当前位置:文档之家› 抽屉原理的经典解题思路

抽屉原理的经典解题思路

抽屉原理的经典解题思路
抽屉原理的经典解题思路

抽屉原理的经典解题思路

抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

先来看抽屉原理的一般叙述:

抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

抽屉原理(2):将多于件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。其中 k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。

掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。接着制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。最后运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。

例1:证明任取6个自然数,必有两个数的差是5的倍数。

证明:考虑每个自然数被5除所得的余数。即自然数可以作为物品,被5除所得余数可以作为抽屉。显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。运用抽屉原理,考虑“最坏”的情况,先从每个抽屉中各取一个“物品”,共5个,则再取一个物品总能在先取的5个中找到和它出自于同一抽屉的“物品”,即它们被5除余数相同,所以它们的差能整除5。

例2:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求?

解:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行。第一步先确保取出的筷子中有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色。首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可。其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色。这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4+7=11根筷子,就能保证达到目的。

以上两个题目都考虑了“最坏”的情况,这是考虑涉及抽屉原理的最值问题的常用思路。最后看一个有趣的数学问题,它体现了抽屉原理在证明存在性问题中的应用。

“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”

这个问题可以用如下方法简单明了地证出:

在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD 即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考

。可复制、编制,期待你的好评与关注)

(完整版)抽屉原理的经典解题思路

抽屉原理的经典解题思路 抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 先来看抽屉原理的一般叙述: 抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 抽屉原理(2):将多于件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。其中k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。 掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。接着制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。最后运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。 例1:证明任取6个自然数,必有两个数的差是5的倍数。 证明:考虑每个自然数被5除所得的余数。即自然数可以作为物品,被5除所得余数可以作为抽屉。显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。运用抽屉原理,考虑“最坏” 的情况,先从每个抽屉中各取一个“物品”,共5个,则再取一个物品总能在先取的5个中找到和它出自于同一抽屉的“物品”,即它们被5除余数相同,所以它们的差能整除5。

五年级简单的抽屉原理练习题及答案【五篇】

【第一篇方格涂色】把一个长方形画成 3 行 9 列共 27 个小方格, 然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。
是否一定有两列小方格涂色的方式相同? 将 9 列小方格看成 9 件物品,每列小方格不同的涂色方式看成不 同的抽屉。 如果涂色方式少于 9 种,那么就可以得到肯定的答案。 涂色方式共有下面 8 种 9 件物品放入 8 个抽屉,必有一个抽屉的物品数不少于 2 件,即 一定有两列小方格涂色的方式相同。 【第二篇相同的四位数】用 1,2,3,4 这 4 个数字任意写出一 个 10000 位数,从这个 10000 位数中任意截取相邻的 4 个数字,可以 组成许许多多的四位数。 这些四位数中至少有多少个是相同的? 猛一看,谁是物品,谁是抽屉,都不清楚。 因为问题是求相邻的 4 个数字组成的四位数有多少个是相同的, 所以物品应是截取出的所有四位数,而将不同的四位数作为抽屉。 在 10000 位数中,共能截取出相邻的四位数 10000-3=9997 个, 即物品数是 9997 个。 用 1,2,3,4 这四种数字可以组成的不同四位数,根据乘法原 理有 4×4×4×4=256 种,这就是说有 256 个抽屉。 9997÷256=3913,所以这些四位数中,至少有 40 个是相同的。 【第三篇取数字】从 1,3,5,7,,47,49 这 25 个奇数中至少

