当前位置:文档之家› 图像传感器参数你知多少

图像传感器参数你知多少

图像传感器参数你知多少
图像传感器参数你知多少

图像传感器参数你知多少

图像传感器的功能是光电转换,关键的参数有像素、单像素尺寸、芯片尺寸、功耗;技术工艺上有前照式(FSI)、背照式(BSI)、堆栈式(Stack)等。本篇就由仪器仪表商情网为您详细介绍传感器的参数知识。

一、图像传感器架构

图像传感器从外观看分感光区域(Pixel Array),绑线Pad,内层电路和基板。感光区域是单像素阵列,由多个单像素点组成。每个像素获取的光信号汇集在一起时组成完整的画面。

CMOS芯片由微透镜层、滤色片层、线路层、感光元件层、基板层组成。

由于光线进入各个单像素的角度不一样,因此在每个单像素上表面增加了一个微透镜修正光线角度,使光线垂直进入感光元件表面。这就是芯片CRA的概念,需要与镜头的CRA 保持在一点的偏差范围内。

电路架构上,我们加入图像传感器是一个把光信号转为电信号的暗盒,那么暗盒外部通常包含有电源、数据、时钟、通讯、控制和同步等几部分电路。可以简单理解为感光区域(Pixel Array)将光信号转换为电信号后,由暗盒中的逻辑电路将电信号进行处理和一定的编码后通过数据接口将电信号输出。

二、图像传感器关键参数

1、像素:指感光区域内单像素点的数量,比如5Maga pixel,8M,13M,16M,20M,像素越多,拍摄画面幅面就越大,可拍摄的画面的细节就越多。

2、芯片尺寸:指感光区域对角线距离,通常以英制单位表示,比如1/4inch,1/3inch,1/2.3inch等。芯片尺寸越大,材料成本越高。

3、单像素尺寸:指单个感光元件的长宽尺寸,也称单像素的开口尺寸,比如1.12微米,1.34微米,1.5微米等。开口尺寸越大,单位时间内进入的光能量就越大,芯片整体性能就相对较高,最终拍摄画面的整体画质相对较优秀。单像素尺寸是图像传感器一个相当关键的参数。

其他更深入的参数比如SNR,Sensitivity,和OB Stable等在这里不做介绍,朋友们可以研究探讨。

三、前照式(FSI)与背照式(BSI)

传统的CMOS图像传感器是前照式结构的,自上而下分别是透镜层、滤色片层、线路层、感光元件层。采取这个结构时,光线到达感光元件层时必须经过线路层的开口,这里易造成光线损失。

而背照式把感光元件层换到线路层的上面,感光层只保留了感光元件的部分逻辑电路,这样使光线更加直接的进入感光元件层,减少了光线损失,比如光线反射等。因此在同一单位时间内,单像素能获取的光能量更大,对画质有明显的提升。不过该结构的芯片生产工艺难度加大,良率下降,成本相对高一点。

四、堆栈式(Stack)

堆栈式是在背照式上的一种改良,是将所有的线路层挪到感光元件的底层,使开口面积得以最大化,同时缩小了芯片的整体面积。对产品小型化有帮助。另外,感光元件周边的逻辑电路移到底部之后,理论上看逻辑电路对感光元件产生的效果影响就更小,电路噪声抑制得以优化,整体效果应该更优。业内的朋友应该了解相同像素的堆栈式芯片的物理尺寸是比背照式芯片的要小的。但堆栈式的生产工艺更大,良率更低,成本更高。索尼的IMX214(堆栈式)和IMX135(背照式)或许很能说明上述问题。

(整理)传感器的含义.

1、传感器的定义 英文名称:transducer / sensor 传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。 根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。 化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。 按照其用途,传感器可分类为: 压力敏和力敏传感器 液面传感器 速度传感器 加速度传感器 湿敏传感器 气敏传感器 真 以其输出信号为标准可将传感器分为: 模拟传感器—— 数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换) 膺数字传感器——将被测量的信号量转换成频率信号或短周期 信号的输出(包括直接或间接转换) 开关传感器——当一个被测量的信号达到某个特定的阈值时,传 感器相应地输出一个设定的低电平或高电平信号。

传感器选用的一般原则

现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 2、灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。 4、线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。 5、稳定性

