当前位置:文档之家› 催化加氢技术以及催化剂

催化加氢技术以及催化剂

催化加氢技术以及催化剂
催化加氢技术以及催化剂

催化加氢技术以及催化剂

一、意义

1、具有绿色化的化学反应,原子经济性。

催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。

2、产品收率高、质量好

普通的加氢反应副反应很少,因此产品的质量很高。

3、反应条件温和;

4、设备通用性

二、催化加氢的内容

1、加氢催化剂

Ni系催化剂

l骨架Ni

(1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。

(2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。

(3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3 >NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。

(4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。

(5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH 稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。

其它镍系催化剂

从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开始,这是最古老的镍催化剂,工业上几乎没有单独使用镍的,而广泛使用的却是加有各种单体或助催化剂的镍,一般的制法是把硅藻土加进硝酸镍水溶液中,一边搅拌一边加碳酸钠,使碱式碳酸镍(或氢氧化镍)沉淀在硅藻土上。充分地水洗过滤干燥。将制成的催化剂在使用之前,在350-4500C的氢气流中进行还原。鉴于还原的催化剂与空气接触会着火而失去活性,使用必须注意。

此外,还有把硝酸镍溶液和硅藻土的混合物蒸干,在400-5000C热分解为NiO-硅藻土后,用氢气还原的方法。通常,还把少量金属氧化物作为助催化剂加到NiO-硅藻土中,例如NiO-氧化钍-硅藻土[40],NiO-Cu-硅藻土等[41],均属于高活性的催化剂。

可用作载体的物质还有浮石、氧化铝、硅胶、酸性白土、氧化锌、CaSO4、MgSO4、木炭、石墨等。.

2.2.1.3、分解镍

分解镍一般由甲酸镍热分解制得,它是活性低于骨架镍,可以几次反复用于同一反应的非燃烧性催化剂。甲酸催化剂早在1912年的专利[14]中即已出现,它作为工业用的油脂加氢催化剂,久已为人所知。

甲酸镍Ni(HCO3)2•2H2O约在1400C开始脱水,无水物约在2100C分解,210-2500C时分解激烈进行,约在2700C分解完毕[149,150]。关于甲酸镍的分解机理,有以下3种报导[149,150]。

Ni(HCO3)2•2H2O →Ni+H2+2CO2+2H2O

Ni(HCO3)2•2H2O →Ni+3H2O+CO2+CO

2 Ni(HCO3)2•2H2O →2Ni+H2+3CO2+5H2O+CO

甲酸镍催化剂的性质仅次于骨架镍催化剂,在油脂类加氢中选择性好,甲酸镍催化剂用于其它有机化合物加氢的实例很少,如稀丙醇加氢[168],芳烃硝基化合物[162,169]苯酚的加氢等。甲酸镍催化剂选择性良好,一个分子存在几个可加氢部位,只要选择合适的反应温度,在按阶段进行的反应中,就可以防止发生副反应,以高得率获取所得产物

而且,它不与卤素或磺基反应,所以适用于含有这类成分的化合物加氢[169]。Leicester[178]等研究了Ni的醋酸盐,络酸盐,辛酸盐等的热分解,主要生成物是Ni2O3,极富于多孔性,估计应能作为催化剂使用。草酸镍的研究也很多,它所制得催化剂与甲酸催化剂大体相同,但因其成本高,工业上几乎不用。

漆原镍催化剂是为了避免采用Schwenk等取得的用骨架合金和碱催化剂的制造专利[129]而出现的。它是应用过量的镍粉从镍盐中沉淀出镍,使它与雌酮的碱水溶液混合而还原成功,并取得专利[30]。目前通用的漆原镍有:碱处理沉淀而得的漆原镍B(U-Ni-B),用酸处理而得的漆原镍A(N-Ni-A)。用Al作镍盐的还原剂制得的沉淀镍,再用碱处理而得到的漆原镍BA(U-Ni-BA),用酸处理而得到的漆原镍AA(U-Ni-AA)。

用还原剂处理镍盐制得的催化剂,因为Ni比H的离子化倾向更强,所以不能用氢气使镍盐溶液析出金属镍,但用某些具有还原能力的化合物却可以达到这一目的,如Parl[183]等用NaBH4溶液还原NiCl2制得的硼化镍催化剂,能在常温常压下进行糠醛、苄腈等加氢,通常比骨架镍略低。若以格氏试剂为还原剂,则生成被认为黑色的镍氢化物,据报导对苯乙烯、丙酮等具有加氢活性。

