿东西、覆盖全省、通达四邻,在省内形成了一个以省会太原为中心的“三小时通达圈”,并以大同、运城、晋城等大中城市为中心形成区域经济圈,高速公路网将有力地支撑起山西建设全国新型能源和工业基地的物流骨架。另外,山西省高速公路网将凭借通往周边省市19个大中城市的22个出口,搭起中部地区在综合交通运输体系中的断代和空白,使山西省融入了京津冀、环渤海、中原、西北、珠三角、黄河金三角等各大经济区,有可能形成了一个全面对外开放的新格局。 国道主干线作为公路网中的大动脉,所承担的交通运输任务远远超过它们在公路网中所占的比重,因此其工程结构必须具备良好的稳定性、耐久性和较高的服务水平。对于高等级公路,客观上要求做到在设计使用年限内不

土工合成材料在低造价路面中的应用

西部交通建设科技项目 合同号:2001 318 00046 土工合成材料在低造价路面中 的应用研究 研究报告简本 xx 理工大学 2006年7月 研究报告简本 本项目主要针对低造价沥青路面结构类型、应用土工合成材料处治低造价沥青路面的技术经济性分析、应用于低造价沥青路面的土工合成材料技术要求、土工合成材料处治低造价沥青路面基层设计方法和土工合成材料处治低造价沥青路面基层施工技术等五个主要方面展开研究。其中,紧紧围绕应用土工合成材料处治低造价沥青路面的技术经济性分析这一核心问题,结合工程应用和室内外试验,着重研究了应用土工合成材料改善沥青路面结构刚度、强度和承载能力(包括抗疲劳等长期性能)的机理。 通过系列的调研、试验和理论分析,总结提出了土工合成材料处治、加固低造价沥青路面底基层、基层及面层的设计方法和设计标准以及相应的施工技术。 研究报告包括七章和一个应用指南。 第一章低造价沥青路面结构类型及其土工合成材料潜在作用 详细地总结分析了国内外低造价沥青路面的结构类型,认为土工合成材料设置在基层与土基之间影响路基土与粒料基层的水稳定性、粒料基层的土污染、基层的整体性及其承载力;设置在基层与面层之间时影响沥青面层的疲劳开裂、半刚性基层沥青路面的反射裂缝、沥青路面的车辙。土工合成材料在低造价沥青路面中的潜在作用可以概括为三类主要作用:加筋,隔离与防渗。 第二章试验路铺设方案、施工与测试 介绍了试验路基本情况、沥青路面结构试验方案、现场施工、原材料及各结构层

性质试验、现场试验检测。 试验路选在张家界至罗依溪二级公路K45+500- K45+980段,其中填方200 米,挖方280 米。试验路按照不同的基层材料(级配碎石、水泥稳定碎石)、是否铺设土工合成材料、不同类型土工合成材料(土工格网、防渗土工布、防裂土工布)、土工合成材料不同的铺设位置(基层和底基层之间、基层与面层之间)的有限组合共分11个方案铺设,面层统一采用2.5cm细粒式沥青混凝土+4cm 热拌沥青碎石。 试验路于2003年10月底通车运行,跟踪观测的结果表明,整个试验路段使用状况良好。 第三章粒料层回弹模量非线性模型及其参数反算 采用确定性优化反算方法,针对承载板多级非线性荷载,模拟承载板测路面弯沉的过程,编制了非线性有限元计算程序,对柔性路面结构层材料特性反算进行了系统的研究,主要成果包括: ( 1 )在增量计算时引入迭代加速技术,改进高斯求解过程,有效地加快了计算速度;引入局部应力磨平技术,以及增量法的多阶自校正技术,极大的提高了非线性计算的精度,取得良好效果。 (2)采用了改进的非线性最小二乘优化方法-Marquardt 法,并且针对本问题对该方法进行了相应改进,包括对病态矩阵判定条件以及灵敏度矩阵修正系数的转换,在将该方法引入本问题以后,由于实现了二阶近似,收敛稳定性得到提高,收敛速度显著加快。 (3)经过多种材料非线性本构模型的比选,最后选择了适应性较强的三参数模型来模拟碎石土、碎石基层材料的非线性性质。实际计算证明,该模型对反算材料性质模拟效果较好,反算弯沉与实测弯沉吻合程度高,能够满足工程中的实际需求。 (4)在选定的试验路段上,随着施工的进展,在路基、底基层、基层上分别进行了承载板弯沉检测,并且利用计算机模拟该过程进行了材料非线性特性参数反算。实际应用情况表明,静力线弹性反分析方法得到的结果在某些情况下明显不合理,而考虑应力非线性特性则可以给出合理的解答。