传感器简答题

1-2 什么是测量误差?测量误差有几种表达方式?它们通常应用在什么场合? 测量误差是测得值减去被测值的真值。 测量误差有五种表达方式分别是: (1)绝对误差:当被测量大小相同时,常用绝对误差来评定准确度。 (2)实际相对误差:相对误差常用来表示和比较测量的准确度。 (3)引用误差:引用误差是仪表中通用的一种误差表示方法。 (4)基本误差 (5)附加误差:基本误差和附加误差常用于仪表和传感器中。 1-6 什么是随机误差?系统误差可以分为哪几类?系统误差有哪些检验方法?如何减小和消除系统误差? 在同一测量条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差称为系统误差。 系统误差可分为恒值(定值)系统误差和变值系统误差。误差的绝对值和符号已确定的系统误差称为恒值(定值)系统误差;绝对值和符号变化的系统误差称为变值系统误差,变值系统误差又可分为线性系统误差、周期性系统误差和复杂规律系统误差等。 检验方法:实验对比法;残余误差观察法;准则检查法 系统误差的消除: 1. 从产生误差根源上消除系统误差; 2.用修正方法消除系统误差的影响; 3. 在测量系统中采用补偿措施; 4.可用实时反馈修正的办法,来消除复杂的变化系统误差。 1-8什么是粗大误差?如何判断监测数据中存在的粗大误差? 超出在规定条件下的预期的误差成为粗大误差,粗大误差又称为疏忽误差。 判断粗大误差的原则是看测量值是否满足正态分布,要对测量数据进行必要的检验。通常用来判断粗大误差的准则有:3 准则(莱以特准则);肖维勒准则;格拉布斯准则。 2-1什么叫传感器?它由哪几部分组成?他们的作用及相互关系如何? 答:传感器是能感受(或响应)规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 通常传感器有敏感元件和转换元件组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部份;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测

压力传感器选型的三大要素

压力传感器选型的三大要素 为新项目或设备选择压力传感器时,设计师通常比较关注关键设计参数,如压力范围、电流输出、介质兼容性以及环境条件等。然而,若要根据不同的应用选出合适的传感器,除以上参数外,还需考虑其它因素,常常被忽略的设计因素:压力传递介质(充油式和非充油式)、结构和传感技术类型。这也是压力传感器选型的三大要素。 一压力传递介质(充油式vs非充油式)在压力传感行业存在多种不同的传感技术,但所有传感器都可分为两大类:充油式和非充油式。充油式传感器是指在膜片和传感元件之间采用油液作为压力传递介质的传感器,例如基于微机电系统(MEMS)的电子传感器。 充油式传感器具有材料相容性(好)、成本低、易于集成到成套传感器系统中等特点,对许多制造应用都极具吸引力。虽然应用日益普遍,但相较于非充油式传感器,仍有不少缺点。 充油式设计的缺点是故障成本高。一旦传感膜片因过压或制造缺陷而破裂,那么油液就会泄漏至应用中并污染系统。油液进入系统会损坏关键的部件,造成成数千乃至数百万美元的损失,损失程度视具体应用而异(如,代价昂贵的燃料电池系统)。更糟的是,许多系统一旦被油液污染,几乎就没有修复的可能。相比之下,非充油式设计不仅能消除因故障导致污染的可能性,而且还可承受更高的过压冲击。 二结构压力传感器在应用中的服役时间是挑选传感器的关键指标之一。一般而言,全焊接结构的传感器,设计更坚固、耐用,在许多苛刻应用中的使用寿命都较长。另外,还要考虑接头在外壳上的焊接牢固度。要知道,在应用现场,这些装置常常会暴露在影响传感器工作的非理想环境下。 确保制造商不仅能够提供多种压力接头,包括1/4”和1/8”NPT等标准口径,而且还能够视需要量身定制过程接头。即使再坚固耐用的设计也有可能受潮湿环境影响,因此部分传感器需防潮保护以防止接头引脚的四周被腐蚀。 如果担心保护传感器受恶劣环境侵蚀,则选择IP防护等级满足安装需求的传感器。传感器可提供多种IP防护等级。其中,IP65级防护的型号可提供抵御粉尘渗入和喷嘴喷水的全面保护。 IP67级防护的传感器能够防护灰尘侵入以及短暂浸泡。IP69K级防护则适用于高