任意取出多少个数,才能保证有两个数的和是 52。 首先要根据题意构造合适的抽屉。 在这 25 个奇数中,两两之和是 52 的有 12 种搭配 {3,49},{5,47},{7,45},{9,43}, {11,41},{13,39},{15,37},{17,35}, {19,33},{21,31},{23,29},{25,27}。 将这 12 种搭配看成 12 个抽屉,每个抽屉中有两个数,还剩下一
个数 1,单独作为一个抽屉。 这样就把 25 个奇数分别放在 13 个抽屉中了。 因为一共有 13 个抽屉,所以任意取出 14 个数,无论怎样取,至
少有一个抽屉被取出 2 个数,这两个数的和是 52。 所以本题的答案是取出 14 个数。 【第四篇班级人数】 把 125 本书分给五 2 班学生,如果其中至少有 1 人分到至少 4 本
书,那么,这个班最多有多少人? 这道题一下子不容易理解,我们将它变变形式。 因为是把书分给学生,所以学生是抽屉,书是物品。 本题可以变为 125 件物品放入若干个抽屉,无论怎样放,至少有
一个抽屉中放有 4 件物品,求最多有几个抽屉。 这个问题的条件与结论与抽屉原理 2 正好相反,所以反着用抽屉
原理 2 即可。 由 125÷4-1=412 知,125 件物品放入 41 个抽屉,至少有一个

小学奥数竞赛专题训练之抽屉原理

小学奥数竞赛专题训练之抽屉原理 竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 [专题介绍] 把4只苹果放到3个抽屉里去,共有4种放法(请小朋友们自己列举),不论如何放,必有一个抽屉里至少放进两个苹果。 同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。 …… 更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。 利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。 [经典例题] 【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 【例2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。 想一想,例2中4改为7,3改为6,结论成立吗? 【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)? 【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。 按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。 思考:1.能用抽屉原理2,直接得到结果吗? 2.把题中的要求改为3双不同色袜子,至少应取出多少只? 3.把题中的要求改为3双同色袜子,又如何? 【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少

行测数学运算16种题型之抽屉原理问题

考试行测数学运算16种题型之抽屉原理问题 行测数学运算—抽屉原理问题 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为: 第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。 若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 制造抽屉是运用原则的一大关键 例1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的? A.12 B.13 C.15 D.16 【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。 例2、从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7? A.7 B.10 C.9 D.8 【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

人教版数学高二抽屉原理经典练习

经典练习 系列之一 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,要符合题意,即保证一定出现颜色不同的球,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有0、1、2、3……48,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛篮﹜﹛足足﹜﹛排排﹜﹛篮篮﹜﹛足排﹜﹛足篮﹜﹛排篮﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5) 由抽屉原理2:k=+1可得,至少有6人,他们所拿的球类是完全一致的。

抽屉原理的例题

例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 证明:把颜两种色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色. 例2:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。 解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n 个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。 例题5:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.

抽屉原理与最不利原则(4年级培优)学生版

原理1 把多于n 个的物体放到n 个抽屉中,则至少有一个抽屉中有2个或2个以上的物体。 原理2 把多于mn (m 乘以n )个的物体放到n 个抽屉中,则至少有一个抽屉中有1+m 个 或多于1+m 个的物体。 ? 构造“抽屉”、找出“物体”及物体的放法是应用抽屉原理解决问题的关键。 常见的构造抽屉的方法有:数的分组法;剩余类法;图形分割法;染色法。 ? 当问题中出现“保证”二字,就要求我们必须利用“最不利”原则情况分析问题。 最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。 我们可以用如下方法,解决简单抽屉原理的问题: 将n 个物品放到m 个抽屉中,如果a m n =÷,那么一定有一个抽屉中至少有a 个物品;如果b a m n ΛΛ=÷(0>b ),那么一定有一个抽屉中至少有1+a 个物品。 四年(1)班一共有42名学生,那么一定有至少几名学生的属相相同? 盒子中装有红、白、黑三种颜色的小球各20个,这些小球摸起来手感都一样。14个小朋友闭着眼睛玩摸球游戏,每个小朋友一次只能摸出一个小球。那么一次至少有几个小朋友摸出的小球颜色相同?