氨基硅油

氨基硅油的制备及应用实验 一、实验目的 聚硅氧烷是一类有着特殊硅氧主链结构的半有机、半无机结构的高分子化合物,具有独特的低玻璃化温度、低表面张力特性,以及优良的耐热性、耐候性、憎水性、电绝缘性等性能。典型的如聚二甲基硅氧烷(PDMS),其分子结构示意如下: CH3 Si O n CH3 氨基硅油,即氨基改性聚硅氧烷,是二甲基硅油中部分甲基被氨烃基取代后的产物。氨基硅油除保留着二甲基硅油原有的疏水性、脱模性外,氨烃基的存在还可赋予其反应性、吸附性、润滑性及柔软性等性质,因而广泛应用于纺织、制革、日化等行业,尤其是纺织品的染整行业。 氨基硅油作为纺织品的柔软整理剂,可赋予织物柔软、滑爽、丰满等效果,以及良好的弹性手感。近年来,国内对氨基硅油的研究仍在不断加强。本实验的目的,就是通过探索优化的合成工艺条件,制备一定组成、结构的氨基硅油,并应用氨基硅油对羊毛或涤纶织物进行后整理研究。 二、实验反应机理 氨基硅油中的氨基主要有伯氨基、仲氨基、叔氨基、芳氨基、季铵盐等,例如: NH2NHCH2CH2NH2NHC2H4NHC2H4NH2OC6H4NH2 其中,不同的氨基赋予氨基硅油不同的应用性能。本次实验用的是仲氨基改性。 氨基硅油的制备方法,主要有:(1)氨烃基硅烷与硅氧烷催化平衡;(2)氨烃基硅氧烷与硅氧烷催化平衡;(3)氨烃基硅烷与端羟基硅氧烷缩合;(4)含氢硅油与烯丙胺加成等。 本实验拟采用氨烃基硅烷与硅氧烷催化平衡法,以八甲基环四硅氧烷(D4)、N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷(602)、六甲基二硅氧烷(MM)为原料来制备氨值为0.1~0.9的氨基硅油,反应式示意如下:

土工合成材料的主要性能及在工程中的应用

土工合成材料的主要性能及在工程中的应用 一、国内外土工合成材料的应用概况 土工合成材料的开发和使用已有几十年的历史。1926年,美国最早用棉织物加固公路路面;20世纪30年代末或40年代初,聚氯乙烯薄膜应用于土工的防渗;50年代末期,R.J.Barrtt在美国佛罗里达州利用聚氯乙烯织物作为海岸块石护坡的垫层;1956~1957年著名的荷兰三角洲工程用机织土工织物加固防海潮大坝;20世纪60年代,合成纤维土工织物在美国、欧洲和日本逐渐推广,但是其生产技术主要是机织型的,主要用于护岸防冲等工程,机织土工织物的强度高,但价格也较高,反滤、排水功能差,限制了它的发展。非织造布的应用给土工积物带来了新的生命,它的特点是把纤维做成多方向的或任意排列使得其性能上各向同性,非织造型土工积物在20世纪60年代末期开始应用于欧洲,70年代从欧洲传到了世界各地。到70年代土工合成材料的应用及其产品的发展达到一个鼎盛时期。高性能的原料赋予产品高的强力与耐用性,先进的生产工艺赋予产品良好的功能,使其应用范围不断扩大,特别是近30年来,由于非织造针刺法、纺粘法工艺的推广,产品成本低,而且具有良好的化学物理性能和水工性能,使非织造土工织物的应用飞速地发展起来。目前世界上已有100多个国家和地区(包括发达国家和部分发展中国家和地区)在10万多个工程中采用了土工布。据统计,全世界目前合成纤维土工布年耗量约40万吨,其中美国最多,达10万

