当前位置:文档之家› 晶体的能带理论

晶体的能带理论

晶体的能带理论
晶体的能带理论

晶体的能带理论一、能带理论(Energy band theory )概述

能带理论是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它首先由F.布洛赫和.布里渊在解决金属的导电性问题时提出,它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来交换作用,是一种晶体周期性的势场。

即认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动的;由此得出,共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。

二、能带的形成

图1

1.电子共有化

对于只有一个价电子的简单情况:电子在离子

电场中运动,单个原子的势能曲线表示如图1。

图2 当两个原子靠得很近时:每个价电子将同时受到两个离子实电场的作用,这时的势能曲线表示为图2。

当大量原子形成晶体时,晶体内形成了周期性势场,周期性势场的势能曲线具有和晶格相同的周期性!(如图3所示)

即:在N 个离子实的范围内,U 是以晶格间距d 为周期的函数。实际的晶体是三维点阵,势场也具有三维周期性。

图3

分析:

1.能量为E1的电子,由于E1小,势能曲线是一种势阱。因势垒较宽,电子穿透势垒的概率很微小,基本上仍可看成是束缚态的电子,在各自的原子核周围运动;

2.具有较大能量E3 的电子,能量超过了势垒高度,电子可以在晶体中自由运动;

3.能量E2 接近势垒高度的电子,将会因隧道效应而穿越势垒进入另一个原子中。

这样在晶体场内部就出现了一批属于整个晶体原子所共有的电子,称为电子共有化。价电子受母原子束缚最弱,共有化最为显着!

可借助图4理解电子共有化:

图4

晶体中大量的原子集合在一起,而且原子之间距离很近.致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。

2.能带的形成是电子共有化的结果。

孤立原子的外层电子可能取的能量状态完全相同,但当原子彼此靠近时,外层电子就不再仅受原来所属原子的作用,还要受到其他原子的作用,这使电子的能量发生微小变化。原子结合成晶体时,原子最外层的价

电子受束缚最弱,它同时受到原来所属原子和其他原子的共同作用,已很难区分究竟属于哪个原子,实际上是被晶体中所有原子所共有,称为共有化。原子间距减小时,孤立原子的每个能级将演化成由密集能级组成的准连续能带。共有化程度越高的电子,其相应能带也越宽。孤立原子的每个能级都有一个能带(晶体内电子的能量可以处于一些允许的范围之内,这些允许的范围称为能带)与之相应,所有这些能带称为允许带。相邻两允许带间的空隙代表晶体所不能占有的能量状态,称为禁带。

备注:关于能带的形成,还可以从晶体中各个

原子的能级的相互影响来说明(图5):

★孤立的原子,其轨道电子的能量由一系列分

立的能级所表征;

图5

★原子结合成固体时,使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。

事实上,在单个原子中,电子具有分离的能级

如1s,2s,2p等,如果晶体内含有N 个相同的原

子,那么原先每个原子中具有相同能量的所有价电

子,现在处于共有化状态。

图6 这些被共有化的外层电子,由于泡利不相容原理的限制,不能再处于相同的能级上,这就使得原来相同的能级分裂成N 个和原能级相近的新能级(见图6)。

由于N 很大,新能级中相邻两能级的能量差仅为 10-22eV,几乎可以

看成是连续的,N 个新能级有一定的能量范围,通常称为能带。

三、能带的结构

1.能带:

n 是带指标,用来标志不同的能带对每一个给定的 n ,本征能量包含着由不同 k 取值所对应的许多能级,这些由许多能级组成的带称为能带。在能带理论中,能量本征值的总体称为晶体的能带结构。

原子(中电子)的能级和晶体(中电子)的能带如图7所示

图7

2.固体的导电机制

不同的晶体有不同的导电性,这与晶体内的电子在能带中的填充和运动情况有关!

导体:电阻率为 10-8Ω?m 以下的物体

绝缘体:电阻率为108Ω?m 以上的物体

半导体:电阻率介乎上面两者之间的

原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。晶体中的电子在能带中各个能级的填充方式,服从洪特规则、泡利不相容原理,还要服从最小能量原理,电子从能量较低的能级依次到达较高的能级。按充填电子的情况,能带可以分成:满带,价带(导带),空带,禁带

(1)满带:晶体中最低能带的各个能级都被电子填满,这样的能带称为满带。

())3,2,1(Λ==n k E E n n

被电子占满的允许带当满带中的电子从它原来占据的能

级转移到同一能带中其它能级时,因受泡利不相容原理的限

制,必有另一个电子作相反转移,总效果与没有电子转移一

样—外电场不能改变电子在满带中的分布,所以满带中的电

子不能起导电作用!

(2)价带:一部分价电子存在于不满带中,这种能带称

为导带。价带是由价电子能级分裂而形成的能带。

★通常情况下,价带为能量最高的能带;

★价带可能被电子填满,成为满带;

★也可能未被电子填满,形成不满带或半满带。

在绝缘体中,价电子刚好填满最低的一系列能带,最上

边的满带 —— 价带

(3)空带:若一个能带中所有的能级都没有被电子填

入,这样的能带称为空带。每一个能级上都没有电子的能带。

★与各原子的激发态能级相对应的能带,在未被激发的正常情况下就是空带;

★空带中若有被激发的电子进入,空带就变成导带。

(4)禁带:两个相邻能带间的间隔

★禁带中不存在电子的定态;

★禁带的宽度对晶体的导电性起 着重要的作用。

(图8/9、10为导体、半导体、绝缘体的能带示意图。)

价带 空带

图11导带中电子的转移 3.导体能带结构的三种形式

形式1:价带中只填充了部分电子,在外加电场作用

下,这些电子很容易在该能带中从低能级跃迁到较高能级—从而形成电流。

例如:金属

Li :电子排布1s22s1每个

原子只有一个价电子,整个晶体中的价电子只能添满半个价带——实际参与导电的是不满带中的电子——电子导电型导体。

形式2:二价元素Bi , As , Mg ,Zn (半金属)