有3个不同的自然数,至少有两个数的和是偶数,为什么? 4个连续自然数分别被3除后,必有两个余数相同,为什么? 布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出多少块才能保证其中至少有3块颜色相同? 一副扑克牌一共有54张,至少从中取出多少张才能保证: (1)至少有4张牌的花色相同; (2)4种花色的牌都有; (3)至少有4张牌是黑桃。 2012名冬令营营员去游览长城、颐和园、天坛,规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同? 某班组织全班45人进行体育比赛,项目有A、B、C三种,规定每人至少参加一项,最多参加三项,至少有几人参加的项目是相同的?

小学六年级简单的抽屉原理

一、抽屉原理定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 二、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -,结论:至少有(商+1)个苹果在同一个抽屉 里 (3)余数=0,结论:至少有“商”个苹果在同一个抽屉里 例1.A 、3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。 B 、5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了( )块手帕。 C 、6只鸽子飞进5个鸽笼,那么一定有一个鸽笼至少飞进( )只鸽子。 例2、 三个小朋友在一起玩,请说明其中必有两个小朋友是同性别。 例 3. 三年一班有13名女生,她们的年龄都相同,请说明,至少有两个小朋友在一个相同的月份内出生。 例4. 任意三个整数中,总有两个整数的差是偶数。 例5. 有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请用抽屉原理加以说明。 例6. 某班有37个学生,最大的10岁,最小的8岁,问:是否一定有4个学生,他们是同年同月出生的?

例7、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双. 1.6只鸽子飞进了5个鸟巢,则总有一个鸟巢中至少有()只鸽子; 2.把三本书放进两个书架,则总有一个书架上至少放着()本书;

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二 本讲知识点汇总: 一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能 达到目标. 二、抽屉原理: 形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里. 例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是1 73名运动员. 练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法. 练习2、高思运动会共有4 个项目,每个学生至多参加3项,至少参加1 项.那么至少有多少个学生,才能保证至少有5 个人参加的活动完全相同?

例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50? 「分析」思考一下:哪两个数的和是50? 练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34? 例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪? 练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是 5 的倍数,至少要取多少个? 例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数? 「分析」从余数角度思考一下:什么样的两个数的和或差是100? 例6.在边长为2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于 「分析」通过把正六边形均分,来构造“抽屉” 1.

简单抽屉原理

简单抽屉原理 把3 个苹果放进2个抽屉中,无论怎么放,一定能找到一个抽屉,里面至少有2

个苹果.这个现象,在数学中我们把它称作抽屉原理。 抽屉原理I 把一些苹果随意放入若干个抽屉,如果苹果个数多于抽屉个数,那么 一定能找到一个抽屉,里面至少有2 个苹果. 抽屉原理II 把m 个苹果放入n 个抽屉(m 大于n),结果有两种可能: (1)如果m ÷n没有余数,那么就一定有抽屉至少放了“m ÷n”个苹果; (2)如果m ÷n有余数,那么就一定有抽屉至少放了“m ÷n的商再加1” 个苹果. 例1 一个鱼缸里有4 个品种的鱼,每种鱼都有很多条.至少要捞出多少条鱼,才能保证其中有5 条相同品种的鱼? 练习1. 一个布袋里有7 种不同颜色的彩球,每种颜色的彩球都有很多,那么至少要拿出多少个彩球,才能保证其中有6 个相同颜色的彩球?

例2 一个布袋里有大小相同颜色不同的一些木球,其中红色的有10 个,黄色的有8 个,蓝色的有3 个,绿色的有1 个.现在闭着眼睛从中摸球,请问:(1)至少要取出多少个球,才能保证取出的球至少有三种颜色? (2)至少要取出多少个球,才能保证其中必有红球和黄球? 练习2. 爷爷给小明买了一盒糖,这些糖分为苹果味、桔子味和菠萝味三种口味,每种口味各30 颗.小明特别喜欢吃苹果味的,他闭着眼睛,至少需要摸出多少颗糖,才能保证一定能拿到1 颗苹果味的?至少需要摸出多少颗糖,才能保证能拿到两种口味的糖? 例3将1 只白袜子、2 只黑袜子、3 只红袜子、8 只黄袜子和9 只绿袜子放入一个布袋里.请问: (1)一次至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子? (2)一次至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子? (两只袜子颜色相同即为一双) 练习3. 袋子里白袜子、黑袜子、红袜子各10 只,现在闭着眼睛从袋子中摸袜子,请问: (1)至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子? (2)至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?(两只袜子颜色相同即为一双)