吨,。土工合成材料已经成为继钢材、水泥、木材之后的第4种新型建筑材料。目前,发达国家在产品种类、质量、应用范围的广度与深度等方面的发展都比发展中国家快,尤以北美发展最快,欧洲则以德国、法国、荷兰、意大利等西欧国家发展较快,亚洲主要是日本、马来西亚、韩国发展较快,国外产品类型、品种较多,规格齐全,以非织造型、合成型、复合型所占比例较大。在我国,土工合成材料在岩土工程等领域的应用历史较短。最早应用的是土工膜,大约在20世纪60年代初期,用于渠道防渗;70年代中期,在长江护岸和长江堤防中首次用织造型土工织物;80年代初期,非织造型土工织物开始应用于工程中;80年代末,土工膜袋首次引入工程应用。纵观土工合成材料40多年的发展史,可将其应用历程大致分为三个阶段:80年代中期以前的初创阶段;80年代中期至90年代中期的发展阶段和90年代后期开始的逐渐成熟阶段。 二、土工合成材料的主要类型 土工合成材料的主要类型有:土工织物、土工膜、土工格栅、土工网、土工复合材料和土工织物粘土垫。 土工织物是可渗透的土工合成材料,是一类最古老和用量最大的土工合成材料。土工织物主要有两种类型:纺织的和无纺的。纺织的土工织物是在普通纺织机上使用单纤维、多纤维丝或细长薄膜或带制成。无纺土工织物还可按照纤维连接在一起的方法细

