当前位置:文档之家› 教案 对数函数的导数公式

教案 对数函数的导数公式

教案 对数函数的导数公式
教案 对数函数的导数公式

教案 对数函数的导数公式

(回忆公式) 求下列几个函数的导数: (1)y=sinx 3

+sin 3

3x ;(2)1

22sin -=x x y

【探索研究】 一、对数函数的导数

()e x

x a

a

log

1log

='

公式一

说明:此公式的记忆要点是:将x 拿到对数前面并“倒”一下,原来x 的地方换成“e ” 练习1:求下列对数函数的导数(随手写出)

(1)x lg ;(2))2(log 2-x a (3))lg(sin x (4)x ln 例2

求21lg x y -=

处理:例2放在第(3)题后讲解

()x

x 1ln =

'

公式二

例1

求)132ln(2++x x 的导数

处理:例题教师板演

练习2:求下列对数函数的导数(随手写出)

二、指数函数的导数

()a a

a x

x

ln =' 公式三

说明:指导学生记忆此公式,并说明a 应为正数。 练习3:求下列指数函数的导数(随手写出) (1)3x ;(2)x 3+3x ;(3)a 5x ;(4)e x ;

()x

x

e

e =' 公式四

练习4:求下列指数函数的导数(随手写出) (1)e 3x ;(2)x 2e x ;(3)e 2x cos3x ;(4)x n e -x 练习5:求下列指数函数的导数(随手写出)

(1)y=e x sinx ;(2)y=e x lnx

【求导小测】

1. 求下列函数的导数

(1))

sin(b ax e

y +=;(2))12cos(3+x a

x

;(3)(

)2

sin 1-x

e

说明:一些复杂的求导问题基本为复合函数求导问题,按照复合函数的求导方法,首先要选

好中间变量,然后应用基本导数公式就可以顺利求解了。

2. 已知||ln x y =,求y '

说明:遇到绝对值时,先要对绝对值中因式进行讨论。(另解:2

ln

x

y =)

3. 求下列函数的导数 (1)2

42sin

x x x -+

?;(2))1ln(1

ln +-+=x x x x y ;

(3)x

x y sin 1sin 1-+=

答案:(2

42

cos 2

2

sin x

x x x x --

+

);

2

)

1(ln +x x ;secx

4.已知2

1ln )(x

e

x

x x x f +=,求f(x)的导数的导数(

3

2

)1(2412

2

x

x e

xe

x

x

x

--

+)

【作业】 习题3.5第1,2,3题

(完整版)基本初等函数的导数公式随堂练习

1.2.2 基本初等函数的导数公式 1.下列结论不正确的是( ) A .若y =e 3 ,则y ′=0 B .若y = 1 x ,则y ′=-1 2x C .若y =-x ,则y ′=-1 2x D .若y =3x ,则y ′=3 2.下列结论:①(cos x )′=sin x ;②? ????sin π3′=cos π3;③若y =1x 2,则y ′|x =3=-227.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 C .2 D .1 2 4.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A .??????0,π4∪??????3π4,π B .[0,π) C .??????π4,3π4 D .??????0,π4∪??????π2,3π4 5.曲线y =e x 在点(2,e 2 )处的切线与坐标轴所围成的三角形的面积为( ) A.12e 2 B.94 e 2 C .2e 2 D .e 2 6.设曲线y =x n +1(n ∈N * )在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( ) A .1n B .1n +1 C .n n +1 D .1 课后探究 1.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为 2.已知直线y =kx 是y =ln x 的切线,则k 的值为

一、选择题 2.已知函数f (x )=x 3 的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条 D .不确定 4.y =x α 在x =1处切线方程为y =-4x ,则α的值为( ) A .4 B .-4 C .1 D .-1 5.f (x )= 1x 3 x 2 ,则f ′(-1)=( ) A .52 B .-52 C .53 D .-53 6.函数y =e x 在点(2,e 2 )处的切线与坐标轴围成三角形的面积为( ) A .94e 2 B .2e 2 C .e 2 D .e 2 2 二、填空题 7.曲线y =x n 在x =2处的导数为12,则n 等于________. 8.质点沿直线运动的路程与时间的关系是s =5 t ,则质点在t =32时的速度等于________. 9.在曲线y =4 x 2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________. 三、解答题 10.求证双曲线y =1 x 上任意一点P 处的切线与两坐标轴围成的三角形面积为定值. 一、选择题 11.(2014·北京东城区联考)曲线y =13x 3 在x =1处切线的倾斜角为( ) A .1 B .-π4 C .π4 D .5π4