小学数学思维训练——抽屉原理练习题及答案

小学数学思维训练——抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解题关键:利用抽屉原理2。 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 = 5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人)

抽屉问题经典练习题[1]

抽屉问题练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球(4) 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数(16) 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。(10个抽屉) 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的(6) 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2个人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。(46) 7、证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。(25个抽屉) 8。某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。(46) 9。一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1筐。 10。有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。(10) 13.从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7 14.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具(是) 15.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块(9) 2. 在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面

抽屉原理基本介绍

基本介绍 应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:同年出生的400人中至少有2个人的生日相同。 解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。 “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少. 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 制造抽屉是运用原则的一大关键 例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

抽屉原理例题

抽屉原理 抽屉原理在小学数学教材中没有作为知识向同学们介绍,但它却是我们解决数学问题的一种重要的思考方法。 抽屉原理最早是由德国数学家狄利克雷最早发现的,所以也叫做狄利克雷重叠原则。 下面我们就一起来研究“抽屉原理”。 【典型例题】 1. 第一抽屉原理:把个物体放入n个抽屉中,其中必有一个抽屉中至少有 个物体。 例如:把3个苹果放入2个抽屉中,必然有一个抽屉中有2个苹果。 2. 若把5个苹果放到6个抽屉中,就必然有一个抽屉是空着的。这称为第二抽屉原理:把 个物体放在n个抽屉中,其中必有一个抽屉中至多有个物体。 3. 构造抽屉的方法: 在我们利用抽屉原理思想解决数学问题时,关键是怎样把题目中的数量相对应的想成苹果和抽屉,所以构造“抽屉”是解题的关键。下面我们就通过例题介绍常见的构造“抽屉”的思想方法。 例1. 用“数的分组法”构造抽屉。 从1,2,3,……,100这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50;(3)8个数,它们的最大公约数大于1。 分析与解答: (1)将100个数分成50组 {1,2},{3,4},……,{99,100}。 在选出的51个数中,一定有2个数属于同一组,这一组的2个数是相邻的整数,它们一定是互质的。 (2)我们可以将100个数分成下面这样的50组: {1,51},{2,52},……,{50,100}。 在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。 (3)将100个数分成5组(一个数可以在不同的组内): 第一组:2的倍数,即{2,4,……,100}; 第二组:3的倍数,即{3,6,……,99}; 第三组:5的倍数,即{5,10,……,100}; 第四组:7的倍数,即{7,14,……,98}; 第五组:1和大于7的质数,即{1,11,13,……,97}。 第五组中一共有22个数,所以选出的51个数中至少有29个数在第一组到第四组中,根据抽屉可以知道总会有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。 例2. 用“染色分类法”构造抽屉。 下表是一个3行10列共30个小正方形的长方形,现在把每个小方格添上红色或黄色,请证明无论怎么添法一定能找到两例,它们的添色方式完全相同。 分析与解答:

《抽屉原理练习题》#(精选.)

抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证 取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54 张,最少要抽取几张牌,方能保证其中至少有 2 张牌有相同的点数? 解:点数为1(A) 、2、3、4、5、6、7、8、9、10、11(J) 、12(Q) 、13(K) 的牌各取 1 张,再取大王、小王各 1 张,一共15张,这15 张牌中,没有两张的点数相同。这样,如果任意再取 1 张的话,它的点数必为1~13 中的一个,于是有 2 张点数相同。 3 .11 名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学 生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若 学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10 种类型,把这10 种类型看作10 个“抽屉”,把11 个学生看作11 个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4 .有50 名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况 只有1、2、3??49,只有49种可能,以这49种可能得分的情况为49 个抽屉,现有50 名运动员得分,则一定有两名运动员得分相同。 5 .体育用品仓库里有许多足球、排球和篮球,某班50 名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球 种类是一致的? 解题关键:利用抽屉原理2