金属Mg : 电子排布1s22s22p63s2,其价带被电子填满,

成为满带(图12)。

图12

因为晶体结构特点,价带与空带发生交叠 —— 形成更宽的能带 这个新的、更宽的能带使可添充的电子数目大于2N → 使能带不完全被电子充满。由于能带少量重叠,所以出现电子和空穴同时参与导电,又因为电子和空穴分属于不同的能带,它们具有不同的有效质量和速度,所以它们对电流的贡献不同。

当空穴对电流的贡献起主要作用— 空穴导电型导体

当电子对电流的贡献起主要作用— 电子导电型导体

导带 空带

形式3:(Na,K,Cu,Al,Ag )

金属的价带本来就没有被电子填满,同时价带又

同邻近的空带重叠 —— 形成一个更宽的导带(图

13)。实际参与导电的是那些未被填满的价带中的电子

——电子导电型导体

图13 如:当 Na 原子结合成晶体时,3s 能带只填满了一半电子,而 3p 能带与 3s 能带相交错。这样在被电子填满的能级上面有很多空着的能级,所以电场很容易将价电子激发到较高的能级上,因此 Na 是良导体。

4.绝缘体能带结构

绝缘体具有充满电子的满带和很宽的禁带,禁带宽

△Eg 约 3~6eV (图14);一般温度下,满带中的电子

在外电场作用下很难激发(越过禁带)到空带参与导电;

大多数离子晶体是绝缘体。

图14 如:NaCl 晶体,它的能带是由 Na+ 和 Cl- 离子的能级构成的,Na+ 的最外壳层 2p 和 Cl- 的最外壳层3p ,都已被电子填满,且这最高满带与空带之间存在着很宽的禁带,所以NaCl 是绝缘体。

5.半导体能带结构

在温度 T=0K 时,能带结构与绝缘体相似,只是禁带宽度△Eg 很窄,约~;在温度 T=0K 时,电子热激发能从满带跃迁到空带,使空带成为导带,同时在满带中产生空穴;外加电场后,电子和空穴从低能级跃迁到高

图15

(a) 导体;(b) 绝缘体;(c) 半导体;(d) 半金属

能级,而形成电流,因此半导体具有导电性。如:硅、硒、锗、硼等元素,硒、碲、硫的化合物,各种金属氧化物等物质都是半导体。

能带结构小结:

能带理论是研究固体中电子运动规律的近似理论。在讨论和学习中可以从不同的角度,联系无机化学的知识加以理解和掌握。下面是几个关于能带理论的图解,请认真理解。

不同固体的能带填充情况

本证半导体,绝缘体,导体的(最外层)能带

图16 图17

四、能带理论的意义和局限性

能带理论是现代固体电子技术的理论基础,对于微电子技术的发展起了不可估量的作用。能带理论是研究固体中电子运动规律的一种近似理论。固体由原子组成,原子又包括原子核和最外层电子,它们均处于不断的运动状态。为使问题简化,首先假定固体中的原子核固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。能带理论就属这种单电子近似理论,它首先由F.布洛赫和.布里渊在解决金属的导电性问题时提出。具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。

能带理论在阐明电子在晶格中的运动规律、固体的导电机构、合金的某些性质和金属的结合能等方面取得了重大成就,但它毕竟是一种近似理论,存在一定的局限性。例如某些晶体的导电性不能用能带理论解释,即电子共有化模型和单电子近似不适用于这些晶体。多电子理论建立后,单电子能带论的结果常作为多电子理论的起点,在解决现代复杂问题时,两种理论是相辅相成的。

晶体生长的机理

第五章 一、什么是成核相变、基本条件 成核相变:在亚稳相中形成小体积新相的相变过程。 条件:1、热力学条件:ΔG=G S-G L<0;ΔT>0。2、结构条件:能量起伏、结构起伏、浓度起伏、扩散→短程规则排列(大小不等,存在时间短,时聚时散,与固相有相似结构,之间有共享原子)→晶坯→晶胞。 相变驱动力:f=-Δg/ΩS;Δg每个原子由流体相转变成晶体相所引起的自由能降低;ΩS单个原子的体积。 气相生长体系:(T0 P0)→(T0 P1),Δg=-kT0σ,σ=α-1= P1/ P0;溶液生长体系:(C0 T0 P0)→(C1 T0 P0),Δg=-kT0σ,σ=α-1= C1/ C0;熔体生长体系:Δg=-l mΔT/T m,l m单个原子的相变潜热。 二、均匀成核、非均匀成核 不含结晶物质时的成核为一次成核,包括均匀成核(自发产生,不是靠外来的质点或基底诱发)和非均匀成核。 三、均匀成核的临界晶核半径与临界晶核型成功 临界晶核:成核过程中,能稳定存在并继续长大的最小尺寸晶核。 ΔG=ΔG V+ΔG S,球形核ΔG=-4πr3Δg/ΩS+4πr2γSL→r C=2γSLΩS/Δg,r0,且随着r的增加,ΔG不断增大,r>r C时,ΔG<0,且随着r的增加,ΔG减小,r=r C时,往两边都有ΔG<0,称r C为临界半径。 临界晶核型成功:ΔG C(r C)=A CγSL/3由能量起伏提供。 熔体生长体系:r C=2γSLΩS T m/l m ΔT;ΔG C(r C)=16πγ3SLΩ2S T2m/3l2m(ΔT)2 四、非均匀成核(体系中各处成核几率不相等的成核过程) 表面张力与接触角的关系:σLB = σSB + σLS cosθ ΔG*(r)= (-4πr3Δg/ΩS+4πr2σSL)·f(θ);r*C=2γSLΩS/Δg;ΔG*C(r*C)=ΔG C(r C) ·f(θ)

