当前位置:文档之家› 2020中考数学专题《几何变式探究和类比变换综合类问题》

2020中考数学专题《几何变式探究和类比变换综合类问题》

2020中考数学专题《几何变式探究和类比变换综合类问题》
2020中考数学专题《几何变式探究和类比变换综合类问题》

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

中考数学几何证明经典题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线 EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

2020年中考数学压轴解答题14 图形变换和类比探究类几何压轴综合问题 (学生版)

备战2020中考数学之解密压轴解答题命题规律 专题14 图形变换和类比探究类几何压轴综合问题 【类型综述】 本节内容每年中考都会选择一种变换作为压轴题的背景素材,可以对函数图象进行平移,可以对几何图形进行平移、旋转,考查学生的数学综合应用能力.在选择、填空中也会涉及变换的概念和简单应用.只要抓住全等变换的特点,找到变与不变的量就可以解决问题.预计在2019年中考中仍会在压轴部分渗透变换,但是会有新情境的渗透. 【方法揭秘】 1.平移的性质 (1)平移前后,对应线段平行、对应角相等; (2)各对应点所连接的线段平行(或在同一直线上)或相等; (3)平移前后的图形全等,注意:平移不改变图形的形状和大小. 2.旋转的性质: (1)对应点到旋转中心的距离相等; (2)每对对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前后的图形全等. 3.中心对称的性质: 在成中心对称的两个图形中,对应点的连线都经过对称中心,并且被对称中心平分_.成中心对称的两个图形全等. 【典例分析】 【例1】操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是;

拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【例2】已知:如图1,OM是∠AOB的平分线,点C在OM上,OC=5,且点C到OA的距离为3.过点C作CD⊥OA,CE⊥OB,垂足分别为D、E,易得到结论:OD+OE等于多少; (1)把图1中的∠DCE绕点C旋转,当CD与OA不垂直时(如图2),上述结论是否成立?并说明理由;(2)把图1中的∠DCE绕点C旋转,当CD与OA的反向延长线相交于点D时: ①请在图3中画出图形; ②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD、OE之间的数量关系,不需证明. 【例3】两个三角板ABC,DEF按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=4 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2). (1)当点C落在边EF上时,x=________cm; (2)求y关于x的函数表达式,并写出自变量x的取值范围; (3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.

2020年中考数学专题复习1新情境应用问题

中考数学专题复习1:新情境应用问题 Ⅰ、综合问题精讲: 以现实生活问题为背景的应用问题,是中考的热点,这类问题取材新颖,立意巧妙,有利于对考生应用能力、阅读理解能力。问题转化能力的考查,让考生在变化的情境中解题,既没有现成的模式可套用,也不可能靠知识的简单重复来实现,更多的是需要思考和分析,新情境应用问题有以下特点:(1)提供的背景材料新,提出的问题新;(2)注重考查阅读理解能力,许多中考试题中涉及的数学知识并不难,但是读懂和理解背景材料成了一道“关”;(3)注重考查问题的转化能力.解应用题的难点是能否将实际问题转化为数学问题,这也是应用能力的核心. Ⅱ、典型例题剖析 【例1】(2005,宜宾)如图(8),在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P处,并以20千米/ 时的速度向西偏北25°的PQ的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张. (1)当台风中心移动4小时时,受台风侵袭的圆形区域

半径增大到千米;又台风中心移动t小时时,受 台风侵袭的圆形区域半径增大到千米. (2)当台风中心移动到与城市O距离最近时,这股台风 是否侵袭这座海滨城市?请说明理由(参考数据2 1.41 ≈,≈). 3 1.73 解:(1)100;(2)(6010)t +; ⑶作OH PQ OH=(千米),设经⊥于点H,可算得1002141 过t小时时,台风中心从P移动到H,则 t=(小时),此时,受 ==52 PH t 201002 台风侵袭地区的圆的半径为:601052130.5 +? (千米)<141(千米) ∴城市O不会受到侵袭。 点拨:对于此类问题常常要构造直角三角形.利用三角函数知识来解决,也可借助于方程. 【例2】如图2-1-5所示,人民海关缉私巡逻艇在东

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

2019届中考数学专题复习专题七类比探究题训练

专题七 类比探究题 类型一 线段数量关系问题 (2018·河南)(1)问题发现 如图①,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M.填空: ① AC BD 的值为________; ②∠AMB 的度数为________; (2)类比探究 如图②,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断AC BD 的值及∠AMB 的度数,并说明理由; (3)拓展延伸 在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =7,请直接写 出当点C 与点M 重合时AC 的长. 【分析】 (1)①证明△COA≌△DOB(SAS),得AC =BD ,比值为1; ②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理,得∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°; (2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则AC BD =OC OD =3,由全等三角形的性质得∠AMB 的度 数; (3)正确画出图形,当点C 与点M 重合时,有两种情况:如解图①和②,同理可得△AOC∽△BOD,则∠AMB =90°,AC BD =3,可得AC 的长. 【自主解答】