光电传感器的设计

光电传感器的设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

光电传感器的设计 题目:光电传感器的设计 院(系):信息工程学院 专业:光电信息科学与工程 姓名:褚飞亚 学号: 20 指导教师:张洋洋 2016年6月27号

摘要 随着信息技术的迅猛发展,传感器的应用技术也在飞速发展,新的应用技术呈现出爆炸式的发展。传感器作为作为测控系统中对象信息的入口,作为捕获信息的主要工具,在现代化事业中的重要性已被人们所认识。光电传感器的应用技术为信息科学的一个分支,俗称“电眼”。它是将传统光学技术与现代微电子技术以及计算机技术机密结合的纽带,是获取光信息或借助光提取其他信息的重要手段。现如今汽车成为大多数人必不可少的东西。经常开车的朋友们,应该都有过这样的苦恼每次开车到了单位或者小区大门口都要等门卫来开门或者等其按动电动门的开关,既费时间又费人力,如果巧妙地利用光电传感器就可以实现光控大门。所以借此次课程设计来设计一个光控大门,即把光敏电阻装在大门上并且在汽车灯光能照到的地方,把带动大门的电动机接在干簧管的电路中,那么夜间汽车开到大门前,灯光照射到光敏电阻时,干簧继电器就可以自动接通电动机电路,电动机就能带动大门打开。这样就解决了上述的问题。

目录 1、设计要求...............................................错误!未定义书签。 功能与用途 ............................................................................................. 错误!未定义书签。 指标要求 ................................................................................................. 错误!未定义书签。 2、光电传感器介绍及工作原理 ...............错误!未定义书签。 、光电传感器 ......................................................................................... 错误!未定义书签。 工作原理 ................................................................................................. 错误!未定义书签。 3、方案设计...............................................错误!未定义书签。 4、元件选择和电路设计 ...........................错误!未定义书签。 元件选择 ................................................................................................. 错误!未定义书签。 电路设计 ................................................................................................. 错误!未定义书签。 5、总结.......................................................错误!未定义书签。参考文献.....................................................错误!未定义书签。

传感器性能指标

一、测量仪表的基本性能 1、精确度 (1)精密度δ 它表明仪表指示值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个仪表,在相当短的时间内,连续重复测量多次,其测量结果(指示值)的分散程度。δ愈小,说明测量愈精密。 例如,某温度仪表的精密度δ=0.5℃,即表示多次测量结果的分散程度不大于0.5℃。精密度是随机误差大小的标志,精密度高,意味着随机误差小。 但是必须注意,精密度与准确度是两个概念,精密度高不一定准确。 (2)准确度ε 它表明仪表指示值与真值的偏离程度。 例如,某流量表的准确度ε=0.3m3/s,表示该仪表的指示值与真值偏离0.3m3/s。准确度是系统误差大小的标志,准确度高,意味着系统误差小。同样,准确度高不一定精密。(3)精确度τ 它是精密度与准确度的综合反映,精确度高,表示精密度和准确度都比较高。在最简单的情况下,可取两者的代数和,即τ=δ+ε。精确度常以测量误差的相对值表示。 2、稳定性 (1)稳定度 指在规定时间内,测量条件不变的情况下,由于仪表自身随机性变动、周期性变动、漂移等引起指示值的变化。一般以仪表精密度数值和时间长短一起表示。 例如,某仪表电压指示值每小时变化1.3V,则稳定性可表示为1.3mV/h。 (2)影响量 测量仪表由外界环境变化引起指示值变化的量,称为影响量。它是由温度、湿度、气压、振动、电源电压及电源频率等一些外界环境影响所引起的。说明影响量时,必须将影响因素与指示值偏差同时表示。 例如,某仪表由于电源电压发生变化10%而引起其指示值变化0.02mA,则应写成 0.02mA/U±10%。 二、传感器的分类和性能指标 1、传感器的分类

带你认识基本的传感器特性参数

带你认识基本的传感器特性参数 复性、精度、分辨率、零点漂移、带宽,本文将对这些参数进行一一介绍。 量程 每个传感器都有自身的测量范围,被测量处在这个范围内时,传感器的输出信号才是有一定的准确性的。 传感器的量程X FS、满量程输出值Y FS、测量上限X max、测量下限X min的关系见下图。 灵敏度 传感器的灵敏度是指其输出变化量ΔY与输入变化量ΔX的比值,可以用k表示。对于一个线性度非常高的传感器来说,也可认为等于其满量程输出值Y FS与量程X FS的比值。灵敏度高通常意味着传感器的信噪比高,这将会方便信号的传递、调理及计算。 k=ΔY ΔX