晶体结构

第二章晶体结构及常见晶体结构类型 1、名词解释 (a)晶体与晶体常数(b)类质同晶和同质多晶(c)二八面体型与三八面体型(d)同晶取代与阳离子交换(e)尖晶石与反尖晶石(f)晶胞与晶胞参数(g)配位数与配位体(h)同质多晶与多晶转变(i)位移性转变与重建性转变(j)晶体场理论与配位场理论 解:(a)晶体是内部质点在三维空间成周期性重复排列的固体。或晶体是具格子构造的固体。晶体常数:晶轴轴率或轴单位,轴角。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。(c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构。 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体 结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 (f)任何晶体都对应一种布拉菲格子,因此任何晶体都可划分出与此种布拉菲格子平行六面体相对应的部分,这一部分晶体就称为晶胞。晶胞是能够反映晶体

晶体的能带理论

晶体的能带理论 一、能带理论(Energy band theory )概述 能带理论是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它首先由 F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出,它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来交换作用,是一种晶体周期性的势场。 即认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动的;由此得出,共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。 二、能带的形成 图1 1.电子共有化 对于只有一个价电子的简单情况:电子在离子实 电场中运动,单个原子的势能曲线表示如图1。 图2 当两个原子靠得很近时:每个价电子将同时受到两个离子实电场的作用,这时的势能曲线表示为图2。

当大量原子形成晶体时,晶体内形成了周期性势场,周期性势场的势能曲线具有和晶格相同的周期性!(如图3所示) 即:在N 个离子实的范围内,U 是以晶格间距d 为周期的函数。实际的晶体是三维点阵,势场也具有三维周期性。 图3 分析: 1.能量为E1的电子,由于E1小,势能曲线是一种势阱。因势垒较宽,电子穿透势垒的概率很微小,基本上仍可看成是束缚态的电子,在各自的原子核周围运动; 2.具有较大能量E3 的电子,能量超过了势垒高度,电子可以在晶体中自由运动; 3.能量E2 接近势垒高度的电子,将会因隧道效应而穿越势垒进入另一个原子中。 这样在晶体场内部就出现了一批属于整个晶体原子所共有的电子,称为电子共有化。价电子受母原子束缚最弱,共有化最为显著!

晶体的基本概念

第一章材料的结构 2006-09-16 11:50 第一章材料的结构 重点与难点: 在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。内容提要: 在所有固溶体中,原子是由键结合在一起。这些键提供了固体的强度和有关电和热的性质。例如,强键导致高熔点、高弹性系数、较短的原子间距及较低的热膨胀系数。由于原子间的结合键不同,我们经常将材料分为金属、聚合物和陶瓷3类。 在结晶固体中,材料的许多性能都与其内部原子排列有关。因此,必须了解晶体的特征及其描述方法。根据参考轴间夹角和阵点的周期性,可将晶体分为7种晶系,14种晶胞。本章重点介绍了在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。务必熟悉晶向、晶面的概念及其表示方法(指数),因为这些指数被用来建立晶体结构和材料性质及行为间的关系。在工程实际中得到广泛应用的是合金。合金是由金属和其它一种或多种元素通过化学键合而成的材料。它与纯金属不同,在一定的外界条件下,具有一定成分的合金其内部不同区域称为相。合金的组织就是由不同的相组成。在其它工程材料

中也有类似情形。尽管各种材料的组织有多种多样,但构成这些组织的相却仅有数种。本章的重点就是介绍这些相的结构类型、形成规律及性能特点,以便认识组织,进而控制和改进材料的性能。学习时应抓住典型例子,以便掌握重要相的结构中原子排列特点、异类原子间结合的基本规律。 按照结构特点,可以把固体中的相大致分为五类。 固溶体及金属化合物这两类相是金属材料中的主要组成相。它们是由金属元素与金属元素、金属元素与非金属元素间相互作用而形成。固溶体的特点是保持了溶剂组元的点阵类型不变。根据溶质原子的分布,固溶体可分为置换固溶体及间隙固溶体。一般来说,固溶体都有一定的成分范围。化合物则既不是溶剂的点阵,也不是溶质的点阵,而是构成了一个新的点阵。虽然化合物通常可以用一个化学式(如AxBy)表示,但有许多化合物,特别是金属与金属间形成的化合物往往或多或少由一定的成分范围。 材料的成分不同其性能也不同。对同一成分的材料也可通过改变内部结构和组织状态的方法,改变其性能,这促进了人们对材料内部结构的研究。组成材料的原子的结构决定了原子的结合方式,按结合方式可将固体材料分为金属、陶瓷和聚合物。根据其原子排列情况,又可将材料分为晶体与非品体两大类。本章首先介绍材料的晶体结构。基本要求: 1.认识材料的3大类别:金属、聚合物和陶瓷及其分类的基础。 2.建立原子结构的特征,了解影响原子大小的各种因素。

固体物理总结材料能带理论完全版

标准文案

目录 一、本章难易及掌握要求 (1) 二、基本容 (1) 1、三种近似 (1) 2、周期场中的布洛赫定理 (2) 1)定理的两种描述 (2) 2)证明过程: (2) 3)波矢k的取值及其物理意义 (3) 3、近自由电子近似 (3) A、非简并情况下 (4) B、简并情况下 (5) C、能带的性质 (6) 4、紧束缚近似 (6) 5、赝势 (9) 6、三种方法的比较 (10) 7、布里渊区与能带 (11) 8、能态密度及费米面 (11) 三、常见习题 (14) 简答题部分 (14) 计算题部分 (15)