解:(1)问题发现 ①1【解法提示】∵∠AOB=∠COD=40°, ∴∠COA=∠DOB. ∵OC=OD ,OA =OB , ∴△COA≌△DOB(SAS), ∴AC=BD , ∴AC BD =1. ②40°【解法提示】∵△COA≌△DOB, ∴∠CAO=∠DBO. ∵∠AOB=40°, ∴∠OAB+∠ABO=140°, 在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°. (2)类比探究 AC BD =3,∠AMB=90°,理由如下: 在Rt△OCD 中,∠DCO=30°,∠DOC=90°, ∴ OD OC =tan 30°=33 , 同理,得OB OA =tan 30°=33, ∵∠AOB=∠COD=90°, ∴∠AOC=BOD , ∴△AOC∽△BOD, ∴ AC BD =OC OD =3,∠CAO=∠DBO. ∴∠AMB=180°-∠CAO-∠OAB-MBA =180°-(∠DAB+∠MBA+∠OBD)=180°-90°=90°. (3)拓展延伸 ①点C 与点M 重合时,如解图①, 同理得△AOC∽△BOD, ∴∠AMB=90°,AC BD =3, 设BD =x ,则AC =3x , 在Rt△COD 中,

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

中考数学类比探究专题复习

G F E D C B A D A B M C N M C B A A B C E F M AB=AC D B C D'A 中考数学类比探究专题复习 一:知识点睛 1.类比探究一般会围绕一个不变结构进行考查.常见结构有:平行结构、直角结构、旋转结构、中点结构. 2.类比是解决类比探究问题的主要方法.往往会类比字母、类比辅助线、类比结构、类比思路来解决类比探究问题. 3.常见结构: ①平行结构 ②直角结构 ③旋转结构 ④ 中点结构 平行夹中点 (类)倍长中线 中位线 二:真题演练 (2015潜江1.24.(10分))已知∠MAN=135°,正方形ABCD 绕点A 旋转. (1)当正方形ABCD 旋转到∠MAN 的外部(顶点A 除外)时,AM ,AN 分别与正方形ABCD 的边CB ,CD 的延长线交于点M ,N ,连接MN . ①如图1,若BM=DN ,则线段MN 与BM+DN 之间的数量关系是 MN=BM+DN ; ②如图2,若BM≠DN ,请判断①中的数量关系是否仍成立若成立,请给予证明;若不成立,请说明理由; (2)如图3,当正方形ABCD 旋转到∠MAN 的内部(顶点A 除外)时,AM ,AN 分别与直线BD 交于点M ,N ,探究:以线段BM ,MN ,DN 的长度为三边长的三角形是何种三角形,并说明理由. 2.(2015贵港26.(10分))已知:△ABC 是等腰三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰三角形PCQ ,其中∠PCQ=90°,探究并解决下列问题: (1)如图①,若点P 在线段AB 上,且AC=1+,PA=,则: ①线段PB= ,PC= 2 ; ②猜想:PA 2,PB 2,PQ 2三者之间的数量关系为 ; (2)如图②,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程; (3)若动点P 满足=,求的值.(提示:请利用备用图进行探求) 3、(2015齐齐哈尔26.(8分))如图1所示,在正方形ABCD 和正方形CGEF 中,点B 、C 、G 在同一条直线上,M 是线段AE 的中点,DM 的延长线交EF 于点N ,连接FM ,易证:DM=FM ,DM ⊥FM (无需写证明过程)

中考数学总复习 教学案 3.5 函数的综合运用

3-6 函数的综合运用 知识考点: 会综合运用函数、方程、几何等知识解决与函数有关的综合题以及函数应用问题。 精典例题: 【例1】如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A 、B 两点,与y 轴交于C 点,与x 轴交于D 点,OB =10,tan ∠DOB = 3 1 。 (1)求反比例函数的解析式; (2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 之间的函数关系式;并写出自变量m 的取值范围。 (3)当△OCD 的面积等于2 S 时,试判断过A 、B 两点的抛物线 在x 轴上截得的线段长能否等于3?如果能,求出此时抛物线的解析式;如果不能,请说明理由。 解析:(1)x y 3 = (2)A (m ,m 3),直线AB :m m x m y -+=31 D (3-m ,0) )31(321m m S S S ADO BDO +?-=+=?? 易得:30<