线性度 传感器的线性度又称非线性误差,是指传感器的输出与输入之间的线性程度。理想的传感器输入-输出关系应该是程线性的,这样使用起来才最为方便。但实际中的传感器都不具备这种特性,只是不同程度的接近这种线性关系。 实际中有些传感器的输入-输出关系非常接近线性,在其量程范围内可以直接用一条直线来拟合其输入-输出关系。有些传感器则有很大的偏离,但通过进行非线性补偿、差动使用等方式,也可以在工作点附近一定的范围内用直线来拟合其输入-输出关系。 选取拟合直线的方法很多,上图表示的是用最小二乘法求得的拟合直线,这是拟合精度最高的一种方法。实际特性曲线与拟合直线之间的偏差称之为传感器的非线性误差δ,其最大值与满量程输出值Y FS的比值即为线性度γL。 γL=± δ Y FS ×100% 迟滞

当输入量从小变大或从大变小时,所得到的传感器输出曲线通常是不重合的。也就是说,对于同样大小的输入信号,当传感器处于正行程或反行程时,其输出值是不一样大的,会有一个差值ΔH,这种现象称为传感器的迟滞。 产生迟滞现象的主要原因包括传感器敏感元件的材料特性、机械结构特性等,例如运动部件的摩擦、传动机构间隙、磁性敏感元件的磁滞等等。迟滞误差γH的具体数值一般由实验方法得到,用正反行程最大输出差值ΔH max的一半对其满量程输出值Y FS的比值来表示。 γH=±?H max FS ×100% 重复性 一个传感器即便是在工作条件不变的情况下,若其输入量连续多次地按同一方向(从小到大或从大到小)做满量程变化,所得到的输出曲线也是会有不同的,可以用重复性误差γR 来表示。 重复性误差是一种随机误差,常用正行程或反行程中的最大偏差ΔY max的一半对其满量程输出值Y FS的比值来表示。

新型的数字温湿度传感器性能参数.

新型的数字温湿度传感器性能参数 LM-400、LM-410、LM-420是一种新型的温度或温湿度采集模块,利用它可以实现现场温度值、相对湿度值的采集,同时利用其自身的RS-485总线串行通信接口可以方便地和机房监控主机或其他工控主机进行联网。 工作于-40℃~85℃工业级温湿度采集模块,按显示方式分,有不带LCD显示屏(LM-400)和带LCD显示屏(LM-410、LM-420)两类,按报警方式分有不带独立报警(LM-400、LM-410)和带独立报警(LM-420)两类。采集温度范围为-40℃~+85℃,精度0.1℃;相对湿度范围0~100%,精度0.5% 。 LM-400、LM-410、LM-420温湿度采集模块可通过隔离的485通讯接口与RS-485局域控制网组网连接,RS-485最多允许32个温湿度采集模块挂在同一总线上,但如采用Link-Max的RS-485中继器,则可将多达256个温湿度采集模块连到同一网络,且最大通信距离为1200m。在将温湿度采集模块安装入网前,应对其进行配置,并首先应将模块的波特率与网络的波特率设为一致,同时应分别设置温湿度采集模块为不同的地址,防止各温湿度采集模块的地址冲突。 将温湿度采集模块正确连接后,主机发出读数据命令即可使温湿度采集模块将数据送回主机。温湿度采集模块内的数据每秒钟更新一次,并周期性地更新LCD显示屏的显示数据。

LM-400用于不需要显示的场合,如户外ATM机柜,LM-410用于不需要现场独立报警的场合,如有主机控制的安防工程;LM-420是功能最多的型号,除可完成温度采集、湿度采集外,还可以预先设置温度、湿度的上下限报警值,当环境参数超过该设定值时,机内蜂鸣器立即响起报警声,同时LM-420机内的继电器吸合,可以用来控制一个声光报警器(警号),不用主机也可实现自主报警,让现场管理人员第一时间地作出应对措施。 LM-400、LM-410、LM-420智能温湿度采集模块是一种具有广泛应用前景的全数字化温湿度采集模块,使用该模块可使计算机房的环境监控变得十分容易,监控主机可方便地进行机房的各重要区块(如刀片服务器机柜、路由器机柜、网络交换机机柜、UPS配电柜)的温湿度数据采集,同时简化了整个机房监控系统,而机房监控系统的可靠性也得到了提高。因此,该模块在机房监控系统、电力系统和工业自动化等领域获得广泛的应用,具有极优的性价比。 LM-400、LM-410、LM-420还可和LM-8052NET配合,组成TCP/IP的温度采集网络,可实现远程采集温度与湿度。 性能参数 输入响应时间(模块内数据更新率)为1秒同步测量 1路隔离的485, MODBUS RTU通讯协议 采用RS-485二线制输出接口时,具有+15kV的ESD保护功能