还有范崇正等报道的经化学结构处理后所得含有助剂的超细金属镍(含镍量高于65%wt,比表面积为84m2/g),对羰基的催化加氢,发现Ni对该体系是双向催化作用,并推测镍催化剂表面的“活性中心”,应该是由一族原子共同作用而形成的。

超细镍

该催化剂是一种超细粒子,粒径大小一般为0.1-0.001微米,具有高表面能和表面活性及易烧结等特点。超细粒子催化剂具有高活性和优良的选择性,但单独存在不稳定,常制成高分散负载型催化剂,其制备方法已有详细综述[1]。当用粒径为300埃的超细镍对环辛二烯加氢制环辛烯的反应时[3],选择性为210,当用普通镍催化剂时,选择性为24,说明使用超细镍时,环辛烯的加氢被极大地抑制了。

Pt系催化剂

铂是最早应用的加氢催化剂之一,主要是以下几种催化剂

Pt黑

在碱溶液中用甲醛、肼、甲酸钠等还原剂还原氯铂酸,能制得Pt黑催化剂,具体的方法:在80ml氯铂权溶液(含20g铂,难溶时加入汪时的盐酸)中加入150ml35%甲醛水溶液,冷却至-10℃以下激烈搅拌,向其中滴加入420ml50%的KOH,保持4-6℃以下。滴完后在30min内温度上升至55-60℃,使还原进行完毕。冷却后倾泻法除去不部澄清液,反复操作,去除碱和氯离子再吸滤出沉淀物,在干燥器中干燥。吸滤时如催化剂不被水覆盖,就会起火,在高真空下排气数日后,会失去所含氧而失去活性,但与空气混合后,则又回打电报活性。在常温下,常驻压下,这些催化剂对芳环加氢显示活性。

胶体铂

一般以铂的离子和金属铂的胶体形式存在,如:在1g氯铂酸钾和1g阿拉伯胶的水溶液中加入48.2ml0.1N的氢氧化钠(也可用溶有1g NaCO3的水溶液),于搅拌下煮沸,热至液体呈暗棕色为止,生成胶体的氢氧化铂。用透析法进行精制并于真空干燥后保存,可直接使用,或预先用氢还原后再使用。胶体铂催化剂一般比氧化催化剂活性弱。

Adams氧化铂[80]将3.5g氯铂(4价)酸无水盐置于坩埚中,便溶于10ml水,加入35gNaNO3,激烈搅拌下蒸干,再急剧升温,在350-3700C产生NO2,加热至无气体为止,将温度保持在500-5500C,加热10min放置冷却,用水洗至不含硝酸盐止,并在干燥器中干燥保存,可得约1.6g 的PtO2.H2O,即使充分水洗,催化剂中仍含微量的碱,使这种催化剂在氢气中与溶液振荡混合,很容易转变成铂黑而表现活性。不进行预还原也可用于加氢反应。这时在反应初期有数秒到

2-3min的吸氢阶段,催化剂活性越强,吸收氢的时间越短。此外,加热温度越高,还原所需时间越长。在无载体铂中,以Adams氧化铂活性最强,被用于各种加氢反应。

2.1.1.4负载铂

将氯铂(4价)酸溶于水,使渗入适当的载体并进行干燥,用氢或其它还原剂还原后,即得负载铂。

Pt/C:最常用的加氢催化剂之一,广泛应用于双键、硝基、羰基等的加氢,而且效率高、选择性好,就是贵金属催化剂价格贵,但是由于是分散型催化剂,仅含1-5%的贵金属量,相对来讲不是很贵,用起来可以承受,特别对于高附加值产品。制备方法:将1g活性炭与40ml无水乙醇,1ml 0.2 克分子的氯铂(4价)酸溶液一起充分搅合,在室温下用注射器加入5ml

1克分子的NaBH4溶液。1分钟后加入4ml 6克分子浓度的盐酸溶液以分解过量的NaBH4,即可供使用。在辛烯-1或硝基苯加氢中,该催化剂活性比Adams氧化铂活性要高出数倍。

