当前位置:文档之家› 物理高考到竞赛静力学专题

物理高考到竞赛静力学专题

物理高考到竞赛静力学专题
物理高考到竞赛静力学专题

静力学(由高考到竞赛)

陕西师大附中

陈宏社

一、一般物体的平衡

1、共点力的平衡:

1>共点力:几个力如果作用在物体的同一个点,或者它们的作用线相交于同一个点,这几个力叫做共点力。

2>例题分析:

【例】如图所示,三个相同的支座上分别放着三个质量和直径都相等的光滑圆球α、b、c,支点P、Q在同一水平面上.α球的重心Oa位于球心,b球的重心Ob位于球心的正上方,C球的重心Oc位于球心的正下方.三个球都处于平衡状态.支点P对α球、b球、c球的弹力分别为Fa、Fb、Fc,则(A)

A.Fa=Fb=Fc B.Fb>Fa>Fc C.Fb<Fa<Fc D.Fa>Fb=Fc 【例】重为G的均质杆一端放在粗糙的水平面上,

另一端系在一条水平绳上,杆与水平面成α角,如

力对物体的

作用可以改

合力对物体的平动有影响

合力矩对物体的转动有影响

)0

(=

∑外F

∑=)0

(M

图所示,已知水平绳中的张力大小F1,求地面对杆下端的作用力大小

和方向.

【例】如图所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,

绳子与水平方向的夹角在图上已标

示,求横杆的重心位置。

【例】重量为G 的一根均匀硬棒AB,杆A 端被绳吊起,

在杆的另一端B 作用一个水平的拉力F,把杆拉向右边,

使整个系统平衡后,棒与绳跟竖直方向夹角为?和?,

如图所示,求证tan 2tan θα=

【例】如图所示:一重为G 的绳子.它的两端挂

在同一高度的两个挂钩上,绳的两端与水平线的

夹角为θ,则绳的最低点处的张力为多大?

【例】如图所示,一个半球形的碗放在桌面上,碗口水平,O 是球心,

碗的内表面光滑.一根轻质杆的两端固定有两个小球,质量分别是

m 1、m 2,当它们静止时,m 1、m 2与球心的连线

跟水平面分别成60°30°角,则碗对两小球的

A. 1∶ 1 C. 1 2 【练习】如图所示,BC两个小球均重G,用细线

悬挂而静止于A、G两点,细线BC伸直.求:⑴AB

和CD两根细线的拉力各多大?⑵细线BC与竖直

方向的夹角是多大?

【练习】如图所示,光滑半球壳直径为a,与一光滑竖

直墙面相切,一根均匀直棒AB与水平成60°角靠墙静

止,求棒长.

【练习】如图所示,在墙角处有一根质量为m的均匀

绳,一端悬于天花板上的A点,另一端悬于竖直墙壁

上的B点,平衡后最低点为C,测得绳长AC=2CB,且

在B点附近的切线与竖直成α角,则绳在最低点C

处的张力和在A处的张力各多大?

【练习】如图所示,对均匀细杆的一端施力F,力的

方向垂直于杆.要将杆从地板上慢慢地无滑动地抬起,

试求杆与地面间的最小摩擦因数.

2、转动平衡

1>力矩(是改变物体转动状态的原因 )

力的三要素是大小、方向和作用点。由作用点和

力的方向所确定的射线称为力的作用线。力作用

于物体,常能使物体发生转动,这时外力的作用

效果不仅取决于外力的大小和方向,而且取决于

外力作用线与轴的距离——力臂(d)

定义:力与力臂的乘积称为力矩

=?

M d F

通常规定:绕逆时方向转动的力矩为正。当物体受到多个力作用时,

物体所受的总力矩等于各个力产生力矩的代数和

2>力偶和力偶矩

一对大小相等、方向相反但不共线的力称为力偶。

力偶不能合成为一个力,是一个基本力学量。

对于与力偶所在平面垂直的任一轴,这一对力的力矩的代数和称为力

偶矩

12M F d F d ==(其中d 为两力间的距离)

【注】力偶矩与所相对的轴无关。

3>有固定转动轴物体的平衡

有固定转轴的物体,若处于平衡状态,作用于物体上各力的力矩的代

数和为零。 【例】如图所示.梯子长为2l ,重量为G ,梯子上

的人的重量为G ,人离梯子下端距离为h ,梯子

与地面夹角为q ,梯子下端与地面间的摩擦因数为

m ,梯子上端与墙的摩擦力忽略不计,试求梯子不

滑动时的h 值.

【例】—个半径为r 的均匀球体靠在竖直墙边,球跟

墙面和水平地面间的静摩擦因数都为?,如果在球上

加一·个竖直向下的力F ,如图1-37所示.问;力F

离球心的水平的距离s 为多大,才能使球做逆时针转

动? 0

M =

?

【例】如图所示.均匀杆L

1和A 端用铰链固定在墙上,B

端与L 2相接触,AB 水平,均质杆L 2的C 端也用铰链固定

于C 点.与墙壁成30?角,两杆处于静止状态,L 1重10N .L 2

重5N ,求杆L 1的B 端受杆L 2的作用力大小.

【练习】两杆A 和B一端放在光滑水平地板上,另一端均靠在光滑竖

直墙上.两杆夹角为90?时平衡,如图1-30所示,杆长分别为a ,b .杆

重分别为G A ,和G B 。,则两竖直墙间的距离d 为多少?

【练习】如图所示,两个重力分别为G 1和G 2的小圆环用细线连着套

在一个竖直固定的大圆环上,如果连线对圆心的夹

角为?,当大圆环和小圆环之间的摩擦力及线的质

量忽略不计时,求连线与竖直方向夹角?

【练习】用20块质量均匀分布的相同光滑积木块,在光滑水平面上一

块叠一块地搭成单孔桥,已知每一积木块长度

为L .横截面是边长为4

L h 的正方形,要求此

桥具有最大跨度(即桥孔底宽),试画出桥的示

意图,并计算跨度s 与桥孔高度H 的比值。

【练习】有一吊盘式杆秤,量程为10kg .现有一西瓜超过此秤量程,

店员A 找到另一相同的秤跎.把它与

原秤砣结在一起进行称量,平衡时,

双砣位于6.5kg 刻度处.A 将此读数

乘以2得13kg ,作为西瓜的质量.为了检验,他取另一西瓜.正常称

量为8kg ,用砣称量读数为3kg .乘以2后得6kg ,这证明A 的办法不可靠,试问,A 所称的那个西瓜的实际质量是多大? O C

二、力学中常见的三种力

1.重力、重心、质心

物体的重心即重力的作用点。在重力加速度g 为常矢量的区域,物体

的重心是惟一的(我们讨论的都是这种情形),重心也就是物体各部

分所受重力的合力的作用点,由于重力与质量成正比,重力合力的作

用点即为质心,即重心与质心重合。

求重心,也就是求一组平行力的合力作用点。

【例】相距L ,质量分别为12,m m 的两个质点构成的质点组,其重心在

两质点的连线上,求解重心距两物体圆心的距离。

【注】①均匀规则形状的物体,其重心在它的几何中心;