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学类比探究题

1.如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE. (1)求∠CAE的度数; (2)取AB边的中点F,连接CF、CE,试证明四边形AFCE是矩形. 2.如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点, ED 为一边,作 ∠DEF=∠A,另一边EF交AC于点F. (1)求证:四边形ADEF为平行四边形; (2)当点D为AB中点时,?ADEF的形状为; (3)延长图①中的DE到点G, 使EG=DE,连接AE,AG,FG得到图②若AD =AG, 判断四边形AEGF的形状,并说明理由. 3.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC; (2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由. 【拓展延伸】 (3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明. 4,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在 AD右侧作正方形ADEF,连接CF. (1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为; (2)数学思考:如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2√2,BC,请求出GE的长. CD=1 4 5.如图,四边形ABCD 是边长为2,一个锐角等于60°的菱形纸片,将一个∠EDF=60°的三角形纸片的一个顶点与该菱形顶点 D 重合,按顺时针方向旋转这个三角形纸片,使它的两边分别交CB,BA(或它们的延长线)于点E,F; ①当CE=AF 时,如图①,DE 与DF 的数量关系是; ②继续旋转三角形纸片,当CE≠AF 时,如图②,(1)的结论是否成立?若成立,加以证明;若不成立,请说明理由; ③再次旋转三角形纸片,当点E,F 分别在CB,BA 的延长线上时,如图③,请直接写出DE 与DF 的数量关系.

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

中考数学易错题综合专题一 附答案详解

易错题数学组卷 一.选择题(共3小题) 1.下列各式计算正确的是() A.2x3﹣x3=﹣2x6B.(2x2)4=8x8C.x2?x3=x6D.(﹣x)6÷(﹣x)2=x4 2.(2008?临沂)若不等式组的解集为x<0,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=4 3.(2008?临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且A E=BF=CG,设△E FG的面积为y,AE的长为x,则y关于x的函数的图象大致是() A.B.C.D. 二.解答题(共4小题) 4.(2012?鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1; (2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2; (3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积. 5.如图,在△ABC中∠BAC=90°,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,△AOC的面积是y.

(1)求y关于x的函数关系式及自变量的取值范围; (2)以点O为圆心,BO为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积. 6.(2009?黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx ﹣4过A、D、F三点. (1)求抛物线的解析式; (2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=S△FQN,则判断四边形AFQM的形状; (3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由. 7.(2007?重庆)下图是我市去年夏季连续60天日最高气温统计图的一部分. 根据上图提供的信息,回答下列问题: (1)若日最高气温为40℃及其以上的天数是最高气温为30℃~35℃的天数日的两倍,那么日最高气温为30℃~35℃的天数有_________天,日最高气温为40℃及其以上的天数有_________天;

中考数学几何证明题汇编

N 几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠, 45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点 E ,交∠BCA 的外角平分线于点 F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 图3 A B C D M E A C D E F 第20题图

二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是BE 延长线上 的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE =50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. 2、已知,在平行四边形ABCD 中,EFGH 分别是AB 、BC 、CD 、DA 上的点,且AE=CG ,BF=DH ,求证:AEH ?≌CGF ? 三、证明两直线平行 A B C D F E 图9 A O D B H E C B F C

中考数学专题训练:类比探究类问题解析版

类比探究类问题解析版 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动 点,连结EM并延长交线段CD的延长线于点F. (1) 如图1,求证:AE=DF; (2) 如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明 理由; 2,过点M作 MG⊥EF交线段BC的延长线于点G. (3) 如图3,若AB=3 ① 直接写出线段AE长度的取值范围; ② 判断△GEF的形状,并说明理由. 【答案】解:(1)在矩形ABCD中,∠EAM=∠FDM=900,∠AME=∠FMD。 ∵AM=DM,∴△AEM≌△DFM(ASA)。∴AE=DF。 (2)△GEF是等腰直角三角形。理由如下: 过点G作GH⊥AD于H, ∵∠A=∠B=∠AHG=90°, ∴四边形ABGH是矩形。∴GH=AB=2。 ∵MG⊥EF,∴∠GME=90°。 ∴∠AME+∠GMH=90°。 ∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵AD=4,M是AD的中点,∴AM=2。∴AN=HG。 ∴△AEM≌△HMG(AAS)。∴ME=MG。∴∠EGM=45°。 由(1)得△AEM≌△DFM,∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴∠EGF=2∠EGM =90°。 ∴△GEF是等腰直角三角形。

(3)①23 3 <AE≤23。 ②△GEF是等边三角形。理由如下: 过点G作GH⊥AD交AD延长线于点H, ∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。 ∴GH=AB=23。 ∵MG⊥EF,∴∠GME=90°。∴∠AME+∠GMH=90°。∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵∠A=∠GHM=90°,∴△AEM∽△HMG。∴MG GH EM AM =。 在Rt△GME中,∴tan∠MEG=MG GH23 3 EM AM2 ===。∴∠MEG=600。 由(1)得△AEM≌△DFM.∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴△GEF是等边三角形。 2、(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积. 【答案】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF(SAS)。∴CE=CF。 (2)证明:如图,延长AD至F,使DF=BE.连接CF。 由(1)知△CBE≌△CDF,

相关主题
文本预览
相关文档 最新文档