铂/石棉先后用碱和硝酸处理石棉,用温水洗净然后借水浴加热而使氯铂酸(4价)水溶液渗入石棉,冷却后加入35-40%的甲醛水溶液,使深入充分,对每1g铂大约用30ml甲醛水,在冷却的同时,缓慢加入相当于甲醛水重量一半的40-50%NaOH溶液,然后在水浴上加热,使反应完成,用水充分洗净后浸没于稀醋酸中充分洗涤,过滤后再用水洗净,在110℃时干燥,得黑色催化剂,用于苯或吡啶的气相加氢。

铂/氧化铝它用于粗汽油的改性,即所谓的铂重整。Haensel[84]在AlCl3溶液中加入氨水,将所得的氧化铝凝胶水洗至残留一定量的氯化物,加入氢氟酸或其铵盐,再与通了H2S的氯铂酸溶液搅拌混合,高温下用氢还原后,成型供用。广泛用于双键、硝基化合物、醛酮的加氢,并具有较好的活性和选择性。

均相催化剂:SnCl3--PtCl42-对多种烯烃加氢具有活性,但该催化剂本身很复杂,因为它的性质取决于两者相对浓度、介质酸度温度等,而对其活性物种如[PtH(SnCl3)4]3-、都不能作活性测试。其催化行为必定与所溶HPtCN(Pph3)2[61]、[HPt(SnCl3)2(Et2P)2]- [60]

解的能活化底物的组分有关。现已发现,过量的SnCl3-配体降低加氢速率,HCl、HBr、LiCl或LiBr的添加促进加氢。SnCl3-是很强的接受者,因为Sn的5d空轨道大小和能量与Pt 5d满轨

道相匹配,则配体SnCl3-就减少了Pt上的电子密度,易被亲核物质如H、C=C等所进攻,SnCl3-的强接受π电子性质稳定了Pt(H)(C=C)Xn络合物的稳定性,阻止了Pt2+的还原。

2.1.2、钯基催化剂

金属钯是催化加氢的能手。在石油化学工业中,乙烯、丙稀、丁稀、异戊二稀等稀烃类是最重要的有机合成原料。由石油化工得到的稀烃含有炔烃及二稀烃等杂质,可将它们转化为稀烃除去。由于形成的稀烃容易被氢化成烷烃,必须选择合适的催化剂。钯催化剂具有很大的活性和极优良的选择性,常用作稀烃选择性加氢催化剂,如Lindlar催化剂(测定在BaSO4上的金属钯,加喹啉以降低其活性)。从乙烯中除去乙炔常用的催化剂是0.03%

Pd/Al2O3[1]。文献报道[2],在乙烯中加入CO可以改进Pd/Al2O3对乙炔的加氢选择性,并已工业化。甚至有工艺可将稀烃中的乙炔降至1%以下[3]。常用的加氢反应钯催化剂有Pd、Pd/C、Pd/BaSO4、Pd/硅藻土、PdO2、Ru-Pd/C等。

迄今为止,钯催化剂制备的方法有浸渍法、金属蒸汽沉淀法、溶剂化金属原子浸渍法[11]、离子交换法、溶剂—凝胶法等。钯催化剂一般都为负载型催化剂,载体一般为活性炭、γ-Al2O3及目前研究较多的高分子载体和钯基金属膜催化剂。以下主要介绍几类目前研究较多的钯催化剂及相应的催化剂反应现状。

2.1.2.1、Pd/C

Pd/C催化剂是催化加氢最常用的催化剂之一。因为活性炭具有大的表面积、良好的孔结构、丰富的表面基团,同时有良好的负载性能和还原性,当Pd负载在活性炭上,一方面可制得高分散的Pd,另一方面炭能作为还原剂参与反应,提供一个还原环境,降低反应温度和压力,并提高催化剂活性。

Pd/C主要用于NO2的还原及选择还原C=C。自从1872年钯黑对苯环上的硝基加氢还原反应具有催化作用以来[1],Pd-C催化加氢以其流程少,转化率高,产率高,三废少等优点,引起了国内外极大的关注,相继有大量的专利及文献报道[2,3]。如喻素娟[4]等以邻硝基苯胺为原料,以Pd/C为催化剂低压催化加氢还原合成邻笨二胺,收率>90%,产品质量分数>98%,并减少了“三废”污染。申凯华[5]等采用Pd/C催化剂,硝基丁酸混合物不经提纯,催化加氢制备了1-