几个常用函数的导数(教案)

3.2.1几个常用函数导数 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点:能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 教学过程: 【合作探究】 探究任务一:函数() ==的导数. y f x c 问题:如何求函数() y f x c ==的导数 新知:0 y'=表示函数y c=图象上每一点处的切线斜率为 . 若y c=表示路程关于时间的函数,则y'=,可以解释为 即一直处于静止状态. 试试:求函数() ==的导数 y f x x 反思:1 y'=表示函数y x=图象上每一点处的切线斜率为 . 若y x=表示路程关于时间的函数,则y'=,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4 y x y x y x ===的图象,并根据导数定义,求它们的导数.

(1)从图象上看,它们的导数分别表示什么 (2)这三个函数中,哪一个增加得最快哪一个增加得最慢 (3)函数(0)y kx k =≠增(减)的快慢与什么有关 【典型例题】 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x ?+?--===??? 所以0 0lim lim 00x x y y x ?→?→?'===? 函数 导数 y c = 0y '= 0y '=表示函数y c =图像上每一点处的切线的斜率都为0. 若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x ?+?-+?-===??? 所以00 lim lim11x x y y x ?→?→?'===?

常用基本初等函数求导公式积分公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

指数对数函数求导

一、自然常数e 1、求导x a dx d 令x a y = 已知导数差商公式定义式: x x f x x f x f x ?-?+=→?) ()()(lim 0 ' 由导数差商定义式得: x a a x a a x x f x x f x f x x x x x x x x ?-?=?-=?-?+=?→??+→?→?1 )()()(lim lim lim 000'(因子x a 与x ?无关,因此我们可以将它提到极限号前面) 注意到上式中的极限是函数)(x f 的导数在0=x 处的值,即 x a a f x x ?-?=?→?1)0(lim 00 ' 因此,我们已经说明了如果指数函数x a x f =)(在0=x 处是可微的,则该函数是处处可微的,并且 x a f x f ?=)0()('' 上述等式说明了任何指数函数的变化率是和指数函数本身成正比的. 令x a a f a M x x ?-?==?→?1 )0()(lim 00 ' 0,因为x a 已知,要求)('x f 必须 求得)(0a M ,从x a a M x x ?-=?→?1 )(l i m 0 0的定义式可以猜测)(0a M 可能 是一个无线不循环的数值,只能无限取小x ?值求得)(0a M 的估算值,

这种估算的过程相当繁琐且得不到)(0a M 的准确数值. h h h 1 2- h h 1 3- 0.1 0.7177 1.1612 0.01 0.6956 1.1047 0.001 0.6934 1.0992 0.0001 0.6932 1.0987 在上表中,给出了2=a 和3=a 时的情况,通过数值举例,说明了)0('f 的存在.极限明显存在并且 当2=a ,69.012)0(lim 0 ' ≈?-=?→?x f x x 当3=a ,10.11 3)0(lim 0' ≈?-=?→?x f x x 实际上,我们将在《微积分》5.6节说明它们极限存在并且精确到小数点后六位,如下: 693147.0)2(0≈=x x dx d 098612.1)3(0 ≈=x x dx d 因此,由等式①,我们有 x x dx d 2)69.0()2(?≈ x x dx d 3)10.1()3(?≈ 在等式①对于底数a 的所有可能的选择中,当1)0('=f 时,微分 公式最为简单,即x e y =,x e y =',并且有11 )(lim 00=?-=?→?x e e M x x ,

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

几个常见函数的导数1

几个常见函数的导数制作人:徐凯精讲部分: 年级:高三科目:数学类型:同步难易程度:易建议用时:20-25min 一.知识点: 知识点一几个常用函数的导数 知识点二基本初等函数的导数公式

二.典例分析: 题型一 利用导数公式求出函数的导数 例1 求下列函数的导数: (1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2 . 解 (1)y ′=0;(2)y ′=(5x )′=5x ln 5;(3)y ′=? ?? ??1x 3′=(x -3)′=-3x -4 ; (4)y ′=(4 x 3 )′=(x 34)′=1 434x -=344 x ;(5)y ′=(log 3x )′=1 x ln 3; (6)y =1-2sin 2 x 2 =cos x ,y ′=(cos x )′=-sin x . 反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 题型二 利用导数公式解决切线有关问题 例2 (1)已知P ,Q 为抛物线y =12x 2 上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别 作抛物线的切线,两切线交于点A ,则点A 的坐标为________. 答案 (1,-4) 解析 y ′=x ,k PA =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴PA 的直线方程为y -8=4(x -4),