简单抽屉原理与最不利原则(下)

(★★★) 在一个盒子里装着形状相同的三种口味的果冻,分别是苹果口味、巧克力口味和香芋口味的,每种果冻都有20个,现在闭着眼睛从盒子里拿果冻。请问: ⑴至少要从中拿出多少个,才能保证拿出的果冻中有香芋口味的? ⑵至少要从中拿出多少个,才能保证拿出的果冻中至少有两种口味? (★★★) 口袋中有三种颜色的筷子各10根,问: ⑴至少取多少根才能保证三种颜色都取到? ⑵至少取多少根才能保证有2双颜色不同的筷子? ⑶至少取多少根才能保证有2双颜色相同的筷子? (★★★) 一个布袋里有大小相同的颜色不同的一些球,其中红色的有10个,白色的有9个,黄色的有8个,蓝色的有3个,绿色的有1个。那么一次最少取出多少个球,才能保证有4个颜色相同的球? (★★★★) 将1只白手套、2只黑手套、3只红手套、8只黄手套和9只绿手套放入一个布袋里,请问: ⑴一次至少要摸出多少只手套才能保证一定有颜色相同的两双手套? ⑵一次至少要摸出多少只手套才能保证一定有颜色不同的两双手套?(两只手套颜色相同即为一双)

(★★★★) 一副扑克牌54张。 ⑴一次至少要抽出多少张才能保证有3张花色相同? ⑵一次至少要抽出多少张才能保证3种花色都有? (★★★★★) ⑴从大街上至少选出多少人,才能保证至少有3人属相相同? ⑵为保证至少5个人的属相相同,但不保证有6人属相相同,那么总人数应在什么范围内? (★★★★★) 幼儿园小朋友分200块饼干,无论怎样分都有人至少分到8块饼干,这群小朋友至多有多少名? 重点例题:例2,例4,例6

在线测试题 温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。 1.(★★★) 在一个袋子里装着形状相同的四种口味的糖果,分别是草莓口味、巧克力口味、菠萝口味和苹果口味的,每种糖果各有15块。现在闭着眼睛从盒子里拿果冻,那么至少要从中拿出()块,才能保证拿出的果冻中有菠萝口味的糖果。 A.16B.31C.46D.60 2.(★★★) 口袋中有四种颜色的筷子各6双,至少取()根才能保证四种颜色都取到;至少取()根才能保证有2双颜色相同的筷子。 A.37、13B.19、16C.25、12D.13、19 3.(★★★) 一个布袋里有大小相同的颜色不同的一些球,其中红色的有12个,白色的有11个,黄色的有9个,蓝色的有4个,绿色的有2个。那么一次最少取出()个球,才能保证有5个颜色相同的球。 A.20B.16C.14D.12 4.(★★★★) 将5只白手套、4只黑手套、8只红手套、10只黄手套和15只绿手套放入一个布袋里,那么一次至少要摸出()只手套才能保证一定有颜色相同的三双手套;一次至少要摸出()只手套才能保证一定有颜色不同的三双手套。(两只手套颜色相同即为一双) A.16、23B.24、20C.17、23D.25、29 5.(★★★★) 一副扑克牌54张。一次至少要抽出()张才能保证有4张花色相同;一次至少要抽出()张才能保证有2种花色。 A.16、19B.15、16C.20、19D.23、28 6.(★★★★) 为保证至少4个人的属相相同,但不保证有6人属相相同,那么总人数应在()范围内。 A.48至72B.48至60C.36至61D.37至60