氨基-3,6,8-奈磺酸。而以R-Ni或贵金属硫化物作催化剂,反应剧烈[3,5],设备要求高。相对而言,Pd/C条件缓和,收率高,稳定性好,三废少。

另外,还有许多用于C=C双键还原的,特别是与C=O共扼的情况下Pd/C,显示了较好的立体选择性[6,7]。

2.1.2.2、Pd/γ-Al2O3

Pd/γ-Al2O3催化剂作为一种工业成品催化剂,具有良好的加氢活性,广泛用于加氢。对于用浸渍法制备的Pd/γ-Al2O3催化剂,DodgSon[15,16]详细考察了高温熔烧对催化剂钯分散度的影响。近年来对催化剂的研究主要集中于催化剂的制备及表面性质的研究。如对环戊二稀的选择性加氢反应,选择性不好,表现为深度加氢。从应用角度出发,选择金属铅作为修饰剂的Pd/γ-Al2O3催化剂[16],该催化剂具有修饰剂不易损失,制备方便等优点,且可以大大提高环戊二稀的选择性(达到98%),环戊二稀亦完全转化,反应空速较大,催化剂寿命较长,可望应用工业生产。

姜恒[17]等发现在少量碱的存在下,PVC-PdCl2(PVC,聚乙烯吡咯烷酮负载)对硝基化合物显示了较多的催化加氢活性。PVC-PdCl2进一步负载到γ-Al2O3上,得到双重负载的钯催化剂。这种双重负载的钯催化剂对硝基化合物的加氢,在常温常压下对硝基苯的催化加催化剂的制备方又容易从反应体系中分离,实验结果表明,氢,即有很高的活性和选择性,

法对活性有很大的影响。PVC-Pd/γ-Al2O3对硝基苯和p-甲基硝基苯加氢的TOFmax(maximum turnover frequent,n(H2)/(n(Pd),t)),分别为256/min和234/min,多次累计转化数可达60000以上,说明催化剂的制备方法对活性有很大的影响。

2.1.2.3、高分子负载钯和高分子络合钯

自从Holy[2]首次报道用改进性聚苯乙烯负载钯催化剂催化硝基苯加氢以来,此领域一直受到研究工作者的重视[3-6]。负载型催化剂中的载体作为一个复杂的大配体,它对负载型催化剂的活性及选择性具有很大的影响[1],特别是有机高分子载体,由于其链结构交联度及饶性的不同,常会引起催化剂活性中心的结构和配体环境的变化,从而影响到催化剂的活性和选择性。不同主链的高分子载体对催化剂的活性及选择性也有较大的影响。如高汗荣等[1]报导了几种以聚2,6-二甲基1,4-苯醚(PPO)和聚砜(PSu)为主链的负载钯催化剂对1-辛稀和条件下的催化加氢活性与选择性。官能团化的PPO负载钯对1-辛稀催化加氢活性大于官能团化的Psu负载钯催化剂的活性,但前者在加氢过程中的活性下降比后者快的多,官能团化的PPO负载钯催化剂在1-辛稀加氢过程中活性很快下降的原因与其强的异构化性能和异构化产物有关。相同配体的两种负直载钯催化剂对环戊二烯的催化加氢表现在活性上,PPO低于Psu,而选择性PPO高于Psu。表明除了按预计与钯直接配位的配体外,载体主链结构对负载钯催化剂的加氢性能也有显著影响。

另外,还有以高分子作为配体的金属钯络和物催化剂。以高分子为配体的金属络和物催化剂具有高活性,高选择性和可重复使用的特点[1],在以往的研究中发现,二氧化硅负载聚-γ-氨丙基烷-钯[2]、二氧化硅负载聚硅氨烷-钯络和物[4]等在催化加氢反应中显示了优良的性能,这些配体都是合成高分子,还有以天然高分子作为配体的[5],如唐黎则[6]等研究一种新型天然高分子催化剂,二氧化硅负载羧甲基纤维素钯络和物(5,-CMC-Pd)的催化加氢性能。结果表明。络和物中COO/Pd摩尔比、溶剂及PH值对催化性能有很大的影响。该催化剂在300C,常压下硝基苯,各种稀烃化合物,苯甲醇和苯乙酮具有很高的加氢活性和选择性。同时,该催化剂还具有优良的稳定性和重复使用性能。