②求一般物体的重心,常用的方法是将物体分割成若干个重心容易确

定的部分后,利用力矩和为零的平衡条件来求物体的重心位置。

物体重心(或质心)位置的求法

【例】如图由重量分别为12,G G 的两均匀

圆球和重量为3G 的均匀杆连成的系统,

设立如图坐标系,原点取在A 球最左侧

点,两球与杆的重心的坐标分别为321,,x x x ,系统重心在P 点,我们现

在求其坐标x 。设想在P 处给一支持力F ,令123R G G G =++达到平衡

时有:

0332211=-++=∑Rx x G x G x

G M 112233112233123

G x G x G x G x G x G x x F G G G ++++?=++ 这样就得出了如图所示的系统的重心坐标。若有多个物体组成的

系统,我们不难证明其重心位置为:

???????????===∑

∑∑∑∑Gi Giz z Gi Giy y Gi Gix x i

一般来说,物体的质心位置与重心位置重合,由上面公式很易得

到质心位置公式:

???????????===∑∑∑∑∑∑i i

i i i i i i i m z m z m y m y m x m x

【练习】匀质球A 质量为M ,半径为R,匀质棒

B 质量为m ,长度为L ,求它的重心

【练习】求如图所示中重为G的匀均质板(阴影部分)的重心O的位

置(面密度为s)。

【练习】如图,有5个外形完全一样的均匀

金属棒首尾相接焊在一起,从左至右其密度

分别为ρ、⒈1ρ、⒈2ρ、⒈3ρ、⒈4ρ,设每根棒长均为l,求其质心位置,若为n段,密度仍如上递增,质心位置又在什么地方?

【练习】如图所示,求图示均匀薄板的重心,大正方形的边长为a,

挖去的小正方形的边长是大正方形的四分之一,一个

顶点在大正方形的几何中心上,两正方形各对应边相

互平行

【练习】如图所示,A 、B

原为两个相同的均质实心

球,半径为R ,重量为G ,A 、

B 球分别挖去半径为324R R 和的小球,均质杆重量为3564

G ,长度4l R =,试求系统的重心位置。

2.巴普斯定理:

质量分布均匀的平面薄板:垂直平面运动扫过的体积等于面积乘平

面薄板重心通过和路程。

【例】求如图所示的直角三角形的质心

【练】求均匀半圆盘的质心位置。

【推论】质量分布均匀的、在同一平面内的曲线:垂直曲线所在平面

直曲线所在平面运动扫过的面积等于曲线长度乘曲线的重心通过路

程。

【例】求质量均匀分布的半圆形金属线的质心位置

【拓展】如果是封闭线呢?设线密度为l

2、弹力

1>弹力 物体发生弹性变形后,其内部原

子相对位置改变,而对外部产生的宏观反作

用力。反映固体材料弹性性质的胡克定律,建立了胁强(应力)F s s =与胁变(应变l l

e D =)之间的正比例关系,如图所示εσE =

式中E 为杨氏弹性模量,它表示将弹性杆拉长一倍时,横截面上所需

的应力。

2>接触反力 —限制物体某些位

移或运动的周围其它物体在接触

处对物体的反作用力(以下简称

反力)。这种反力实质上是一种弹性力,常见如下几类:

①柔索类(图)如绳索、皮带、链条等,其张力::T ì??í???方位沿柔索指向拉物体

一般不计柔索的弹性,认为是不可伸长的。滑轮组中,若不计摩擦与

滑轮质量,同一根绳内的张力处处相等。 ②光滑面(图)接触处的切平面方

位不受力,其法向支承力

???压物体指向沿法线方位::N

③光滑铰链:物体局部接触处仍属于光滑面,但由于接触位置难于事

先确定,这类接触反力的方位,除了某些情况能由平衡条件定出外,

一般按坐标分量形式设定。

(1)圆柱形铰链(图

4,图15,图6)由两

个圆孔和一个圆柱销

组成。在孔的轴线方

向不承受作用力,其

分力

???待定指向轴沿方位::x X ???待定指向轴沿方位::y Y

图中AC 杆受力如图,支座B 处为

可动铰,水平方向不受约束,反力

如图。

(2)球形铰链(图7,图8)由一个球碗和一个球头组成,其反力可

分解为

待定指向沿坐标轴方位::??

???Z Y X

④固定端(图9,图10)

如插入墙内的杆端,它除限

制杆端移动外,还限制转动,需增添一个反力偶A M 。

待定指向沿坐标轴方位::???Y X

???待定转向平面力系作用面方位::A M

3>弹簧上的弹力:弹力的大小取决于变形的程度,弹簧的弹力,遵循

胡克定律,在弹性限度内,弹簧弹力的大小与形变量(伸长或压缩量)

成正比。

F=-kx

式中x 表示形变量;负号表示弹力的方向与形变的方向相反;k 为劲

度系数,由弹簧的材料,接触反力和几何尺寸决定。

弹簧的串并联:两根劲度系数分别为k 1,k 2的弹簧

串联后的劲度系数为 k 1=11k +21k

并联后劲度系数为 k =k 1+k 2.

【例】题:两根劲度系数分别为K 1和K 2的轻弹簧竖直悬挂,

下端用光滑的细线连接,把一光滑的轻滑轮放在细绳上,求当滑轮下

挂一重为G的物体时,滑轮下降的距离?

【例】如图所示,劲度系数为k2的轻弹簧乙竖直固定在

桌面上,上端连一质量为m的物块;另一劲度系数为k1

的轻弹簧甲固定在物块上.现将弹簧甲的上端A缓慢

2mg时,求

向上提,当提到乙弹簧的弹力大小恰好等于

3

A点上提的高度?