即y =4x -8, QA 的直线方程为y -2=-2(x +2),即y =-2x -2,联立方程组??? ? ? y =4x -8,y =-2x -2,得 ????? x =1, y =-4. ∴A (1,-4). (2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直并说明理由. 解 设存在一个公共点(x 0,y 0)使两曲线的切线垂直, 则在点(x 0,y 0)处的切线斜率分别为k 1=y ′|0x x ==cos x 0,k 2=y ′|0x x ==-sin x 0, 要使两切线垂直,必须k 1k 2=cos x 0(-sin x 0)=-1, 即sin 2x 0=2,这是不可能的. ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直. 反思与感悟 1.利用导数的几何意义解决切线问题的两种情况 (1)若已知点是切点,则在该点处的切线斜率就是该点处的导数. (2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤 题型三 利用导数公式求最值问题 例3 求抛物线y =x 2 上的点到直线x -y -2=0的最短距离. 解 设切点坐标为(x 0,x 2 0),依题意知与直线x -y -2=0平行的抛物线y =x 2 的切线的切点到直线x -y -2=0的距离最短.

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题

常见函数的导数

常见函数的导数 学习目标:能根据定义求几个简单函数的导数,加深对导数概念的理解,同时体会算法的 思想并熟悉具体的操作步骤。 学习重难点:利用导数公式求一些函数的导数 一、 知识点梳理 1. 基本初等函数,有下列的求导公式 '1.()(,)kx b k k b +=为常数 '2.()1x = 2'3.()2x x = 4.()0C '= 3'2 5.()3x x = ' 2 116.()x x =- '= 1 8.()x x ααα-'=(α为常数) 9.()ln (01)x x a a a a a '=>≠, a a 1110.(log x)log e (01)x xlna a a '= =>≠, x x 11.(e )e '= 112.(lnx)x '= 13.(sinx)cosx '= 14.(cosx)sinx '=- 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 二、典例讲解 例1、求下列函数导数。 练习:(1)5 -=x y (2) 、x y 4= (3)、x x x y = (4)、x y 3 l o g = (5)、)100() 1(l o g 1 ≠>>-= x a a x a y x ,,, (6)、y=sin( 2π+x) (7)y=sin 3 π (8)、y=cos(2π-x) (9)、y=(1)f ' 例2、1.求过曲线y=cosx 上点P( 2π ,0 ) 的切线的直线方程. 2. 若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. (1)(23)(2)(2)(3)3x x '-+='-='=4 (4)y x =3(6)y x -==0(5)sin 45y

导数--对数函数与指数函数的导数练习题

高三第三章导数--对数函数与指数函数的导数练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列求导数运算正确的是 A.(x +x 1)′=1+21x B.(log 2x )′=2ln 1x C.(3x )′=3x log 3e D.(x 2cos x )′=-2x sin x 2.函数y =ln(3-2x -x 2)的导数为 A.32+x B.2231x x -- C.32222-++x x x D.3 2222-+-x x x 3.函数y =lncos2x 的导数为 A.-tan2x B.-2tan2x C.2tan x D.2tan2x 4.函数y =x x a 22-(a >0且a ≠1),那么y ′为 A.x x a 22-ln a B.2(ln a ) x x a 22- C.2(x -1) x x a 22-·ln a D.(x -1) x x a 22-ln a 5.函数y =x ln 的导数为 A.2x x ln B.x x ln 2 C.x x ln 1 D.x x ln 21 6.函数y =sin32x 的导数为 A.2(cos32x )·32x ·ln3 B.(ln3)·32x ·cos32x C.cos32x D.32x ·cos32x 二、填空题(本大题共5小题,每小题3分,共15分) 7.设y =x x e e 2 )12(+,则y ′=___________. 8.在曲线y =5 9++x x 的切线中,经过原点的切线为 9.函数y =x 22的导数为y ′=___________. 10.函数y =log 3cos x 的导数为___________. 11.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________. 三、解答题(本大题共3小题,每小题9分,共27分) 12.求函数y =ln(21x +-x )的导数.