传感器复习题-李章红

传感器复习题-李章红

传感器复习题 1.1、什么是传感器?按国标定义,“传感器”应如何说明含义? 答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器的定义:一种能把特定信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义的角度来对传感器定义是:能把外界非电信号转换成电信号输出的器件。 我国国家标准(GB7665-87)对传感器的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出:传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2、传感器有哪几部分组成?试述它们的作用及相互关系。 答:(1)组成:由敏感元件、转换元件、基本电路组成。 (2)关系及作用:传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取及检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号。其作用于地位特别重要 1.4、传感器如何分类?按传感器检测的范畴可分为哪几种? 答:按照我国制定的传感器分类体系表,传感器分为物理传感器、化学传感器、生物量传感器三大类,含12个小类。按照传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 1.7、请列举出你用到或者看到的传感器,并说明其作用。如果没有传感器,

传感器选用的基本原则

传感器选用的基本原则 现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 2、灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。 4、线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给

光电传感器介绍

光电式传感器 1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是:

(1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv,动量 为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动 能,所以对于电子应有: 2.2 内光电效应 光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件。其工作原理是基于一些物质的光电效应。 光电效应:当具有一定能量E的光子投射到某些物质的表面时,具有辐射能量的微粒将透过受光的表面层,赋予这些物质的电子以附加能量,或者改变物质的电阻大小,或者使其产生电动势,导致与其相连接的闭合回路中电流的变化,从而实现了光—电转换过程。在光线作用下能使物体电阻率改变的称为内光电效应。属于内光电效应的光电转换元件有光敏电阻以及由光敏电阻制成的光导管等。 2.2.1光电导效应 光照变化引起半导体材料电导变化的现象称光电导效应(又称为光电效应、光敏效应),即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

传感器的选择

方案一压电传感器 压电传感器是一种典型的有源传感器,又称自发电式传感器。其工作原理是基于某些材料受力后在其相应的特定表面产生电荷的压电效应。 压电传感器体积小、重量轻、结构简单、工作可靠,适用于动态力学量的测量,不适合测频率太低的被测量,更不能测静态量。目前多用于加速度和动态力或压力的测量。压电器件的弱点:高内阻、小功率。功率小,输出的能量微弱,电缆的分布电容及噪声干扰影响输出特性,这对外接电路要求很高。 方案二电容式传感器 电容式传感器是将被测非电量的变化转换为电容变化的一种传感器。它有结构简单、灵敏度高、动态响应好、可实现非接触测量、具有平均效应等优点。电容传感器可用来检测压力、力、位移以及振动学非电参量。 电容传感器的基本工作原理可用最普通的平行极板电容器来说明。两块相互平行的金属极板,当不考虑其边缘效应(两个极板边缘处的电力线分布不均匀引起电容量的变化)时,其电容量为 () 式()中 d——两极板间的距离; A——两平行极板相互覆盖的有效面积; ε——介质的相对介电常数; r ε——真空中介电常数。 o ε三个参量中任一个发生变化,都会引起电容量的变化,若被测量的变化使式中d、A、 r 通过测量电路就可转换为电量输出。 虽然电容式传感器有结构简单和良好动态特性等诸多优点,但也有不利因素: (1)小功率、高阻抗。受几何尺寸限制,电容传感器的电容量都很小,一般仅几皮法 X=1/ωC很大,为高阻抗元件,负载能力差;又因其视在至几十皮法。因C太小,故容抗 C uωC ,C很小,则P也很小。故易受外界干扰,信号需经放大,并采取抗干扰措功率P=2 o 施。 (2)初始电容小,电缆电容、线路的杂散电路所构成的寄生电容影响很大。 方案三电阻应变式传感器 电阻应变式传感器是一种利用电阻应变效应,将各种力学量转换为电信号的结构型传感器。电阻应变片式电阻应变式传感器的核心元件,其工作原理是基于材料的电阻应变效应,电阻应变片即可单独作为传感器使用,又能作为敏感元件结合弹性元件构成力学量传感器。 导体的电阻随着机械变形而发生变化的现象叫做电阻应变效应。电阻应变片把机械应变信号转换为△R/R后,由于应变量及相应电阻变化一般都很微小,难以直接精确测量,且不