3、摩擦力—摩擦角

摩擦力:物体与物体接触时,在接触面上有一种阻止它们相对滑动的作用力称为摩擦力。

不仅固体与固体的接触面上有摩擦,固体与液体的接触面或固体与气体的接触面上也有摩擦,我们主要讨论固体与固体间的摩擦。

1>摩擦分为静摩擦和滑动摩擦

①当两个相互接触的物体之间存在相对滑动的趋势(就是说:假如它们之间的接触是“光滑的”,将发生相对滑动)时,产生的摩擦力为静摩擦力,其方向与接触面上相对运动趋势的指向相反,大小视具体情况而定,由平衡条件或从动力学的运动方程解算出来,最大静摩擦

力为max 0f N m =,式中0μ称为静摩擦因数,它取决于接触面的材料与接

触面的状况等,N 为两物体间的正压力。

②当两个相互接触的物体之间有相对滑动时,产生的摩擦力为滑动摩

擦力。滑动摩擦力的方向与相对运动的方向相反,其大小与两物体间

的正压力成正比即f N m =

【注】m 为滑动摩擦因数,取决于接触面的材料与接触面的表面状况,在通常的相对速度范围内,可看作常量,在通常情况下,0m m 与可不

加区别,两物体维持相对静止的动力学条件为静摩擦力的绝对值满足 N f f μ=≤max

在接触物的材料和表面粗糙程度相同的条件下,静摩擦因数0m 略大于

动摩擦因数m 。

2>摩擦角 我们把0tan ,m N f F m j j ==则为摩擦

,即令静摩擦因数0m 等于某一角?的正切值,即0tg m j =,这个?角就称为摩擦角。在临界摩擦(将要发生

滑动状态下),tg N f ==0max μ?。

支承面作用于物体的沿法线方向的弹力N 与最大静

摩擦力max f 的合力F (简称全反力)与接触面法线

方向的夹角等于摩擦角,如图所示(图中未画其他

力)。在一般情况下,静摩擦力0f 未达到最大值,即0

0000,,f f f N tg N N

m m j #? 因此接触面反作用于物体的全反力F '的作用线与面法线的夹角

0f arctg N

a =,不会大于摩擦角,即a j £。物体不会滑动。由此可知,

运用摩擦角可判断物体是否产生滑动的条件。如图放

在平面上的物体A ,用力F 去推它,设摩擦角为?,

推力F 与法线夹角为α,当a j <时,无论F 多大,

也不可能推动物块A ,这种现象称为自锁现象。只有a j >时,才可能

推动A 。

摩擦力作用的时间 因为只有当两个物体之间有

相对运动或相对运动趋势时,才有摩擦力,所以要

注意摩擦力作用的时间。如一个小球竖直落下与一

块在水平方向上运动的木块碰撞后,向斜上方弹出,假设碰撞时间为

t ?,但可能小球不需要t ?时间,在水平方向上便已具有了与木块相同

的速度,则在剩下的时间内小球和木块尽管还是接触的,但互相已没

有摩擦力。

【例】如图所示,倾角为θ的斜面与水平面保持静止,斜面上有一重

为G 的物体A 与斜面间的动摩擦因数为μ,且μ

现给A 施以一水平力F ,设最大静摩擦力与滑动摩擦力

相等,求水平推力F 多大时物体能地斜面上静止 ?

【例】如图所示,半圆柱体重G ,重心C 到圆心O

的距离为4R/3π,其中R为圆柱体半径.如半圆柱体与水平面间的摩擦因数为μ,求半圆柱体被拉动时所偏过的角度θ.

【例】物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。

【练习】如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?

【练习】如图所示,质量为m的物体放在水平地面上,

物体与地面间的动摩擦因数为,想用力F推动物体沿

水平地面滑动,推力方向与水平面的夹角在什么范围内者是可能的?

【练习】如图所示,一上表面粗糙的斜面体上放在

光滑的水平地面上,斜面的倾角为θ。另一质量为

m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsinθcosθ的水平推力作用于斜面体。使满足题意的这个F 的大小和方向。

四、物体的平衡

1、物体相对于地面处于静止、匀速直线运动或匀速转动的状态,称为物体的平衡状态,简称物体的平衡.物体的平衡包括共点力作用下物体的平衡、具有固定转动轴的物体的平衡和一般物体的平衡.

当物体受到的力或力的作用线交于同一点时,称这几个力为共点力.物体在共点力作用下,相对于地面处于静止或做匀速直线运动时,称为共点力作用下物体的平衡.当物体在外力的作用下相对于地面处于静止或可绕某一固定转动轴匀速转动时,称具有固定转动轴物体的平衡.当物体在非共点力的作用下处于平衡状态时,称一般物体的平衡.

解决共点力作用下物体的平衡问题,或具有固定转动轴物体的平衡问

题,或一般物体的平衡问题,首先把平衡物体隔离出来,进行受力分析,然后根据共点力作用下物体的平衡条件:物体所受的合外力为零,即∑F=0(如果将力正交分解,平衡的条件为:∑Fx =0、∑Fy=0);或具有固定转动轴的物体的平衡条件:物体所受的合力矩为零,即∑M=0;或一般物体的平衡条件:∑F=0;∑M=0列方程,再结合具体问题,利用数学工具和处理有关问题的方法进行求解.

2、物体的平衡又分为随遇平衡、稳定平衡和不稳定平衡三种.

1>稳定平衡:如果在物体离开平衡位置时发生的合力或合力矩使物体返回平衡位置,这样的平衡叫做稳定平衡.如图(a)中位于光滑碗底的小球的平衡状态就是稳定的.

2>不稳定平衡:如果在物体离开平衡位置时发生的合力或合力矩能使这种偏离继续增大,这样的平衡叫做不稳定平衡,如图 (b)中位于光滑的球形顶端的小球,其平衡状态就是不稳定平衡.

3>随遇平

衡:如果在

物体离开

平衡位置

时,它所受

的力或力矩不发生变化,它在新的位置上仍处于平衡,这样的平衡叫做随遇平衡,如图(c)中位于光滑水平板上的小球的平衡状态就是随遇的.

从能量方面来分析,物体系统偏离平衡位置,势能增加者,为稳定平

高中物理竞赛(力学)练习题解

1、(本题20分)如图6所示,宇宙飞船在距火星表面H高度处作匀速圆周运动,火星半径为R 。当飞船运行到P点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。因α很小,所以飞船新轨道不会与火星表面交会。飞船喷气质量可以不计。 (1)试求飞船新轨道的近火星点A的高度h近和远火星点B的高度h远; (2)设飞船原来的运动速度为v0 ,试计算新轨道的运行周期T 。 2,(20分)有一个摆长为l的摆(摆球可视为质点,摆线的质量不计), 在过悬挂点的竖直线上距悬挂点O的距离为x处(x<l)的C点有一固 定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l一定 而x取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直 线的左方(摆球的高度不超过O点),然后放 手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试 求x的最小值. 3,(20分)如图所示,一根长为L的细刚性轻杆的两端分别连结小球a和 b,它们的质量分别为m a 和m b. 杆可绕距 a球为L/4处的水平 定轴O在竖直平面内转动.初始时杆处于竖直位置.小球b几乎 接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为 m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面 的截面.现用一水平恒力F作用于 a球上,使之绕O轴逆时针 转动,求当a转过 角时小球b速度的大小.设在此过程中立方 体物块没有发生转动,且小球b与立方体物块始终接触没有分 离.不计一切摩擦. 4、把上端A封闭、下端B开口的玻璃管插入水中,放掉部分空气后 放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的 长度b=1厘米,大气压强P0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计. (1)求玻璃管内外水面的高度差h. (2)用手拿住玻璃管并缓慢地把它压入水中,当管的A端在水面下超过某一深度时,放手后玻璃管 不浮起.求这个深度. (3)上一小问中,放手后玻璃管的位置是否变化?如何变化?(计算时可认为管内空气的温度不变) 5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右 图).一条长度为l的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为 m的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v绕圆锥体的轴线做水平匀 速圆周运动(物体和绳在上图中都没画出 ). a O b A B C D F