氨基硅油乳液的制备方法

氨基硅油乳液的制备方法 氨基硅油不溶于水,不能直接用于纤维/织物的柔软整理,必须将其乳化制成乳液才能应用。按乳液粒径分类,目前出现的氨基硅油乳液有三种:普通乳液、微乳液和细乳液。普通乳液粒径为0.5~1.0μm外观为蓝或灰的乳白色液体;微乳液粒径通常小于0.10μm,外观为透明或半透明的液体;细乳液则介于两者之间。由于普通乳液粒径大,颗粒表面的双电层较弱,颗粒间易相互作用而凝聚,导致乳化状态破坏,水与油相分离;而微乳液粒径小,乳液呈热力学稳定的分散状态,其贮藏性、耐热及抗剪切稳定性均很优越,一般不破乳,且使用效果极佳。因而,工业场合均力求将氨基硅油进行微乳化[10]。 氨基硅油微乳液胶束很小,能够渗透到纤维内部,为织物提供内在的柔软性和出色的4表面平滑性。微乳液属热力学稳定体系,粘度低且结构稳定,从而减少了聚结或破乳的危险。理论上讲,氨基硅油因为含有极性的氨基而较聚二甲基硅油易乳化,但由于硅氧烷上甲基的疏水性和低氨基含量,与水相比氨基硅油仍具有很低的表面能,使乳化受到一定的限制,表现在随着分子量的升高,乳化难度增加,所以实际上氨基硅油的微乳化往往需用复配乳化剂才能达到较佳的效果,否则是比较困难的[6,11]。影响氨基硅油乳化的因素有:①乳化剂的选择和复配②助剂的选择③乳化工艺的选择④温度的影响⑤搅拌及滴加速度⑥pH值的影响⑦水硬度的影响⑧硅油结构的影响⑨氨基硅油含量。 1.1.3.1乳化剂的选择和复配 表面活性剂是微乳化过程的主要影响因素,它主要是通过降低油水界面的表面张力及增溶作用来实现微乳化。表面活性剂的选取主要是考虑它能否尽可能降低油水界面的表面张力[10]。用于氨基硅油微乳化的表面活性剂可以是阳离子、阴离子、非离子和两性乳化剂。因高度纯化的表面活性剂通常生成不紧密的界面膜,机械强度不高。故优良的乳化剂通常是两种或两种以上的表面活性剂复配而成的复合乳化剂,而不是单一的品种。一般是一种亲水性较强的表面活性剂和另一种亲油性较强的表面活性剂复合而成的。由于氨基硅油具有一定的阳离子性,因此应避免使用阴离子型乳化剂,从国内外的文献报道看,大部分使 用的是非离子乳化剂。常见的非离子型乳化剂大致分为以下两大类[7]: 聚乙二醇型:平平加AEO(脂肪醇聚氧乙烯醚) OP(烷基酚聚氧乙烯醚) TX(仲辛基酚聚氧乙烯醚) 脂肪酸聚氧乙烯醚等 多元醇型:Span,T ween(失水山梨醇脂肪酸酯) 甘油脂肪酸酯 蔗糖脂肪酸酯 也有使用两性表面活性剂:C12-C15的烷基二甲基叔胺或羧基型、磺酸型两性咪唑啉等;阳离子表面活性剂使用较少,如Ethoquaol C/2(季化聚氧乙烯椰子胺)、十八烷基三甲基溴化铵(1831)、十六烷基三甲基溴化铵(1631)、十二烷基三甲基氯化铵(1231)及十二烷基二甲基苄基氯化铵(1227)等 乳化剂的选择和复配的原则主要是基于乳化剂的HLB值法。所谓HLB值法是指乳化剂的亲水亲友平衡值法。复配乳化剂时,复合乳化剂的HLB值应当大体和被乳化的氨基硅油的HLB值相同,国内外有很多报道采用多种乳化剂复配乳化剂,在一定的乳化条件5下得到了透明或半透明的氨基硅油微乳液[7,8,11]。 1.1.3.2助剂的选择 一般认为,在氨基硅油微乳液体系中加入少量的辅助表面活性剂有助于澄清透明微乳液的形成。有文献报道在配制乳液过程中添加含氨基的酸及乙二醇单异丙醚,可使配制的微乳液的储存稳定性、稀释稳定性、机械稳定性、热稳定性及透明性得到提高。Marianne等提出加入醋酸可提高微乳液的透明度,pH值控制在5.5~6.5;Jam es也提出应加入低级脂肪羧酸或无机酸(最好是醋酸),并提出加入脂肪醇可增加微乳液的透明度;Katayama等认为在离子型表面活性剂中,助剂醇(低碳链的脂肪醇)可以使界面易弯曲,对层状液晶起到稳定作用[10,11]。综上所述,辅助表面活性剂可起到减小界面张力、增加界面膜的滚动性、调节HLB值及界面的自然弯曲的作用。1.1.3.3乳化工艺的选择 微乳液分为油包水型(W/O)、水包油型(O/W)和双连续型3种结构,其类型主要取决于体系中油水界面的曲率。具有自动弯曲向油相