传感器复习题与答案(20200514000120)

传感器原理与应用复习题 第一章传感器概述 1.什么是传感器?传感器由哪几个部分组成?试述它们的作用和相互关系。 (1)传感器定义:广义的定义:一种能把特定的信息(物理、化学、生物)按一定的规律转换成某种可用信号输出的器件和装置。广义传感器一般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界非电信号转换成电信号输出的器件。 我国国家标准对传感器的定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置。 以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。 (2)组成部分:传感器由敏感元件,转换元件,转换电路组成。 (3)他们的作用和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。 2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出? (1)发展趋势:①发展、利用新效应;②开发新材料;③提高传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和网络化。 (2)特征:由传统的分立式朝着集成化。数字化、多动能化、微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。 (3)输出:电量输出。 3.压力、加速度、转速等常见物理量可用什么传感器测量?各有什么特点? 名称特点应用 电阻式传感器电阻式传感器具有体积小、质量轻、 结构简单、输出精度较高、稳定性好、 适于动态和静态测量等特点。 用于力、力矩、压力、位移、加速度、 重量等参数的测量 电容式传感器小功率、高阻抗;具有很高的输入阻 抗;静电引力小,工作所需作用力小; 有较高的频率,动态响应特性好;结 构简单,可进行非接触测量。优点是 电容式传感器用于位移、振动、角度、 加速度等机械量精密测量。逐渐应用 于压力、压差、液面、成份含量等方 面的测量。

传感器参数

2、TH-800温湿度传感器 特点: 属精密温湿度传感器,数码显示测量值,按钮设置温湿度告警门限值; 经可溯源标准检验,精度高并具备程序校准精度功能,低功耗、高稳定性;提供开关量输出端口或高低电平输出,供告警主机采集; 内置单片机,具备自动侦测防误报功能、掉电后设置数据不丢失功能; 输出接线无极性防呆设计,施工便捷; 阻燃绝缘纤维外壳,采用快速端子,输出光电隔离,安全可靠; 用途广泛,配备相应封装的温湿度探头可测量各种管道及特殊场合的温湿度。 技术参数、输入输出接口形式: 供电电源:24VDC;用户可订制12 VDC,48VDC 电流:< 30mA; 显示:数码显示测量值,自检显示如右图; 测湿范围:0 ~ 100 %RH; 精度:±3%RH(30 ~ 90%RH); ±5%RH(其它湿度范围); 测温范围:-10~50℃; 精度:±0.5℃(0~30℃); ±1.0℃(其它温度范围); 报警设置:高温报警设置,设置步长1℃; 低温报警设置,设置步长1℃; 报警设置:高湿报警设置,设置步长1%RH; 低湿报警设置,设置步长1%RH; 工作环境:- 20~45℃,0~100% RH; 输出形式:警戒时开路,告警时短路; 输出允许电流:48V、0.1A; 220V、0.15A; 最大尺寸:96×56×46mm; 重量:205g。 3、霍尔电流传感器.WCS1600 特性: 直径8.7mm 的电流电线通道