高中物理竞赛训练题 - 《静力学》奥赛试题

2003年高一物理奥赛培训系列练习 第一讲 共点力的处理 班次 姓名 得分 1、(本题20分)如图1所示,一根重8牛顿的均质直棒 AB ,其A 端用悬线悬挂在O 点,现用F = 6牛顿的水平 恒力作用于B 端,当达到静止平衡后,试求:(1)悬绳 与竖直方向的夹角α;(2)直棒与水平方向的夹角β。 2、(本题10分)均质铁链如图2悬挂在天花板上,已知悬挂处的铁链的切线与天花板的夹角为θ,而铁链总重为G, 试求铁链最底处的张力。 3、(本题20分)如图3所示,两不计大小的定滑轮被等高地固定在天花板上,跨过滑轮的轻绳悬挂三部分重物。A 、B 部分的重量是固定的,分别是A G = 3牛顿和B G = 5牛顿,C G 则可以调节大小。设绳足够长,试求能维持系统静止平衡的C G 取值范围。 图 2 θ 图1 F O A B αβA B C 图 3

4、(本题10分)如图4所示,被固定在竖直平面的大环半径为R , 另有一质量为m 的光滑小环套在大环上,并通过劲度系数为K、自由长度为L ( L < 2R )的轻质弹簧系在大环的顶点A 。试求小环静止平衡时弹簧与竖直方向的夹角θ。 5、(本题20分)如图5所示,均质杆AB置于互相垂直的两斜面上,杆两端与斜面摩擦系数均为μ,右边斜面的倾角为α。试求:平衡时,杆与斜面AC的夹角θ的可取值范围。 6、(本题20分)图6的系统中,所有接触面均粗糙,B静止 在C上,而A沿C匀速下滑,且α<β,试判断地面对C的 摩擦力大小情况、地面对C的支持力与ABC三者重力之和的 关系。 θ A m 图 4 A B α  90-α θ 图 5 A B C αβ 图 6

静力学基础 习题及答案

静力学基础 一、判断题 1.外力偶作用的刚结点处,各杆端弯矩的代数和为零。(× ) 2.刚体是指在外力的作用下大小和形状不变的物体。(√ ) 3.在刚体上加上(或减)一个任意力,对刚体的作用效应不会改变。(× ) 4.一对等值、反向,作用线平行且不共线的力组成的力称为力偶。(√ ) 5.固定端约束的反力为一个力和一个力偶。(× ) 6.力的可传性原理和加减平衡力系公理只适用于刚体。(√ ) 7.在同一平面内作用线汇交于一点的三个力构成的力系必定平衡。(× ) 8.力偶只能使刚体转动,而不能使刚体移动。(√ ) 9.表示物体受力情况全貌的简图叫受力图。(√ ) 10.图1中F对 O点之矩为m0 (F) = FL 。(× ) 图 1 二、选择题 1. 下列说法正确的是( C ) A、工程力学中我们把所有的物体都抽象化为变形体。 B、在工程力学中我们把所有的物体都抽象化为刚体。 C、稳定性是指结构或构件保持原有平衡状态。 D、工程力学是在塑性范围内,大变形情况下研究其承截能力。 2.下列说法不正确的是( A ) A、力偶在任何坐标轴上的投形恒为零。 B、力可以平移到刚体内的任意一点。 C、力使物体绕某一点转动的效应取决于力的大小和力作用线到该点的垂直距离。 D、力系的合力在某一轴上的投形等于各分力在同一轴上投形的代数和。 3.依据力的可传性原理,下列说法正确的是( D ) A、力可以沿作用线移动到物体内的任意一点。 B、力可以沿作用线移动到任何一点。 C、力不可以沿作用线移动。 D、力可以沿作用线移动到刚体内的任意一点。 4.两直角刚杆AC、CB支承如图,在铰C处受力F作用,则A、B两处约束力与x轴正向所成的夹角α、β分别为:

高中物理竞赛预赛试题分类汇编—力学

全国中学生高中物理竞赛预赛试题分类汇编 力学 第16届预赛题. 1.(15分)一质量为M 的平顶小车,以速度0v 沿水平的光滑轨道作匀速直线运动。现将一质量为m 的小物块无初速地放置在车顶前缘。已知物块和车顶之间的动摩擦系数为μ。 1. 若要求物块不会从车顶后缘掉下,则该车顶最少要多长? 2. 若车顶长度符合1问中的要求,整个过程中摩擦力共做了多少功? 参考解答 1. 物块放到小车上以后,由于摩擦力的作用,当以地面为参考系时,物块将从静止开始加速运动,而小车将做减速运动,若物块到达小车顶后缘时的速度恰好等于小车此时的速度,则物块就刚好不脱落。令v 表示此时的速度,在这个过程中,若以物块和小车为系统,因为水平方向未受外力,所以此方向上动量守恒,即 0()Mv m M v =+ (1) 从能量来看,在上述过程中,物块动能的增量等于摩擦力对物块所做的功,即 2 112 mv mg s μ= (2) 其中1s 为物块移动的距离。小车动能的增量等于摩擦力对小车所做的功,即 22021122 Mv mv mgs μ-=- (3) 其中2s 为小车移动的距离。用l 表示车顶的最小长度,则 21l s s =- (4) 由以上四式,可解得 2 2()Mv l g m M μ=+ (5) 即车顶的长度至少应为20 2() Mv l g m M μ=+。 2.由功能关系可知,摩擦力所做的功等于系统动量的增量,即 22 11()22 W m M v Mv =+- (6) 由(1)、(6)式可得 2 2() mMv W m M =-+ (7) 2.(20分)一个大容器中装有互不相溶的两种液体,它们的密度分别为1ρ和2ρ(12ρρ<)。现让一长为L 、密度为 121 ()2 ρρ+的均匀木棍,竖直地放在上面的液体内,其下端离两液体分界面的距离为