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、"0 2、 (乂7二心I (n 为正整数) 3、 Ca x y=a x \na Ce x y=e x (long a xy=-^— 4、 xina (lnxX=- 5、 x 6、 (sin Q 二 cos x 7 (cos x )‘二-sin x '(ly=-± 8. x 对 知识点二:导数的四则运算法则 1、 ("土 v y=u ± v r 2、 (nv )r =u F v + //v r 3、 (Cu7=Cu 4、 v 知识点三:利用函数导数判断函数单调性的法则 1. 如果在广(力>°,则/a )在此区间是增区间,为/(X )的单调增区间。 2、如果在(""),广(x )v0,则/(x )在此区间是减区间,(心)为/(X )的单调减区 间。 一、计算题 1. 计算下列函数的导数: (1) y = x 15 (2) y = x* (XH O) (3) 5 y = x 4 (x a 0) (4) 2 y = x^ (XA O) (5) 2 y = x 3 (X A 0) (6) y = x 5

(7) >,=v2 , 24) (7) y = sin x (8) y = cos x (9) y=r (10) y = In x (11) y = e x 2、求下列函数在给泄点的导数: 2 (1)尸存,“16 7T . X =— (4) y = xsinx , 4 x y = --- (6) 1+F ,兀=1 (2) y = sinx (3)y = cosx x = 2TT 3 (5) >,=v

对数函数与指数函数的导数(1)

课 题: 3.5对数函数与指数函数的导数(1) 教学目的: 1.理解掌握对数函数的导数的两个求导公式. 2.在学习了函数四则运算的求导法则与复合函数求导法则的基础上,应用对数函数的求导公式,能求简单的初等函数的导数 教学重点:应用对数函数的求导公式求简单的初等函数的导数. 教学难点:对数函数的导数的记忆,对数函数求导公式的灵活运用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= 2.法则1 )()()]()([' ''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'(Cu x Cu x '= 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u ) 在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解——求导——相乘——回代. 二、讲解新课: ⒈对数函数的导数(1): x x )'(ln = 证明:∵ x x f y ln )(==

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

基本初等函数及常数的导数公式

()()()()()()()( )( )()()1 222 2 ()'0 ()'()'ln '1 (log )'ln 1ln '(sin )'cos cos 'sin tan 'sec cot 'csc sec 'sec tan csc 'csc cot arcsin 'arccos '1arctan '11cot '1a a x x x x a c x ax a a a e e x x a x x x x x x x x x x x x x x x x x x x x arc x x -========-==-==-= ==+-=+ 导数运算法则 ()()()()()()()()()()()()()()()()()()()2'''''''''u x v x u x v x u x v x u x v x u x v x v x u x v x u x v x u x u x ±=±=+??-= ? ???????

1220 ln 1ln 1log ln sin cos cos sin tan sec cot csc sec sec tan csc csc cot arcsin arccos 1arctan 1arc cot u u x x x x a dc dx ux dx de e dx da a adx d x dx x d x dx x a d x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dx d x dx d x dx x d x -========-==-==-= ==+-=211dx x + 微分的四则运算: ()()2()0d u v du dv d uv udv vdu v udv vdu d u u u ±=±=+-??=≠ ???

基本初等函数的导数公式

基本初等函数的导数公式 学习目标: 掌握初等函数的求导公式; 学习重难点: 用定义推导常见函数的导数公式. 一、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量()(x f x x f y -?+=? (2)求平均变化率 x y = ?? (3)取极限,得导数/y =()f x '=x y x ??→?0 lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 二、学习过程 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2()2x x '= ⑸ 32()3x x '= ⑹ 2 1 1()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1()x x ααα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01) x xlna a a '= = >≠,且 ⑾ x x e )(e =' ⑿ x 1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。

例1、求下列函数导数。 (1)5-=x y ( 2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin(2 π +x) (6) y=sin 3 π (7)y=cos(2π-x) 例2.若直线y x b =-+为函数1y x = 图象的切线,求b 的值和切点坐标. 变式1.求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2:求曲线y=x 2过点(0,-1)的切线方程 变式3:已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. 三:课堂练习. 1.求下列函数的导数 (1)3y x = (2)y = (3)2 1y x = (4)3x y = (5)2log y x = (6)cos y x = 四、小结 (1)基本初等函数公式的求导公式 (2)公式的应用 随堂检测: 1. 已知3()f x x =,则'(1)f = 。 2.设y = ,则它的导函数为 。 3.过曲线3y x -=上的点1 (2,)8 的切线方程为 。 4.求下列函数的导函数 (1)2y x -= (2)y = (3)41y x = (4)2x y = (5)4log y x = (6)ln y x = (7)sin()2y x π=- (8)3cos()2 y x π =+ 5.求曲线x y e =在0x =处的切线方程。