一、本章难易及掌握要求 要求重点掌握: 1)理解能带理论的基本假设和出发点; 2)布洛赫定理的描述及证明; 3)一维近自由电子近似的模型、求解及波函数讨论,明白三维近自由电子近似的思想; 4)紧束缚近似模型及几个典型的结构的计算; 5)明白简约布里渊区的概念和能带的意义及应用; 6)会计算能态密度及明白费米面的概念。 本章难点: 1)对能带理论的思想理解,以及由它衍生出来的的模型的 应用。比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。 了解容: 1)能带的成因及对称性; 2)费米面的构造; 3)赝势方法; 4)旺尼尔函数概念; 5)波函数的对称性。 二、基本容 1、三种近似

在模型中它用到已经下假设: 1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。多体问题化为了多电子问题。 2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。多电子问题化为单电子问题。 3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。单电子在周期性场中。 2、周期场中的布洛赫定理 1)定理的两种描述 当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质: 形式一:()()n ik R n r R e r ψψ?+=,亦称布洛赫定理,反映了相邻原包之间 的波函数相位差 形式二:()()ik r r e u r ψ?=,亦称布洛赫函数,反映了周期场的波函数可 用受 ) (r u k 调制的平面波表示.其中()()n u r u r R =+,n R 取布拉 菲格子的所有格矢成立。 2)证明过程: a. 定义平移算符T ,)()()()(3322113 2 1 a T a T a T R T m m m m = b . 证明T 与?H 的对易性。α αHT H T = c.代入周期边界条件,求出T 在T 与?H 共同本征态下的本征值

晶体生长理论1

晶体生长理论 特征 表面的光滑与否是和晶体结构、材料特征、晶面取向以及温度等因素有关。P.哈特曼提出的周期键理论在于根据晶面中周期性键链数来确定其光滑的程度。更属物理的理论则是建立在晶面的统计力学基础上。K.A.杰克孙的理论阐明相变熵与表面光滑性的关系;伯顿与卡布雷拉的理论指出在一定的临界温度,表面可能发生光滑-粗糙转变。近年来对这些问题有更加深入的理论探讨,而且,晶面的计算机模拟直观地再现了过去的理论设想,并且推广到非平衡的状态。晶体生长的输运理论及形态稳定性晶体生长在空间上是不连续的过程,结晶只发生在固体-流体界面上。在流体和固体内部都存在热量和质量输运过程。这一类型的输运问题通常可以采用宏观物理学的方法来处理,即化为边界条件下偏微分方程的求解。当然这种边值问题是有其特殊性的,即随着晶体的长大,边界在移动。早在1891年J.斯忒藩首先处理了极区冰层长厚的问题,所以这类问题被称为斯忒藩问题。斯忒藩问题的外部边界条件应模拟生长系统的实际情况。能求出解析解的仅限于少数简单的几何形状的情况。在流体相中传热和传质可以通过对流来实现,因而流体中的热传导与溶质扩散往往局限于固液界面处的边界层中。这样,就可以将流体力学的边界层理论引用到相应的斯忒藩问题之中。但晶体生长的流体效应亦有其复杂的一面,特别是牵涉到流动的失稳和非稳态流动等问题。要进行确切的理论计算极其困难,因而往往求助于模拟性的实验或晶体生长层的剖析。 重要问题 在晶体生长形态学中还有一个重要问题,就是形态的稳定性:具体来说,就是生长界面是否能够持续地保持下去。有些界面虽然能够满足斯忒藩问题的解,但实际上却并不出现,因为这种界面对于干扰是不稳定的。设想某一平界面在某瞬时受到干扰,使界面局部突出。它随时间的演变将有两种可能性:一是干扰的振幅逐渐衰减,最终界面恢复原状,表明原界面是稳定的;另一种情况是干扰振幅逐渐增大,则表明原来的平界面是不稳定的,可能转化为凹凸不平的胞状界面,或甚至于发展为枝晶(den-drites)。对于纯的材料,正的温度梯度(熔体温度高于凝固点)使界面稳定,而负的温度梯度(熔体温度低于凝固点)则导致界面失稳。通常生长晶体总是在正的温度梯度条件下进行的,但也经常观测到平界面的失稳。50年代中B.查尔默斯提出溶质引起的组分过冷的效应来解释。到60年代初W.W.马林斯与R.F.塞克卡用自洽的动力学方法来处理界面稳定性问题,导出更正确的稳定性判据,并可以追踪界面失稳和初期的演变过程。界面稳定性理论也被推广应用于共晶合金的凝固、枝晶生长以及光滑界面失稳等问题,目前还在继续发展之中。

晶体的能带理论

晶体的能带理论一、能带理论(Energy band theory )概述 能带理论是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它首先由F.布洛赫和.布里渊在解决金属的导电性问题时提出,它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来交换作用,是一种晶体周期性的势场。 即认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动的;由此得出,共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。 二、能带的形成 图1 1.电子共有化 对于只有一个价电子的简单情况:电子在离子 实 电场中运动,单个原子的势能曲线表示如图1。 图2 当两个原子靠得很近时:每个价电子将同时受到两个离子实电场的作用,这时的势能曲线表示为图2。 当大量原子形成晶体时,晶体内形成了周期性势场,周期性势场的势能曲线具有和晶格相同的周期性!(如图3所示)

即:在N 个离子实的范围内,U 是以晶格间距d 为周期的函数。实际的晶体是三维点阵,势场也具有三维周期性。 图3 分析: 1.能量为E1的电子,由于E1小,势能曲线是一种势阱。因势垒较宽,电子穿透势垒的概率很微小,基本上仍可看成是束缚态的电子,在各自的原子核周围运动; 2.具有较大能量E3 的电子,能量超过了势垒高度,电子可以在晶体中自由运动; 3.能量E2 接近势垒高度的电子,将会因隧道效应而穿越势垒进入另一个原子中。 这样在晶体场内部就出现了一批属于整个晶体原子所共有的电子,称为电子共有化。价电子受母原子束缚最弱,共有化最为显着! 可借助图4理解电子共有化: 图4 晶体中大量的原子集合在一起,而且原子之间距离很近.致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。 2.能带的形成是电子共有化的结果。 孤立原子的外层电子可能取的能量状态完全相同,但当原子彼此靠近时,外层电子就不再仅受原来所属原子的作用,还要受到其他原子的作用,这使电子的能量发生微小变化。原子结合成晶体时,原子最外层的价