物理竞赛第一轮复习 静力学测验

2013届物理竞赛第一轮复习 静力学测验(2011.10.16) 姓名 满分160分 得分 1.(本题6分)如图所示,物体 A 靠在光滑竖直的墙面,用带铰链的棒支住它,物体重为G ,棒重G ‘ ,棒和竖直方向的夹角为 ,则以下说法正确的是:( ) A 物体A 对棒端的弹力、磨擦力的合力的方向必沿棒的方向; B 增加物重G ,物体对棒的弹力将减小; C 移动铰链的位置,使 角增大,但仍支住物体A ,则物体对棒 的弹力将增大; D 增大棒重G ‘ ,物体A 对棒的磨擦力将增大; 2.在水平桌面M 上放置一块正方形薄板abcd , 在木板的正中央放置一个质量为m 的木板, 如图所示,先以木板的ad 边为轴,将木板向上缓慢转动,使木板 a d 的ab 边与桌面的夹角为θ;在接着以木板的ab 边为轴,将木板向 上缓慢转动,使木板的ad 边与桌面的夹角也为θ(ab 边与桌面的 b c 夹角θ不变),在转动过程中木板在薄木板上没有滑动,则转动以 后木板受到的摩擦力的大小为( ) A 2√2mgSin θ BmgSin2θ C √2mgSin θ D mgSin √2θ 3.(本题6分)如图所示,一个直角斜槽(两槽面间夹角为90°,两槽面跟竖直面的 夹角均为45°),对水平面的倾角为θ,一个横截面积为正方形的物 块恰能沿此斜槽匀速下滑,假定两槽面的材料和槽面的情况相同, 则物块和槽面之间的动摩擦因数μ为( ) A √2 tan θ B √2/ 2 cot θ C √2/ 2 tan θ D √2 cot θ 4. (本题6分)如图所示上细下粗的容器中盛有一定质量的水,若将它倒置,则水对容器底面的压力和压强变化的情况是( ) A 、压力减小,压强增大 B 、压力增大,压强减小 C 、压力和压强都增大 D 、压力和压强都减小 5.(本题6分)如图所示是单臂斜拉桥的示意图,均匀桥板ao 重为G ,三根平行钢索与桥面成30°,间距ab =bc =cd =do ,若每根钢索受力相同,左侧桥墩对桥板无作用力,则每根钢索的拉力大小 是

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

物理竞赛专题训练(力学)

1. 如图所示,圆柱形容器中盛有水。现将一质量为0.8千克的正方体物块放入容器中,液面上升了1厘米。此时正方体物块有一半露出水面。已知容器的横截面积与正方体横截面积之比为5∶1,g 取10牛/千克,容器壁厚不计。此时物块对容器底的压强是__________帕。若再缓缓向容器中注入水,至少需要加水___________千克,才能使物块对容器底的压强为零。 2. 如图所示,是小明为防止家中停水而设计的贮水箱.当水箱中水深达到1.2m 时,浮子A 恰好堵住进水管向箱内放水,此时浮子A 有1/3体积露出水面(浮子A 只能沿图示位置的竖直方向移动)。若进水管口水的压强为1.2×105Pa ,管口横截面积为2.5㎝2,贮水箱底面积为0.8m 2,浮子A 重10N 。则:贮水箱能装__________千克的水。 浮子A 的体积为______________m 3. 3. 弹簧秤下挂一金属块,把金属块全部浸在水中时,弹簧秤示数为3.4牛顿,当 金属块的一半体积露出水面时,弹簧秤的示数变为 4.4牛顿,则:金属块的重力为____________牛。金属块的密度为________千克/米3(g=10N/kg ) 4. 图甲是一个足够高的圆柱形容器,内有一边长为10cm 、密度为0.8×103kg/m 3的正方体物块,物块底部中央连有一根长为20cm 的细线,细线的另一端系于容器底部中央(图甲中看不出,可参见图乙)。向容器内缓慢地倒入某种液体,在物块离开容器底后,物块的1/3浮出液面。则:当液面高度升至_________厘米时;细线中的拉力最大。细线的最大拉力是__________牛。(取g=10N/kg) 5. 如图所示,弹簧上端固定于天花板,下端连接一圆柱形重物。先用一竖直细线拉住重物,使弹簧处于原长,此时水平桌面上 烧杯中的水面正好与圆柱体底面接触。已知圆柱形重物的截面积为10cm 2 为 10cm ;烧杯横截面积20cm 2,弹簧每伸长1cm 的拉力为0.3N ,g =10N/kg 物密度为水的两倍,水的密度为103kg/m 3弹簧的伸长量为___________厘米。 6. 如图16-23所示,A 为正方体物块,边长为4cm ,砝码质量为280g ,此时物体A 刚好有2cm 露出液面。若把砝码质量减去40g ,则物体A 刚好全部浸入液体中,则物体A 的密度为____________克/厘米3(g 取10N/kg )。 7. 一个半球形漏斗紧贴桌面放置,现自位于漏斗最高处的孔向内注水,如图所示,当漏斗内的水面刚好达到孔的位置时,漏斗开始浮起,水开始从下面流出。若漏斗半径为R ,而水的密度为ρ,试求漏斗的质量为____________。 8. 将体积为V 的柱形匀质木柱放入水中,静止时有一部分露出水面,截去露出部分再放入水中,又有一部分露出水面,再截去露出部分……,如此下去,共截去了n 次,此时截下来的木柱体积是_________________,已知木柱密度ρ和水的密度ρ水。 甲

重点高中物理竞赛(静力学)

重点高中物理竞赛(静力学)

————————————————————————————————作者:————————————————————————————————日期: 2

3 力、物体的平衡 补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。 一、力学中常见的三种力 1.重力、重心 ①重心的定义:Λ ΛΛ Λ++++= g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。 ②重心与质心不一定重合。如很长的、竖直放置的杆,重心和质心不重合。 如将质量均匀的细杆AC (AB =BC =1m )的BC 部分对折,求重心。 以重心为转轴,两边的重力力矩平衡(不是重力相等): (0.5-x ) 2G =(x +0.25)2 G ,得x =0.125m (离B 点). 或以A 点为转轴:0.5?2G +(1+0.5)2 G =Gx ', 得x '=0.875m ,离B 点x =1-x '=0.125m. 2.巴普斯定理: ①质量分布均匀的平面薄板:垂直平面运动扫过的体积等于面积剩平面薄板重心通过和路程。 如质量分布均匀的半圆盘的质心离圆心的距离为x , 绕直径旋转一周,2321234R x R πππ?=,得π 34R x = ②质量分布均匀的、在同一平面内的曲线:垂直曲线所在平面运动扫过的面积等于曲线长度剩曲线的重心通过路程。 如质量分布均匀的半圆形金属丝的质心离圆心的距离为x , 绕直径旋转一周,R x R πππ?=242,得πR x 2= 1. (1)半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内切圆板,如图a 所示,求剩下部分的重心。 (2)如图b 所示是一个均匀三角形割去一个小三角形 AB 'C ',而B 'C '//BC ,且?AB 'C '的面积为原三角形面积的 4 1 ,已知BC 边中线长度为L ,求剩下部分BCC 'B '的重心。 [答案:(1) 离圆心的距离6 R ;(2)离底边中点的距离92L ] 解(1)分割法:在留下部分的右边对称处再挖去同样的一个圆,则它关于圆心对称,它的重心在圆心上,要求的重心就是这两块板的合重心,设板的面密度为η,重心离圆心的距离为x . 有力矩平衡: ),2()2(])2(2[222x R R x R R -=-ηπηπ得6 R x ==5cm.