基本初等函数导数公式附导数运算法则

1.2.2基本初等函数的导数公式及导数的运算法则(一)教学目的:1熟练掌握基本初等函数的导数公式。 2掌握导数的四则运算法则; 3能利用给出的公式和法则求解函数的导数。 教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点:基本初等函数的导数公式和导数的四则运算法则的应用 教学安排:两课时 教学过程: 引入:复习巩固导数的基本公式,及其基本运算规律。 且 知识讲解: 一:基本初等函数的导数公式 为了方便我们将可以直接使用的基本初等函数的导数公式表如下:

关于表特别说明:1 常数函数 的导 数是 0; 2幂函数 导数是以对应幂函数的指数为系数 3 余弦函 数的导数是正弦函数的相反 数。 从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正, 和余弦函数在该区间的正负是一致的, 余弦函数在区间上是单调递减,瞬时变化率为负, 和正弦函数在该区间的正负是相反的,故 有一个负号。 4

的导数是它自身。 5 例1计算下列函数的导数 强调:1幂函数和指数函数是两种不同的函数,关键是看变量所处的 位置是在底数上还是在指数上。 2 导函数的定义域决定于原函数的定义域。 练习:求下列函数的导数。 例 2.(课本P14例1)假设某国家在20 那么在第10个年头,这种商品的价格上涨的速度大约 是多少(精确到0.01 )? /年) 在第10个年头,这种商品的价格约为0.08元/年的速度上涨.

提出问题: 10个年头,这种 0.01)? 二导数的计算法则 推论1 导数不变) 2 (常数与函数的积的导数,等于常数乘函数 的导数) 3 解决问题: 公式和求导法则,有 /年) 0.4元/年的速度上涨.例3 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数,并注明定义域。

指数对数的导数复习(附答案)

求指数、对数函数的导数 例 求下列函数的导数: 1.1ln 2+=x y ;2.)132(log 22++=x x y ; 3.)sin(b ax e y +=; 4.).12cos(3+=x a y x 分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数. 解:1.解法一:可看成1,,ln 2+===x v v u u y 复合而成. .1 11 2)1(2 111 )2(2 11222212221 +=+?+=?+?+=??='?'?'='--x x x x x x x x x v u v u y y x v u x 解法二:[])1(111ln 222'++= '+='x x x y .12112111)1()1(2 111 22222122+=?+?+= '+?+?+=-x x x x x x x x 解法三:)1ln(2 11ln 22+=+=x x y , [] .1122)1(1121)1ln(2122222+=+='+?+?='+='x x x x x x x y 2.解法一:设132,log 2 2++==x x u u y ,则 )34(log 12+??='?'='x e u u y y x u x

.1 32log )34()34(132log 2222++?+=+++?=x x e x x x x e 解法二:[] )132(1 32log )132(log 22222'++?++='++='x x x x e x x y .132log )34()34(132log 2222+++=+?++=x x e x x x x e 3.解法一:设b ax v v u e y u +===,sin ,,则 )sin()cos( cos b ax u x v u x e b ax a a v e u u y y +?+=??='?'?'=' 解法二:[][]'+?='='++)sin()sin()sin(b ax e e y b ax b ax )sin()sin()cos()()cos(b ax b ax e b ax a b ax b ax e ++?+=' +?+?= 4.])12cos([3'+='x a y x )].12s i n (2)12c o s (ln 3[) 12sin(2)12cos(ln 3)12)](12sin([)12cos()3(ln ])12[cos()12cos()(3333333+-+?=+?-+?=' ++-++'??=' +?++'=x x a a x a x a a x x a x x a a x a x a x x x x x x x 说明:深刻理解,掌握指数函数和对数函数的求导公式的结构规律,是解决问题的关键,解答本题所使用的知识,方法都是最基本的,但解法的构思是灵魂,有了它才能运用知识为解题服务,在求导过程中,学生易犯漏掉符合或混淆系数的错误,使解题走入困境. 解题时,能认真观察函数的结构特征,积极地进行联想化归,才能抓住问题的本质,把解题思路放开. 变形函数解析式求导 例 求下列函数的导数: (1)12223+-++=x x x x y ; (2)x x y +-=11ln ;