晶体中电子能带理论习题测

第五章晶体中电子能带理论习题测试 1.将布洛赫函数中的调制因子展成付里叶级数, 对于近自由电子, 当 电子波矢远离和在布里渊区边界上两种情况下, 此级数有何特点? 在紧束缚模 型下, 此级数又有什么特点? [解答] 由布洛赫定理可知, 晶体中电子的波函数 , 对比本教科书(5.1)和(5.39)式可得 =. 对于近自由电子, 当电子波矢远离布里渊区边界时, 它的行为与自由电子近似, 近似一常数. 因此, 的展开式中, 除了外, 其它项可忽略. 当电子波矢落在与倒格矢K n正交的布里渊区边界时, 与布里渊区边界平行的晶面族对布洛赫波产生了强烈的反射, 展开式中, 除了和两项外, 其它项可忽略. 在紧束缚模型下, 电子在格点R n附近的几率2大, 偏离格点R n的几率 2小. 对于这样的波函数, 其付里叶级数的展式包含若干项. 也就是说, 紧束缚模型下的布洛赫波函数要由若干个平面波来构造.. 2.布洛赫函数满足 =, 何以见得上式中具有波矢的意义? [解答] 人们总可以把布洛赫函数展成付里叶级数 ,

其中k’是电子的波矢. 将代入

=, 得到 =. 其中利用了(是整数), 由上式可知, k=k’, 即k具有波矢的意义. 3.波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的? [解答] 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为, 而波矢空间的基矢分别为, N 1、N2、N3分别是沿正格子基矢 方向晶体的原胞数目. 倒格空间中一个倒格点对应的体积为 , 波矢空间中一个波矢点对应的体积为 , 即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N. 由于N是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点在倒格空间看是极其稠密的. 因此, 在波矢空间内作求和处理时, 可把波矢空间内的状态点看成是准连续的. 4.与布里渊区边界平行的晶面族对什么状态的电子具有强烈的散射作用? [解答] 当电子的波矢k满足关系式

晶体的生长模式

晶体的生长模式 晶体的生长过程一般认为有三个阶段:首先是溶液或气体达到过饱和状态或过冷却状态,然后整个体系中出现瞬时的微细结晶粒子,这就是形成了晶核,最后这些粒子按照一定的规律进一步生长,成为晶体。科学家已经发现了晶体生长的多种模式,其中较为重要的是层生长模式和螺旋生长理论。 晶体生长理论简介 自从1669年丹麦学者斯蒂诺(N.Steno)开始研究晶体生长理论以来,晶体生长理论经历了晶体平衡形态理论、界面生长理论、PBC理论和负离子配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型。现代晶体生长技术、晶体生长理论以及晶体生长实践相互影响,使人们越来越接近于揭开晶体生长的神秘面纱。 下面简单介绍几种重要的晶体生长理论和模型。 .晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Gibbs—Wulff 生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件,没有考虑晶体的微观条件和环境相对于晶体生长的影响,是晶体的宏观生长理论。 .界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用,没有考虑晶体的微观结构,也没有考虑环境相对于晶体生长的影响。 .PBC(周期键链)理论:1952年,P.Hartman、W.G.Perdok提出,把晶体划分为三种界面:F面、K面和S面。BC理论主要考虑了晶体的内部结构——周期性键链,而没有考虑环境相对于晶体生长的影响。

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可 分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个 电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