物理竞赛2静力学

第二部分:静力学 一、复习基础知识点 一、 考点内容 1.力是物体间的相互作用,是物体发生形变和物体运动状态变化的原因。 2.重力是物体在地球表面附近所受到的地球对它的引力,重心。 3.形变与弹力,胡克定律。 4.静摩擦,最大静摩擦力。 5.滑动摩擦,滑动摩擦定律。 6.力是矢量,力的合成与分解。 7.平衡,共点力作用下物体的平衡。 二、 知识结构 ???????????????????????????????? ? ?? ??????? ? ? ? ???? ????? ?? ? ????? ? ? ? ??????????? ?????? ????????????-???→→→????? ? ?? ????????? ??--→???? ??→→?? ? ??? ????? ??→???? ??-→的灵活使用方法:整体法和隔离法产生条件、摩擦力、弹力、重力顺序原则受力分析实效原则图解法(几何法)力的分解式法图解法(几何法)、公力的合成力的等效性使物体产生形变物体产生加速度)改变物体运动状态(使力的效果效果各异作用力与反作用力效果相同平衡力支持力等回复力、浮力、压力、动力、阻力:向心力、 效果子力、电场力、磁场力不接触的力:重力、分产生条件、大小、方向力接触的力:弹力、摩擦性质力的种类物体受力物体同时定是施力物体施力物体同时定是受力相互性受力物体施力物体物体间作用物质性力的属性—物体间的相互作用—力的定义力.......321 三、 复习思路 在复习力的概念时,同学们应注重回顾学过的各种具体的力,包括电磁学中的各种力,也可以联系牛顿第三定律展开研究力的相互性。对于重力,在复习时可以联系万有引力定律,分清为什么“重力是由于地球的吸引而产生的力”。且通过分析物体随地球自转需向心力, 最终认识重力与万有引力之间的差异很小,一般可认为2地R GMm mg =。摩擦力是本单元的 重点,也是难点,要结合具体的例子,对摩擦力的大小和方向,摩擦力的有无的讨论以及物体在水平面、斜面上、竖直墙上等的滑动摩擦力与弹力的关系等,要分门别类地进行讨论、研究。

高中物理竞赛 动力学

动力学 1、如图1所示,在光滑的固定斜面上,A 、B 两物体用弹簧相连,被一水平外力F 拉着匀速上滑。某瞬时,突然将F 撤去,试求此瞬时A 、B 的加速度a A 和a B 分别是多少(明确大小和方向)。 已知斜面倾角θ= 30°,A 、B 的质量分别为m A = 1kg 和m B = 2kg ,重力加速度g = 10m/s 2。 (a A = 0 ;a B = 7.5m/s 2 ,沿斜面向下。) 2倾角为α的固定斜面上,停放质量为M 的大平板车,它与斜面的摩擦可以忽略不计。平板车上表面粗糙,当其上有一质量为m 的人以恒定加速度向下加速跑动时,发现平板车恰能维持静止平衡。试求这个加速度a 值。 3:光滑水平桌面上静置三只小球,m 1=1kg 、m 2=2kg 、m 3=3kg ,两球间有不可伸长的轻绳相连,且组成直角三角形,α=37°.若在m 1上突然施加一垂直于m 2、m 3连线的力F =10N ,求此瞬时m 1受到的合力,如图1所示 . 图 5

4:图4所示。为斜面重合的两楔块ABC及ADC,质量均为M,AD、BC两面成水平,E为质量等于m的小滑块,楔块的倾角为a,各面均光滑,系统放在水平平台角上从静止开始释放,求两斜面未分离前E的加速度。 5 长分别为l1和l2的不可伸长的轻绳悬挂质量都是m的两个小球,如图4所示,它们处于平衡状态。突然连接两绳的中间小球受水平向右的冲击(如另一球的碰撞),瞬间内获得水平向右的速度v0,求这瞬间连接m2的绳的拉力为多少? 图5 6:定滑轮一方挂有m1=5kg的物体,另一方挂有轻滑轮B,滑轮B两方挂着m2=3kg与m3=2kg的 物体(图5),求每个物体的加速度。

20高中物理竞赛力学题集锦

全国中学生物理竞赛集锦(力学) 第21届预赛(2004.9.5) 二、(15分)质量分别为m 1和m 2的两个小物块用轻绳连结,绳跨过位于倾角α =30?的光滑斜面顶端的轻滑轮,滑轮与转轴之间的磨擦不计,斜面固定在水平桌面上,如图所示。第一次,m 1悬空,m 2放在斜面上,用t 表示m 2自斜面底端由静止开始运动至斜面顶端所需的时间。第二次,将m 1和m 2位置互换,使m 2悬空,m 1放在斜面上,发现m 1自斜面底端由静止开始运动至斜面顶端所需的时间为t/3。求m l 与m 2之比。 七、(15分)如图所示,B 是质量为m B 、半径为R 的光滑半球形碗,放在光滑的水平桌面上。A 是质为m A 的细长直杆,被固定的光滑套管C 约束在竖直方向,A 可自由上下运动。碗和杆的质量关系为:m B =2m A 。初始时,A 杆 被握住,使其下端正好与碗的半球面 的上边缘接触(如图)。然后从静止 开始释放A ,A 、B 便开始运动。设A 杆的位置用θ 表示,θ 为碗面的球心 O 至A 杆下端与球面接触点的连线方 向和竖直方向之间的夹角。求A 与B 速度的大小(表示成θ 的函数)。 九、(18分)如图所示,定滑轮B 、C 与动滑轮D 组成一滑轮组,各滑轮与转轴间的摩擦、滑轮的质量均不计。在动滑轮D 上,悬挂有砝码托盘A ,跨过滑轮组的不可伸长的轻线的两端各挂有砝码2和3。一根用轻线(图中穿过弹簧的那条坚直线)拴住的压缩轻弹簧竖直放置在托盘底上,弹簧的下端与托盘底固连,上端放有砝码1(两者未粘连)。已加三个砝码和砝码托盘的质量都是m ,弹簧的劲度系数为k ,压缩量为l 0,整个系统处在静止状态。现突然烧断栓住弹簧的轻线,弹簧便伸长,并推动砝码1向上运动,直到砝码1与弹簧分离。假设砝码1在以后的运动过程中不会与托盘的顶部相碰。求砝码1从与弹簧分离至再次接触经历的时间。 第21届复赛 二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度R GM 43=v ,式中M 为地球质量,G 为引力常量.卫 星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示) 六、(20分)如图所示,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上 (图中纸面),A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式”的(不能对小球产生垂直于杆方向的作用力).已知杆AB 与BC 的 夹角为π-α ,α < π/2.DE 为固定在桌面上一块挡板,它与AB 连线方向垂直.现令 A 、 B 、 C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,已知在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小. 第二十届预赛(2003年9月5日) 五、(20分)有一个摆长为l 的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x 处(x <l )的C 点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l 一定而x 取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O 点),然后放手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x 的最小值. 六、(20分)质量为M 的运动员手持一质量为 m 的物块,以速率v 0沿与水平面成a 角的方向向前跳跃(如图) .为了能跳得更远一点,运动员可在跳远全过程中的某一位置处, A B C π-α D E