旧路水泥路面使用性能PQI分析与评价

旧路水泥路面使用性能PQI分析与评价 摘要:随着时间的推移和国民经济的发展,许多国道省道进入使用年限的后期,发生了许多破坏现象。本论文通过采用先进检测技术手段与仪器设备,如ARRB道路综合检测车,落锤式弯沉仪、横向力系数车,对罩面的压实度、平整度、车辙、弯沉、构造深度进行了全方位检测与评价,为实际工程提供了参考依据。 关键词:旧路水泥路面,路面使用性能,PQI分析,检测与评价 Abstract: with the passage of time and development of the national economy, many national highway in the later period of use, there have been many failure phenomenon. In this paper, through the use of advanced detection technology and equipment, such as ARRB road detection vehicle, instrument, lateral force coefficient car falling weight deflectometer, the detection and evaluation of a full range of surface coating compactness, smoothness, rutting, deflection, structural depth, provide a reference for practical engineering. Keywords: old road cement concrete pavement, pavement performance, PQI analysis, testing and evaluation 国道G324线小盈岭至马巷路段(K238+800~K249+950)长11.15km,路面结构形式为水泥混凝土路面,路面宽度为22m,双向四车道。该路段经过多次改造,目前实测交通量达21813辆/昼夜(自然数),路面出现了断板、角隅断裂、错台等不同程度的病害,导致车辆通行不畅,存在行车安全隐患,严重影响了道路使用功能和周边居民生活品质,急需改造。 1 路面调查 国道G324线小盈岭至马巷段自2001年路面大修投入运营以来,路面出现了不同程度的损害,产生了大量的面板病害。经过调查,本路段左右车道损坏差异较大,路面结构复杂,现状混凝土面板损坏主要有以下几种:裂缝、破碎板、板角断裂、错台、唧泥、接缝料损坏等。试验段现状情况如下图1至图5所示。 图1交通状况(交通量大、重车多)

土工合成材料

一、单选题(15题) 1.土工合成材料开始应用的确切年代是(D )。 A 30年代 B 50年代 C 80年代 D. 难以考证 2.土工合成材料的功能很多,归纳为七种,其中有( B )。 A 防腐功能 B 加筋功能C清洁功能D防火功能 3.“中国土工合成材料工程协会”正式成立于( C )。 A.1984年 B. 1990年 C. 1995年 D. 1998年 4..从样品上裁取试样时,试样的布置应采用下列方法( B )。 A平行取样法 B 梯形取样法C均匀取样法D分层取样法5.常见聚合物聚乙烯的代号是( B )。 A.PP B.PE C.PVC D.PA 6.土工织物中,目前国内用量最大的产品是(D ) A 针刺无织物 B 针织土工织物 C 长丝无纺织物 D 扁丝织造型土工织物 7.土工合成材料具有防渗功能,下列材料中用于防渗的材料是(B )。 A 土工织物 B 土工膜 C 土工格栅 D 土工格室 8.试验室检测材料具有温度控制要求,温度应控制在(C )℃。 A (20±5) B (23±5) C (20±2) D (23±2)9.聚丙烯的比重是(A )。 A 0.91 B 1.39 C 0.940~0.968 D 0.91~0.925 10.等效孔径O95的含意是允许(B )的颗粒(以质量计)通过筛布。 A 95% B 5% C 95 D 5 11.握持强度的单位是以(A )表示。 A kN B kN /m C kPa D kN /mm 12.过期样品的处置应有(C )负责。 A 检测员 B 收样员 C 样品管理员 D 负责人 13.顶破强度中CBR顶破试验的顶杆为( D ) A 直径50mm尖头杆 B 直径8mm平头杆 C 直径8mm尖头杆 D 直径50mm平头杆 14.抽取样品有一定的规则,最主要的原则是( B )

1土工合成材料的分类

土工合成材料分类 Prepared by R.J. Bathurst 土工合成材料分类 土工合成材料可根据制造工艺大致分为几类。下面是这些土工合成材料的现有名称和简介。 土工织物 是由纺织布、非织造布、编织或缝粘纤 维或纱线形成的连续的扁平材料物。这种材料柔软且 具渗透性,通常呈现织物的外观。 土工织物可用于隔 离、过滤、排水、加筋和水土保持。 土工格栅是具有开放式网格状外观的土工合成材 料。土工格栅主要用于土的加筋。 土工网是由两组粗糙、平行的挤出聚合物束以一 恒定的锐角相交形成的开放式网格状材料。这种网络 形成了带平面内孔隙的层,可用来输导相对大的液流 或气流。 土工膜 是由一种或几种合成材料制成的连续的柔 性膜。 它们几乎不透水,可用作液体或气体围堵的衬 垫和隔气层。 土工复合材料是由两类或多类土工合成材料组合 而成的土工合成材料。例如:土工织物-土工网型、 土工织物-土工格栅型、土工网- 土工膜型或土工合成