金属键和金属晶体结构理论

金属键和金属晶体结构理论 在高中化学课本“金属键”一节中,简略地讲了金属键的自由电子理论和金属晶体的圆球密堆积结构。在本节中将介绍这两种理论的有关史实,并对理论本身进一步加以阐述。 一、金属键理论及其对金属通性的解释 一切金属元素的单质,或多或少具有下述通性:有金属光泽、不透明,有良好的导热性与导电性、有延性和展性,熔点较高(除汞外在常温下都是晶体),等等。这些性质是金属晶体内部结构的外在表现。 金属元素一般比较容易失去其价电子变为正离子,在金属单质中不可能有一部分原子变成负离子而形成离子键。由于X射线衍射法测定金属晶体结构的结果可知,其中每个金属原子与周围8到12个同等(或接近同等)距离的其它金属原子相紧邻,只有少数价电子的金属原子不可能形成8到12个共价键。金属晶体中的化学键应该属于别的键型。 1916年,荷兰理论物理学家洛伦兹(Lorentz.H.A.1853-1928)提出金属“自由电子理论”,可定性地阐明金属的一些特征性质。这个理论认为,在金属晶体中金属原子失去其价电子成为正离子,正离子如刚性球体排列在晶体中,电离下来的电子可在整个晶体范围内在正离子堆积的空隙中“自由”地运行,称为自由电子。正离子之间固然相互排斥,但可在晶体中自由运行的电子能吸引晶体中所有的正离子,把它们紧紧地“结合”在一起。这就是金属键的自由电子理论模型。 根据上述模型可以看出金属键没有方向性和饱和性。这个模型可定性地解释金属的机械性能和其它通性。金属键是在一块晶体的整个范围内起作用的,因此要断开金属比较困难。但由于金属键没有方向性,原子排列方式简单,重复周期短(这是由于正离子堆积得很紧密),因此在两层正离子之间比较容易产生滑动,在滑动过程中自由电子的流动性能帮助克服势能障碍。滑动过程中,各层之间始终保持着金属键的作用,金属虽然发生了形变,但不至断裂。因此,金属一般有较好的延性、展性和可塑性。 由于自由电子几乎可以吸收所有波长的可见光,随即又发射出来,因而使金属具有通常所说的金属光泽。自由电子的这种吸光性能,使光线无法穿透金属。因此,金属一般是不透明的,除非是经特殊加工制成的极薄的箔片。关于金属的良好导电和导热性能,高中化学课本中已用自由电子模型作了解释。 上面介绍的是最早提出的经典自由电子理论。1930年前后,由于将量子力学方法应用于研究金属的结构,这一理论已获得了广泛的发展。在金属的物理性质中有一种最有趣的性质是,包括碱金属在内的许多金属呈现出小量的顺磁性,这种顺磁性的大小近似地与温度无关。泡利曾在1927年对这一现象进行探讨,正是这一探讨开辟了现代金属电子理论的发展。它的基本概念是:在金属中存在着一组连续或部分连续的“自由”电子能级。在绝对零度时,电子(其数目为N个)通常成对地占据N/2个最稳定的能级。按照泡利不相容原理的要求,每一对电子的自旋方向是相反的;这样,在外加磁场中,这些电子的自旋磁矩就不能有效地取向。 当温度比较高时,其中有一些配对的电子对被破坏了,电子对中的一个电子被提升到比较高的能级。未配对的电子的自旋磁矩能有效地取向,所以使金属具有顺磁性。(前一节中介绍价键理论的局限性时已指出,顺磁性物质一般是具有自旋未配对电子的物质。)未配对电子的数目随着温度的升高而增多;然而,每个未配对电子的自旋对顺磁磁化率的贡献是随着温度的升高而减小的。对这二种相反的效应进行定量讨论,解释了所观察到的顺磁性近似地与温度无关。 索末菲与其他许多研究工作者,从1928年到30年代广泛地发展了金属的量子力学理论,建立起现代金属键和固体理论──能带理论,可以应用分子轨道理论去加以理解。(可参看大学《结构化学》教材有关部分) 二、等径圆球密堆积模型和金属单质的三种典型结构 在高中化学课本“金属键”一节中,讲到金属晶体内原子的排列,好象许多硬球一层一层地紧密地堆积在一起,形成晶体。课本中还画出了示意图。所谓等径圆球紧密堆积,就是要把许多直径相同的圆球堆积起来做到留下的空隙为最小。

第五章晶体中电子能带理论习题解答

晶体中电子能带理论 思考题 1. 1. 将布洛赫函数中的调制因子)(r k u 展成付里叶级数, 对于近自由电子, 当电子波矢远离和在布里渊区边界上两种情况下, 此级数有何特点? 在紧束缚模型下, 此级数又有什么特点? [解答] 由布洛赫定理可知, 晶体中电子的波函数 )()(r r k.r k i k u e =ψ, 对比本教科书(5.1)和(5.39)式可得 )(r k u = r K K .)(1 m i m m e a N ∑Ω . 对于近自由电子, 当电子波矢远离布里渊区边界时, 它的行为与自由电子近似, )(r k u 近似一常数. 因此, )(r k u 的展开式中, 除了)0(a 外, 其它项可忽略. 当电子波矢落在与倒格矢K n 正交的布里渊区边界时, 与布里渊区边界平行的晶面族对布洛赫波产生了强烈的反射, )(r k u 展开式中, 除了)0(a 和)(n a K 两项外, 其它项可忽略. 在紧束缚模型下, 电子在格点R n 附近的几率)(r k ψ2大, 偏离格点R n 的几率)(r k ψ2小. 对于这样的波函数, 其付里叶级数的展式包含若干项. 也就是说, 紧束缚模型下的布洛赫波函数要由若干个平面波来构造.. 2. 2. 布洛赫函数满足 )(n R r +ψ=)(r n k.R ψi e , 何以见得上式中k 具有波矢的意义? [解答] 人们总可以把布洛赫函数)(r ψ展成付里叶级数 r K k'h K k r ).()'()(h i h e a +∑+=ψ, 其中k ’是电子的波矢. 将)(r ψ代入 )(n R r +ψ=)(r n k.R ψi e , 得到 n k'.R i e =n k.R i e . 其中利用了πp n h 2.=R K (p 是整数), 由上式可知, k =k ’, 即k 具有波矢的意义. 3. 3. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的? [解答] 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、 , 而波矢空间的基矢分别为32N N / / /321b b b 、、 1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目. 倒格空间中一个倒格点对应的体积为 *321) (Ω=??b b b ,

晶体生长原理与技术

晶体生长原理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:晶体生长原理及电化学基础 所属专业:金属材料物理学 课程性质:专业方向选修课,学位课,必修环节 学分: 4 学时: 72 (二)课程简介、目标与任务; 课程简介:本课程将在绪论中,对人工晶体生长的基本概念,研究范畴,研究历史和晶体生长 方法分类等基本概念进行简要介绍。然后分4篇进行论述。第一篇为晶体生长的基本原理,将分5 章,对晶体生长过程的热力学和动力学原理,结晶界面形貌与结构,形核与生长的动力学过程进行 描述。第二篇为晶体生长的技术基础,将分3章,对晶体生长过程的涉及的传热、传质及流体流动 原理,晶体生长过程的化学原理和晶体生长过程控制涉及的物理原理进行论述。第三篇为晶体生长 技术,将分4章对熔体生长、溶液生长、气相生长的主要方法及其控制原理进行论述。第四篇,晶 体的性能表征与缺陷,将分2章,分别对晶体的结构、性能的主要表征方法,晶体的结构缺陷形成 与控制原理进行论述。 目标与任务:掌握晶体生长的基本物理原理,学会将基本物理知识运用与晶体生长过程分析讨论。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 修完普通物理学及四大力学课程、固体物理课程后才可学习该课程,该课程向前联系基本物理知识的运用,向后衔接研究生科学研究中遇到的实际结晶学问题。 (四)教材与主要参考书。 教材两本: 《晶体生长原理与技术》,介万奇,北京:科学出版社,2010 参考书: 《晶体生长科学与技术》[上、下册],张克从,凝聚态物理学丛书,北京:科学出版社,1997 《人工晶体:生长技术、性能与应用》,张玉龙,唐磊,化学工业出版社,2005 《晶体生长基础》,姚连增,中国科学技术大学出版社,1995