高中物理竞赛-高三物理奥赛培训题静力学A

静力学A 1、重量分别为P 和Q 的两个小环A 和B ,都套在一个 处在竖直平面内的、光滑的固定大环上。A 、B 用长为l 的细 线系住,然后挂在环的正上方的光滑钉子C 上。试求系统静 止平衡后AC 部分线段的长度。 2、质量为m 的均匀细棒,A 端用细线悬挂 于定点,B 端浸没在水中,静止平衡时,水中部 分长度为全长的3/5 ,求此棒的密度和悬线的张 力。 3、长为1m 的均匀直杆AB 重10N ,用细绳AO 、BO 悬挂起来,绳与直杆的角度如图所示。为了使杆保持水平,另需在杆上挂一个重量为20N 的砝码,试求这个砝码的悬挂点C 应距杆的A 端多远。

4、半径为R 的空心圆筒,内表光滑,盛有两个同样光滑的、半径为r 的、重量为G 的球,试求B 与圆筒壁的作用力大小。 5、六个完全相同的刚性长条薄片依次架在一个水平碗上,一端搁在碗口,另一端架在另一个薄片的正中点。现将质量为m 的质点置于A 1A 6的中点处,忽略各薄片的自重,试求A 1B 1薄片对A 6B 6的压力。 6、为了将一个长为2m 的储液箱中的水和水银分开,在箱内放置一块隔热板AB ,板在A 处有铰链,和水平面夹53°角。已知水的深度为1m 、水和水银的密度分别为ρ水 = 1.0×103kg/m 3和ρ汞 = 13.57×103kg/m 3 ,试求:使绳CB 和BD 都保持紧张所需的的水银深度。

《静力学A 》提示与答案 1、提示:受力三角形和空间位置三角形相似。 答案:Q P Q +l 。 2、提示:求ρ时用力矩平衡,注意浮力的作用点在浸没段的中心点。 答案:2521ρ水 ;7 2mg 。 3、提示:略。 答案:0.125m 。 4、提示:隔离A 较佳,右图中的受力三角形和(虚线) 空间位置三角形相似。根据系统水平方向平衡关系可知,N 即为题意所求。 答案:2R Rr 2r R --G 。 5、提示:设所求的力为N ,则各薄片在碗口受的支持力可以推知为下左图;但是,在求B 6处的支持力N ′时,N ′≠32N ,而应隔离为下右图—— 以m 所放置的点为转轴,列力矩平衡方程,易得 N ′= 11N 答案:42 1mg 。 6、提示:液体的压力垂直容器壁,且作用点在深度的一半处。但是,在列力矩平衡方程时,此题似乎欠缺“隔热板”的重量… 答案:0.24m 。

初中物理竞赛-静力学复习试题

静力学复习试题 1如图所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力 T. 2、均质铁链如图2悬挂在天花板上,已知悬挂处的铁链的切线与天花板的夹角为θ,而铁链总重为G, 试求铁链最底处的张力。 3、如图3所示,两不计大小的定滑轮被等高地固定在天花板上,跨过滑轮的轻绳悬挂三部分重物。A 、B 部分的重量是固定的,分别是A G = 3牛顿和B G = 5牛顿,C G 则可以调节大小。设绳足够长,试求能维持系统静止平衡的C G 取值范围。 4、如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。 5、如图所示,一个重量为G 的小球套在竖直放置的、半径为R 的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L (L <2R ),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B 点。试求弹簧与竖直方向的夹角θ。 思考:若将弹簧换成劲度系数k ′较大的弹簧,其它条件不变,则弹簧弹力怎么 变?环的支持力怎么变? 图 2θ图 3

6、光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图中所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化? 7、如图所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它 置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30° 的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为 30°。试求球体的重心C到球心O的距离。 8、如图所示,一根重8N的均质直棒AB,其A端用悬线悬挂在O点, 现用F = 6N的水平恒力作用于B端,当达到静止平衡后,试求:(1) 悬绳与竖直方向的夹角α;(2)直棒与水平方向的夹角β。 9、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。 10、如图所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰 链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力? 图1 F

高中物理竞赛 流体静力学和运动学

今天,我们除了要复习一下之前的内容之外,还需要学习一点关于流体的简单知识,算是对于初中物理的致敬吧~ 1.静止流体内的压强 在重力场中相互连通的静止流体内的压强与位置的关系十分简单。此关系可归结为两点: ⑴ 等高点,压强相等 ⑵ 高度差为h 的两点,压强差为gh ρ,越深处压强越大。 2.浮力,浮心 由阿基米德原理可知,浮力和排开体积的流体的受重力大小相等,方向相反。 F gV ρ= 浮力的作用点称为浮心,和物体同形状,同体积那部分流体的重心,但定不等同于物体的重心,只有在物体密度均匀时,它才与浸没在流体中的物体部分的重心重合。 3.浮体平衡的稳定性 浮在流体表面的浮体,所受浮力与重力大小相等,方向相反,处于平衡状态。 浮体对铅垂方向(即垂直于水面)的扰动,显然平衡是稳定的。 浮体对水平方向(即水平方向)的扰动,其平衡是随遇的。 浮体对于过质心的水平对称轴的旋转扰动,平衡稳定性与浮心和物体的重心的相对位置有关。向右扰动后,如果重心G 的位置比浮心B 更右侧,则为不稳定平衡;如果重心G 的位置右移等于浮心B ,则为随遇平衡;如果重心G 右移小于浮心B ,则为稳定平衡。 【例1】 一立方形钢块平正地浮在容器内的水银中,已知钢块的密度ρ为37.89g/cm ,水银 的密度为0ρ为313.6g/cm 。 ⑴ 问钢块露出水面之上的高度与边长之比为多大? ⑵ 如果在水银面上加水,使水面恰与钢块的顶相平,问水层的厚度与钢块边长之比为多大? 例题精讲 方法提示 本讲导学 高中物理竞赛专题 流体静力学和运动学

【例2】 用手捏住悬挂着细木棒的细绳的一端,让木棒缓慢地逐渐浸入水中,讨论在此过程中 木棒和绳的倾斜情况。 【例3】 一个下窄上宽的杯中盛有密度为ρ的均匀混合液体,经一段时间后,变为两层液体, 密度分别为1ρ和2ρ(21ρρ>)则会分层并且总体积不变,问杯底压强是否改变,变 大或变小? 【例4】 一个半球形漏斗紧贴着桌面放置(如图)现有位于漏斗最高处的孔向内注水,当漏斗 内的水面刚好达到孔的位置时,漏斗开始浮起,水开始从下面流去。若漏斗半径为R ,而水密度为ρ,求漏斗质量?