抽屉原理公式及例题精编版

抽屉原理公式及例题“至少……才能保证(一定)…最不利原则 抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=[n/m ]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。 例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同?A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1 个“抽屉”里有6张花色一样。答案选C. 例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人? 每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同? 用最不利原则解题。四个专业相当于4个抽屉,该题要有70名找到工作的人专业相同,那最倒霉的情况是每个专业只有69个人找到工作,值得注意的是人力专业一共才50个人,因此软件、市场、财务各有69个人找到工作,人力50个人找到工作才是本题中最不利的情形,最后再加1,就必定使得某专业有70个人找到工作。即答案为69×3+50+1=258。 例6:调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员需要从这些调查问卷中随机抽多少份,才能保证一定能找到两个手机号码后两位相同的被调查者? 答:在435份调查问卷中,没有填写手机号码的为435×(1-80%)=87份。要找到两个手机号码后两位相同的被调查者,首先要确定手机号码后两位有几种不同的排列方式。因为每一位

鸽笼原理论文经典

材料清单 一、毕业论文 二、毕业设计任务书 三、毕业设计开题申请表 四、毕业设计开题报告正文 声明 本人丰海娟,学号10505039,系数学与应用数学学院数 学与应用数学专业1001班学生。所做论文内容主体均为原创,无任何抄袭、剽窃他人劳动成果的行为。如有发现此类行为,本人愿意为此承担一切道义及法律责任,特此声明。 学生签名: 年月日 抽屉原理及其应用 : 专业:数学与应用数学学号: 指导老师: 摘要:抽屉原理是数学中的重要原理,在解决数学问题时有非常重要的作用.各

种形式的抽屉原理在高等数学和初等数学中经常被采用.本文着重从抽屉的构 造方法:等分区间、分割图形、利用“对称性”、用整数性质、利用染色和根据问题的需要阐述抽届原理在高等数学和初等数 学(竞赛题)中的应用,同时指出了它在应用领域中的不足之处 : 抽届的构造有一定的难度,这就要求我们必须要求有一定的数学功底,甚至复杂的需要大量的演算,因此抽届原理不能充分的运用到我们日常生活中去. 关键词:抽屉原理;高等数学;初等数学 The principle of drawer and its application Abstract : Drawer principle is the important principle of mathematics in solving mathematical problems, has a very important role. All forms of drawer principle in Higher Mathematics and elementary mathematics is often used. This article emphatically from the drawer construction methods: equal interval, segmentation graph, using the" symmetry", with properties of the integers, using staining and according to problems on the drawer principle in Higher Mathematics and Elementary Mathematics ( contest ) application, and points out that it is in the field of application of the deficiencies: drawer structure has certain difficulty, this asks we

抽屉原理优秀教案

讲课 教案 《数学广角——抽屉原理》 六年级下册 # # 镇中学 # # # 2015年4月17日

《数学广角——抽屉原理》【教学内容】: 我讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材68页的例1。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律,渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生类比推理能力,形成比较抽象的数学思维。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】: 多媒体课件、扑克牌、一定数量的笔、笔筒、练习纸。 【教学过程】:

一、游戏激趣,初步体验 师:同学们,你们玩过扑克牌吗? 生齐:玩过。 师:好,下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗? 生齐:对。 师:如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“这5张扑克牌至少有2张是同一种花色的,你们相信吗? 部分生说:信。 部分生说:不信。 师:那我们就来验证一下。 师先请一位同学洗牌(把牌混合均匀),然后请5名同学各抽一张,验证至少有两张牌是同一种花色的。 师:如果再请五位同学来抽,我还敢这样肯定地说:抽取的这5张牌中至少有两张是同一花色的,你们相信吗? 生齐:相信。 师再找5位同学各抽一张,进一步验证至少有两张牌是同一种花色的。 师:其实这里面蕴藏着一个非常有趣的数学原理,大家想不想研究啊? 生齐:想。 进入主题。 【设计意图:在课前进行的游戏激趣,一是使教师和学生进行自然的沟通交流;二是激发学生的兴趣,引起探究的愿望;三是为今天的探究埋

相关主题
文本预览
相关文档 最新文档