固体物理学基础概念

第一章晶体结构 晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,

能带理论

能带理论 能带理论是目前研究固体中电子运动的一个主要理论基础,它预言固体中电子 能量会落在某些限定范围或“带”中,因此,这方面的理论称为能带理论。对于 晶体中的电子,由于电子和周围势场的相互作用,晶体电子并不是自由的,因而 其能量与波失间的关系E(k)较为复杂,而这个关系的描述这是能带理论的主要内 容。本章采用一些近似讨论能带的形成,并通过典型的模型介绍能带理论的一些 基本结论和概念。 一、三个近似 绝热近似:电子质量远小于离子质量,电子运动速度远高于离子运动速度,故相 对于电子的运动,可以认为离子不动,考察电子运动时,可以不考虑离子运动的 影响,取系统中的离子实部分的哈密顿量为零。 平均场近似:让其余电子对一个电子的相互作用等价为一个不随时间变化的平均 场。 周期场近似: 无论电子之间相互作用的形式如何,都可以假定电子所感受 到的势场具有平移对称性。 原本哈密顿量是一个非常复杂的多体问题,若不简化求解是相当困难的,但 经过三个近似处理后使复杂的多体问题成为周期场下的单电子问题,从而本章的 中心任务就是求解晶体周期势场中单电子的薛定谔方程,即 其中 二、两个模型 (1)近自由电子模型 1、模型概述 在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动 能要比其势能的绝对值大得多时,电子的运动就几乎是自由的。因此,我们可以 把自由电子看成是它的零级近似,而将周期场的影响看成小的微扰来求解。 (也称为弱周期场近似) ) ()(r U R r U n =+

2、怎样得到近自由电子模型 近自由电子近似是晶体电子仅受晶体势场很弱的作用,E(K)是连续的能级。由于周期性势场的微扰 E(K)在布里渊区边界产生分裂、突变形成禁带,连续的能级形成能带,这时晶体电子行为与自由电子相差不大,因而可以用自由电子波函数来描写今天电子行为。 3、近自由电子近似的主要结果 1) 存在能带和禁带: 在零级近似下,电子被看成自由粒子,能量本征值 E K0 作为 k 的函数具有抛物线形式。由于周期势场的微扰,E (k )函数将在 处断开,本征能量发生突变,出现能量间隔2︱V n ︱,间隔内不存在允许的电子能级,称禁带;其余区域仍基本保持自由电子时的数值。周期势场的变化愈激烈,各傅里叶系数也愈大,能量间隔也将更宽,周期势场中电子的能级形成能带是能带论最基本和最重要的结果。 2) 第一布里渊区 自由电子波矢 k 的取值范围是没有限制的而在周期势场中,则被严格的限制在第一 Brillouin 区内。但从能量角度看,可以将标志电子状态的波矢 k 分割为许多区域,在每个区域内电子能级 E(k)随波矢 k 准连续变化并形成一个能带,波矢 k 的这样一些区域就被称为 Brillouin 区,当波矢 k 被限制在第一Brillouin 区时, E(k) 就成为 k 的多值函数,为了区别,按其能量由低到高,分别标注为 E1(k) ,E2(k) E3(k), ……。有时也可以用周期布里渊区图式或扩展布里渊区图式绘出晶体中的能带。 3) 从理论上解释了导体和绝缘体的区别 按照能带模型,晶体中每个原子的传导电子数就决定了晶体是导体还是绝缘体,如果每个原子提供两个传导电子,刚够填满第一能的所有状态,或每个原子提供四个传导电子,刚填满第一、二能带,鉴于能隙的存在,当电子受到外加势场作用时,就没有稍高的容许能态可以让它被激发而迁入,因此就没有电流流动,这种晶体就是绝缘体,除非外加势场大到足以激发电子使之跨过能隙而进入下一个能区的容许能态。相反,如果电子只是在某个能区填充了部分能态,就会如同自由电子那样,可以在势场作用下自由移动,成为导体。然而在真实 n k a π 2=

三种晶体生长理论

三种晶体生长理论: 一、层生长理论 科赛尔首先提出,后经斯兰特斯基加以发展的晶体的层生长理论亦称为科赛尔-斯兰特斯基理论。这一模型主要讨论的关键问题是:在一个面尚未生长完全前在一界面上找出最佳生长位置。图8-2表示了一个简单立方晶体模型中一界面上的各种位置,各位上成键数目不同,新支点就位后的稳定程度不同。每个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多、释放出能量最大的位置。图8-2所示质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹角,是最有利的生长位置;其次是S阶梯面,具有两面凹角的位置;最不利的生长位置是A。由此可以得出如下的结论:警惕在理想情况下生长时,一旦有三面凹角位存在,质点则优先沿着三面凹角位生长一条行列;而当这一行列长满后,就只有二面凹角位了,质点就只能在二面凹角处就位生长,这时又会产生三面凹角位,然后生长相邻的行列;在长满一层面网后,质点就只能在光滑表面上生长,这一过程就相当于在光滑表面上形成一个二维核,来提供三面凹角和二面凹角,再开始生长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体生长的层生长模型,它可以解释如下一些生长现象:(1)晶体常生长成面平棱直的多面体形态。 (2)晶体在生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状构造 (图8-3)。它表明晶面是平行向外推移生长的。 (3)由于晶面是向外推移生长的,所以同种矿物不同晶面上对应晶面间的夹角不变。 (4)晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体中心为顶点的锥状体,成为生长锥或砂钟状构造(图8-4,图8-5)在薄片中常常能看到。 然而晶体生长的实际情况要比简单层生长模型复杂得多,往往一次沉淀在一个晶面上的物质层的厚度可达几万或几十万个分子层。同时亦不一定是一层一层的顺序堆积,而是一层尚未长完,又有一个新层开始生长。这样继续生长下去的结果,使晶面表面不平坦,成为阶梯状,称为晶面阶梯。 层生长模型虽然有其正确的方面,在实际晶体生长过程中并非完全按照二维层生长的机制进行。因为当晶体的一层面网生长完成之后,再在其上开始生长第二层面网时有很大的困难,其原因是已生长好的面网对溶液中质点的引力较小,不易克服质点的热振动使质点就位。因此,在过饱和度或过冷却度较低的情况下,晶体生长就需要用其他的生长机制加以解释。