1.2.2基本初等函数的导数公式及导数的运算法则教案

§1.2.2基本初等函数的导数公式及导数的运算法则 教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 教学重点:基本初等函数的导数公式、导数的四则运算法则 教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景 四种常见函数y c =、y x =、2y x =、1y x = 的导数公式及应用 二.新课讲授 (一)基本初等函数的导数公式表

(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =

所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =x x --+1111; (3)y =x · sin x · ln x ; (4)y = x x 4 ; (5)y =x x ln 1ln 1+-. (6)y =(2 x 2-5 x +1)e x (7) y =x x x x x x sin cos cos sin +- 【点评】 ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 5284()(80100)100c x x x =<<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数. '' ' '252845284(100)5284(100)()()100(100)x x c x x x ?--?-==-- 20(100)5284(1)(100)x x ?--?-=-25284(100) x =- (1) 因为' 25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'2 5284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨. 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越

指数对数的导数

求指数、对数函数的导数 例 求下列函数的导数: 1.1ln 2+=x y ;2.)132(log 22++=x x y ; 3.)sin(b ax e y +=; 4.).12cos(3+=x a y x 分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数. 解:1.解法一:可看成1,,ln 2+===x v v u u y 复合而成. .1 11 2)1(2 111 )2(2 11222212221 +=+?+=?+?+=??='?'?'='--x x x x x x x x x v u v u y y x v u x 解法二:[])1(11 1ln 222'++='+='x x x y .121121 11)1()1(2111 22222122+=?+? +='+?+?+= -x x x x x x x x 解法三:)1ln(2 11ln 22+=+=x x y , [] .1122)1(1121)1ln(2122222+=+='+?+?='+='x x x x x x x y 2.解法一:设132,log 2 2++==x x u u y ,则 )34(log 12+??='?'='x e u u y y x u x .1 32log )34()34(132log 2222++?+=+++?=x x e x x x x e 解法二:[] )132(1 32log )132(log 22222'++?++='++='x x x x e x x y .132log )34()34(132log 2222+++=+?++=x x e x x x x e 3.解法一:设b ax v v u e y u +===,sin ,,则

对数函数求导

习题四 隐函数 对数函数求导 高阶导数 一、是非题 解:1.(×))1(ln )1(ln )(+=?+='x x x x x x x x x x . 2.(×))1 sin ln (cos )(sin sin x x x x x x x x ?+?=')sin ln (cos sin x x x x x x +=. 3.(×) )()(d d t t x y ?'ψ'=. 二、解:1. 两边对x 求导数: ()()0e e sin ='+-+'+-y x y y y x x x , 化简,得 ()()x x y x y y x e sin e -+='-, 所以 ()x x y y x x -+-='e sin e 1. 2. 两边对x 求导数: 0)()1(e ='+-'++y x y y y x , 化简,得 y x y x y y x ++-='-e )e (, 所以 x y y y x y x --='++e e . 三、解:1.原式两边取对数 )]3ln()2ln()423ln()1ln(3)1[ln(4 1 ln -----+++-=x x x x x y , 等式两边对x 求导 )31 21 4234 13 11(41 ------+++-=' x x x x x y y , 所以41 ='y 43)3)(2()423()1)(1(---+-x x x x x )31 21 4234 13 11 (------++-x x x x x .

2.原式两边取对数 x x y ln 2ln =, 等式两边对x 求导 x x x y y 12ln 2?+=' , 整理得 )2ln 2(2+='x x y x , 即 )2ln 2(d d 2+=x x x y x . 四、解:由???=+=3e 1t y t x t ,得 ()() ()t t t t x y t t t t +='+'=1e 3e 1d d 23, 0=t 的对应点处切线的斜率为0d d 0==t t y ,M 点的坐标为(1,0), 所以,M 处切线的方程为 0=y . 五、解:1.)2(510'++='e x x y =491010x x +=)1(1054+x x , 384090x x y +=''=)49(1053+x x . 2.)cos ln 2e 3(2'++='x x y x = x x x sin 2e 62-+, x x y x cos 2 e 1222--=''. 3. 2)2()21(109+-?-='x y =2)21(209+--x , =''y 88)21(360)2()21(180x x -=---. 4. x x y 2cos 20026++=', =''y x 2s i n 4006-.

相关主题
文本预览
相关文档 最新文档