材料粘土衬垫(GCL)。土工复合排水板和塑料排水板(PVDs)是由土工织物滤层包裹塑料排水芯制成的。 土工合成材料粘土衬垫(GCLs)通常是在两层土工织物之间夹有膨润土层或把膨润土层粘结在一层土工膜上或单层土工织物上制成的复合材料。土工织物外包的GCLs 常常是缝合或针刺穿过膨润土核心以提高内部抗剪强度。当水化时它们作为液体或气体屏障很有效,并且常常与土工膜联合常用作垃圾填埋场的衬垫。 土工管是穿孔或实心管壁的高分子管材,用来引流(包括填埋场应用中的渗滤液或气体收集)。在一些情况下,穿孔管外包有土工织物反滤层。 土工格室是由高分子层的条带制成的相对厚的三维网格状结构。这些条带联结在一起形成交错连接的格室用以填充土,有时填充混凝土。在一些情况下,用竖直聚合物棒把0.5m~1m的带状聚烯烃土工格栅连接在一起用以形成深层土工格室即土工网垫。 土工泡沫塑料块或板是由聚苯乙烯泡沫塑料膨胀形成的封闭的、有充气格室的低密度网状结构。土工泡沫塑料可用于隔热,作为轻质填料或可压缩竖直层用以减少作用在刚性挡土墙上的土压力。

反应性氨基硅油

皮革用反应性氨基聚硅氧烷滑爽剂的 研制及应用 ! !"#$%"%&’()%)*%$$+’,%&’()(-"#%,&’.#%/’)($(+01’+(2%)#+#%&3#"1/((&3%4 #)&周建华!!张晓镭(陕西科技大学资源与环境学院,咸阳!"#$%" )!"#$%&’("$’,!"’()*&’#+,&(5(++#4 #(-6#1(7",#%)*8).’"()/#)&,93%%)2’:)’.#"1’&0(-9,’#),#%)*;#,3)(+(40,<’%)0%)4 !"#$%")摘 要 以!,"&二羟基聚二甲基硅氧烷(=9&’#>)和?&#&氨乙基&$&氨丙基三甲氧基硅烷(9@&9’($$)为原料,胺为催化剂,通过酯交换反应,合成了反应性氨基聚硅氧烷。利用A 6对其结构进行表征。采用微乳化技术,选择合适的乳化剂制备透明、粒径细小、稳定性优良的反应性氨基聚硅氧烷微乳液,将其作为滑爽剂应用于皮革,并测试了皮革的有关性能。应用结果表明:反应性氨基聚硅氧烷的氨值为$B )(!’//(+/4,黏度为’)$$/!%·1时滑爽性最佳,其处理后的皮革具有优异持久的柔软、滑爽、丰满的手感特性,并且革面细腻、光亮自然、疏水性强。 关键词!,"&二羟基聚二甲基硅氧烷反应性氨基聚硅氧烷 微乳液 皮革滑爽剂 中图分类号;9)" 文献标识码C C D 1&"%,& *+,-.!,"&/,01/2341/,5670189381+,834:-6(;<&’#=):-/>&#&:5,-367018&$&:5,-392391 8&72,5670341+,8:-6(K U V K H T V J W 38G R Q >3G "( " """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""X @7G #$$) !!!第一作者简介:周建华,女,"(!R 年生, 硕士学位,讲师基金项目:陕西省教育厅专项科研计划项目($Q Y Z "R Q )万方数据

相关主题
文本预览
相关文档 最新文档