输出电压与交/直流电流呈线性比 在工作电压5伏特下﹐可侦测电流0 ~ 100 安培 高灵敏度 20, 30, 55 mV/A 超大工作电压范围3.0~12 伏特. 低工作电流 3mA 几乎零迟滞现象 零电流“输出电压"为1/2 工作电压 反应频宽23KHz 绝缘电压 4000V 4、 液位传感器型号:CSHQ77-ZQ-YW库号:M320385 CSHQ77-ZQ-YW 液位型压力变送器 产品简介: 采用不锈钢全封焊结构,具有良好的防潮性能和优异的介质兼容性,可用于许多 工业过程场合较弱的腐蚀性介质中;电路部分的关键元器件、压力敏感芯子,选 用国际著名品牌的元器件,使产品的技术指标和质量有了有力的保证。 技术参数: ·量程:0~200mmH2O柱...800mH2O柱 ·精度:0.1级、0.25级、0.5级 ·输出信号:4~20mA(二线制)、0~5VDC、0.5~4.5VDC、0~10VDC(三线制) ·供电电压:9~36VDC(二线制)、9~40VDC(三线制) ·介质温度:-30℃~+85℃ ·环境温度:-20℃~+85℃ ·允许过荷:200%FS ·温度漂移:≤±0.05%FS/10℃ ·稳定性:±0.1%FS/年~±0.2%FS/年 ·外壳材质:316L不锈钢 ·探头材质:316L不锈钢 ·密封级别:IP68 ·引出线:7.3外径防水通气电缆 ·标识:采用激光打标,确保产品可永久追朔性 应用范围: ·工业现场液位测量与控制 ·楼宇自控、恒压供水 ·城市供水及污水处理

传感器的分类 及特性以及选择

一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”

或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 三、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 四、传感器的动态特性 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

《光电传感器介绍》(参考Word)

光电式传感器 1.概述 2.物理特性 2.1外光电效应 2.1.1光子假设 2.2 内光电效应 2.2.1光电导效应 2.2.2光电转换元件 3.光电式传感器 3.1工作原理 3.2光电传感器分类 4.光电传感器应用 4.1光电传感器优点 4.1.1光电式带材跑偏检测器 4.1.2包装充填物高度检测 4.1.3光电色质检测 4.1.4烟尘浊度监测仪 4.1.5其他方面的应用 5.光纤传感器 5.1基本工作原理 5.2光纤的种类与特性 5.3光纤传感器的应用 6.常用光电传感器及生产厂家和参数 光电式传感器

1.概述 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。 光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2.物理特性 2.1外光电效应 2.1.1光子假设 1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。单色光由大量不连续的光子组成。若单色光频率为n,那么每个 光子的能量为E=hv, 动量为。 由爱因斯坦光子假说发展成现代光子论(photon theory)的两个基本点是: (1) 光是由一颗一颗的光子组成的光子流。每个光子的能量为E = hv, 动量为。由N个光子组成的光子流,能量为N hv。 (2) 光与物质相互作用,即是每个光子与物质中的微观粒子相互作用。 根据能量守恒定律,约束得最不紧的电子在离开金属面时具有最大的初动能,所以对于电子应有:

光电传感器性能参数分析

课程小论文 题目:光电传感器性能参数分析 院 (部) 专业 学生姓名 学生学号 指导教师 课程名称 课程代码 课程学分 起始日期

光电传感器性能参数分析 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键字:光电效应、光电元件、光电特性、传感器分类、传感器应用

目录 目录 (3) 1、引言 (4) 2、光电传感器 (4) 3、光电效应 (6) 4、光电传感器的前景 (6) 5、总结 (7) 参考文献 (8)

一、引言 随着工业生产技术的发展,对生产过程中的过程控制要求越来越高,而作为控制系统的核心之一,传感器越来越受工业技术人员的重视。人们对高性能检测技术的发展需求与日俱增。其中非电量测量的受欢迎程度最为广泛,可将距离、位移、振动等信号转换为电信号,并通过这些方法获得被测物体的状态。非电量检测技术分为接触式与非接触式检测。在工业生产环境中,有些场合不适用接触式检测,因为传感器与被测物体的接触,在工业现场环境中会造成被测体损伤、传感器磨损等问题。因此,需要性能良好的非接触式传感器以满足工业需求,相关技术的研究也成为传感器检测技术的发展方向。 光电检测技术作为目前检测技术之一,目前国内对于光电检测的研究已有一些成果,但目前产品还存在着一些问题,例如线性测量范围过短、对现场装配条件要求较高等,距离满足工业现场的要求还存在一定距离。所以,为了解决这些问题,光电效应对传感器性能的影响是很重要的研究方向之一,可以使光电传感器应用在更多的领域,推动光电检测技术的发展。 二、光电传感器 光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如下图,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源,光学通路和光电元件三部分组成.光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。 图1光电传感器原理图 光电传感器一般由三部分构成,它们分为:发送器、接收器和检测电路,发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。 光电传感器是一种依靠被测物与光电元件和光源之间的关系,来达到测量目的

相关主题
文本预览
相关文档 最新文档