第二章 晶体的基本概念

第二章晶体的基本概念 z第一节晶体的基本性质 z第二节空间点阵 z第三节整数定律及晶面指数 z第四节晶体投影

晶体研究的早期成就 1690年惠更斯提出:晶体中质点的有序排列导致晶体具有某种多面体外形。 1812年浩羽(R.J.Hauy)提出:晶体是由具有多面体外形的“分子” 成的。 1669年,丹麦人斯登诺(Steno,N.1638-1686),1783年法国矿物学家爱斯尔(DeI Isle,R.1736-1790)分别在观测各种矿物晶体时发现了晶体的第一个定律──晶面夹角守恒定律。

晶体的对称原理 在1805-1809年间,德国学者魏斯(Weiss,C.S.1780-1856开始研究晶体外形的对称性 1830年德国人赫塞尔(Hessel,J.F.Ch.1796-1872),1867年俄国人加多林分别独立地推导出,晶体外形对称元素的一切可能组合方式(也就是晶体宏观对称类型)共有32种(称为32种点群) 19世纪40年代,德国人弗兰根海姆(Frankenheim,M.L.1801-1869)和法国人布拉维(Bravais,A.1811-1863)发展前人的工作,奠定了晶体结构空间点阵理论(即空间格子理论)的基础。弗兰根海姆首次提出晶体内部结构应以点为单位,这些点在三度空间周期性的重复排列。他于1842年推出了15种可能的空间点阵 形式。 布拉维明确地提出了空间格子理论。认为晶体内物质微粒的质心分布在空间格子的平行六面体单位的顶角、面心或体心上,从而它们在三度空间作周期性的重复排列。他于1848年指出,弗兰根海姆的15种空间点阵形式中有两种实质上是相同的,确定了空间点阵的14种形式

晶体生长理论

晶体生长理论 晶体生长理论是用以阐明晶体生长这一物理-化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶。 基础 晶体生长的热力学理论[1]J.W.吉布斯于1878年发表的著名论文《论复相物质的平衡》奠定了热力学理论的基础。他分析了在流体中形成新相的条件,指出自然体自由能的减少有利新相的形成,但表面能却阻碍了它。只有通过热涨落来克服形成临界尺寸晶核所需的势垒,才能实现晶体的成核。到20世纪20年代M.福耳默等人发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作用(非均匀成核)。一旦晶核已经形成(或预先制备了一块籽晶),接下去的就是晶体继续长大这一问题。吉布斯考虑到晶体的表面能系数是各向异性的,在平衡态自由能极小的条件就归结为表面能的极小,于是从表面能的极图即可导出晶体的平衡形态。晶体平衡形态理论曾被P.居里等人用来解释生长着的晶体所呈现的多面体外形。但是晶体生长是在偏离平衡条件下进行的,表面能对于晶体外形的控制作用限于微米尺寸以下的晶体。一旦晶体尺寸较大时,表面能直接控制外形的能力就丧失了,起决定性作用的是各晶面生长速率的各向异性。这样,晶面生长动力学的问题就被突出了。 动力学理论 晶体生长的动力学理论晶面生长的动力学指的是偏离平衡的驱动力(过冷或过饱和)与晶面生长的速率的关系,它是和晶体表面的微观形貌息息相关的。从20世纪20年代就开始了这方面的研究。晶面的光滑(原子尺度而言)与否对生长动力学起了关键性的作用。在粗糙的晶面上,几乎处处可以填充原子成为生长场所,从而导出了快速的线性生长律。至于偏离低指数面的邻位面,W.科塞耳与 F.斯特兰斯基提出了晶面台阶-扭折模型,晶面上台阶的扭折处为生长的场所。由此可以导出相应的生长律。至于光滑的密集平面(这些是生长速率最低,因而在晶体生长中最常见的),当一层原子填满后,表面就没有台阶提供继续填充原子的场所,则要通过热激活来克服形成二维晶核的势垒后,方能继续生长。这样,二维成核率就控制晶面生长速率,导出了指数式的生长律。只有在甚高的驱动力(例如过饱和度达50%)作用下方可观测到生长。但实测的结果与此推论有显著矛盾。为了解释低驱动力作用下光滑晶面的生长,F.C.夫兰克于1949年提出螺型位错在晶面露头处会形成永填不满的台阶,促进晶面的生长。在晶体生长表面上观测到的螺旋台阶证实了夫兰克的设想。在W.伯顿、N.卡夫雷拉与夫兰克1951年题为《晶体生长与表面平衡结构》这一重要论文中,对于理想晶体和实际晶体的晶面生长动力学进行了全面的阐述,成为晶体生长理论发展的重要里程碑。

相关主题
文本预览
相关文档 最新文档