重修班静力学复习题答案

重修班静力学复习题 一、 是非判断题(10分) 1.若两个力的力矢量相等,12F F =r r ,则两个力等效。(×) (若两个力偶的力偶矩矢相等,12M M =r r ,则两个力偶等效)(√) 2.根据力的可传性原理,可以将构架ABC 上的作用在AB 杆的力F 移至AC 杆图示位置。 2. 图中圆盘处于平衡状态,说明力偶M 与力F 等效。(×) 3. 空间中三个力构成一平衡力系,此三力必共面。(√) 4. 空间任意力系向某一点O 简化,主矢为零,则主矩与简化中心无关。(√) 5. 空间任意力系总可以用二个力来平衡。(√) 6. 力与轴共面则力对轴的矩为零。(√) 7. 空间平行力系不可能简化为力螺旋。(√) 二 选择题(15分) 1不经计算,可直接判断出图示桁架结构的零杆数目为 C 个。 A 2; B 3;C 4;D 5 期未试题A :(6分)图示简支桁架,已知力P 、Q ,长度a ,刚杆1,2,3的内力分别为=1T ( 0 ),=2T ( -P ),=3T ( 0 )。 期未试题B (6分) 图示悬臂桁架受到大小均为F 的三个力作用,则杆1内力大小为( 0 ),杆2内力大小为( -F ),杆3内力大小为( 0 )。 2 物块重力大小为5kN G =,与水平面间的摩擦角为020f ?=,今用与铅垂线成025角的力F 推动物块,若5kN F G ==,则物块 A 。 A 保持静止; B 处于临界状态; C 向右加速滑动; D 向右匀速滑动 第二、1题图 第二、1题图

期未试题:2 物块重力大小为5kN G =,与水平面间的摩擦角为030f ?=,今用与铅垂线成050角的力F 推动物块,若5kN F G ==,则物块( A )。 补考试题:物块重力大小为5kN G =,与水平面间的摩擦角为030f ?=,今用与铅垂线成065角的力F 推动物块,若5kN F G ==,则物块( C )。 3在正方体的一个侧面,沿AB 方向作用一集中力F , 则该力对坐标轴的力矩大小为 D 。 A 对x,y,z 轴之矩全相等; B 对x,y,z 轴之矩全不等; C 只是对x,y 轴之矩相等; D 只是对x,z 轴之矩相等; 期未试卷(6分)在正方体的一个侧面,沿AB 方向作用一集中力F ,则该力对x,y,z 三轴的矩分别为Mx=( 2Fa - );My=( 2 Fa - ); Mz=( 2Fa )。 4 空间任意力系向某一定点O 简化,若主矢0≠'R ,主矩00≠M ,则此力系简化的最后结果 C 。 A 可能是一个力偶,也可能是一个力; B 一定是一个力; C 可能是一个力,也可能是力螺旋; D 一定是力螺旋。 5. 一空间平行力系,各力均平行于y 轴,则此力系的独立平衡方程组为 B 。 A 0x F =∑,()0y M F =∑r ,()0z M F =∑r B 0y F =∑,()0x M F =∑r ,()0z M F =∑r C 0z F =∑,()0x M F =∑r ,()0y M F =∑r D 0x F =∑,()0y M F =∑r ,()0z M F =∑r 4已知正方体各边长a ,沿对角线BH 作用一力F ,则该力在x 轴上的投影为 。 A 0; B /2F -; C /6F -; D /3F - (a 、2a 、3a )

高中物理竞赛力学练习题解

1、(本题20分)如图6所示,宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R 。当飞船运行到P 点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。因α很小,所以飞船新轨道不会与火星表面交会。飞船喷气质量 可 以 不 计 。 (1)试求飞船新轨道的近火星点A 的高度h 近和远火星点B 的高度h 远 ; (2)设飞船原来的运动速度为v 0 ,试计算新轨道的运行周期T 。 2,(20分)有一个摆长为l 的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x 处(x <l )的C 点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l 一定而x 取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O 点),然后放 手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x 的最小值. 3,(20分)如图所示,一根长为L 的细刚性轻杆的两端分别连结小球a 和b ,它们的质量分别为m a 和 m b . 杆可绕距a 球为L/4处的水平定轴O 在竖直平面内转动.初始时杆处于竖直位置.小球b 几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m 的立方体匀质物块,图中ABCD 为过立方体中心且与细杆共面的截面.现用一水平恒力F 作用于a 球上,使之绕O 轴逆时针转动, 求当a 转过 角时小球b 速度的大小.设在此过程中立方体物块没有发生转动,且小球b 与立方体物块始终接触没有分离.不计一切摩擦. 4、把上端A 封闭、下端B 开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地 浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1 厘米,大气压强P 0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计. (1)求玻璃管内外水面的高度差h. (2)用手拿住玻璃管并缓慢地把它压入水中,当管的A 端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度. a O b A B C D F

《理论力学》静力学典型习题答案

1-3 试画出图示各结构中构件AB的受力图 1-4 试画出两结构中构件ABCD的受力图

1-5 试画出图a和b所示刚体系整体各个构件的受力图 1-5a 1-5b

1-8在四连杆机构的ABCD的铰链B和C上分别 作用有力F1和F2,机构在图示位置平衡。试求 二力F1和F2之间的关系。 解:杆AB,BC,CD为二力杆,受力方向分别沿着各杆端点连线的方向。 解法1(解析法) 假设各杆受压,分别选取销钉B和C为研究对象,受力如图所示:

由共点力系平衡方程,对B 点有: ∑=0x F 045cos 0 2=-BC F F 对C 点有: ∑=0x F 030cos 0 1=-F F BC 解以上二个方程可得:2 2163.13 62F F F == 解法2(几何法) 分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和 C 对B 点由几何关系可知:0245cos BC F F = 对C 点由几何关系可知: 0130cos F F BC = 解以上两式可得:2163.1F F = 2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。试求A 和C 点处的约束力。 F F

解:BC为二力杆(受力如图所示),故曲杆AB在B点处受到约束力的方向沿BC 两点连线的方向。曲杆AB受到主动力偶M的作用,A点和B点处的约束力必须构成一个力偶才能使曲杆AB保持平衡。AB受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正): = ∑M0 ) 45 sin( 100= - + ? ?M a F A θ a M F A 354 .0 = 其中: 3 1 tan= θ。对BC杆有: a M F F F A B C 354 .0 = = = A,C两点约束力的方向如图所示。 2-4 解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。对BC杆有:0 = ∑M0 30 sin 2 0= - ? ?M C B F B 对AB杆有: A B F F=

(完整word版)全国中学生物理竞赛真题汇编(热学)

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

相关主题
文本预览
相关文档 最新文档