2.1.2.4、钯基金属膜催化剂

致密钯金属膜是一类重要的无机催化膜,已成为脱氢或选择加氢反应的重要材料[26]。Gryaznov等[28]用致密的钯金属管式膜反应器进行选择加氢,一步合成了维生素K4,产率95%。目前,致密钯基膜的商用仅限于氢的纯化,其原因之一是上述的钯膜较厚,氢的渗透速度降低,膜组件的成本高。近年来,有关工作主要集中在钯基金属复合膜的制备及应用研究上[29]。

人们通常把钯基金属层担载在机械稳定的多孔衬底,目的是通过降低膜的厚度来提高氢的渗透速率。可用此种方法制备钯基金属复合膜,如物理气相沉积、化学气相沉积、热喷和化学镀饰等[1]。物理气相沉积适合制备多组分的钯合金膜,易控制膜的厚度,制备过程较快,膜材料纯度高,但金属与衬底结合力较差。化学气相沉积可在复杂的衬底上制得多组合钯合金膜,金属与衬底结合好,但过程优化复杂。

2.1.2.5、钯基双金属催化剂

金属Pd被公认为是最出色的快键和双烯键选择加氢催化剂活性组分,但仍存在许多缺点,如齐聚副反应的发生,易被炔键络合,易中毒,稳定性差等等。针对单Pd催化剂的缺点,研究人员从活性组分Pd与反应产物和载体之间,在具体的空间结构与物理化学微环境的相互作用关系上进行了分析,通过添加第二金属助催化组分来进一步改善催化剂功能。Pd基双金属催化剂对炔/双烯加氢的选择性、活性、稳定性和寿命比单Pd催化剂有很大的提高,在6~4烯烃的选择加氢催化剂中形成了一个优势,可视为该领域的第三代催化剂[2]。

如黄小军等[]。选择金属铅作为修饰剂制得铅修饰Pd/Al2O3催化剂,对环戊火烯的选负载催化剂,研究了Pd-Fe等合成了均相[1]择性大大提高,催化剂稳定,不易流失;吴琼

对卤代艿番硝基化合物的催化氢化性能,发现该催化剂的活性和选择性高,寿命较长,减少脱卤。赵维君[2]等合成均相Pd-Mo双核络合物催化剂考察了对1,5,9-环十二碳三烯的选择加氢性能,发现加氢选择性与转化率是很高。

2.1.2.6、络合钯

PdCl2或其它钯类络合物遇氢不稳定,故很少用作均相催化剂,但若Sn2+存在下,钯络合物

就有加氢活性,如(ph3P)2PdCl在SnCl2.2H2O或GeCl2作助剂时,对大豆油脂加氢有活性。不过,最近发现(ph2PCH2Pph2)3Pd2对端烯、环烯烃、共扼双烯和炔有加氢活性[73],端烯加氢速率随碳链增长而降低。

2.1.3、钌

钌作为加氢反应的催化剂用的较多,在F-T合成[2],芳烃化合物(特别是芳香族胺类)的加氢[3]等反应中,均发现有良好的活性和选择性。在钌催化剂上进行的液相加氢中,水的存在显著地促进反应。它对醛酮的加氢也有较高的活性[1,2],与其他铂系催化剂相比,常能表现某些特异性质。

2.1.

3.1、RuO2

将用碱熔法制得的钌酸盐溶于水中,加以酸化后,所得沉淀用过氧化氢处理,并在空气中强热,便得到在有机化合物的加氢中显示高活性的RuO2

2.1.

3.2、Ru(OH)4

用盐酸将氯化钌水溶液略加酸化后加热至85-90℃,在激烈搅拌下逐次少量地假加入超过当量的浓度为10%NaOH溶液。将生成的黑色沉淀滤集在滤纸上,用蒸馏水反复洗涤,直至洗液PH 值到7.8-8.0为止。然后在室温下真空干燥。Ru(OH)4中含钌量为65%,用该法容易得到碱残留量少的催化剂,这种催化剂可以用于芳烃化合物的加氢,比RuO2的活性高得多[13]。

2.1.

3.3负载钌

使氯化钌溶液渗透到载体中在加氢还原,或使钌的氧化物或氢氧化物在载体上析出后,再用氢还原,均可制成钌的负载催化剂[19]。Naghara等[1]详细论述了其不同的制备方法,以及选择某些金属氧化物和沸石等多种物质作载体时的钌催化剂的加氢性能。实验证明了疏水物质不宜作载体,而亲水物质则是很好的载体。因此载体的主要作用是提高催化剂的表面亲水性,增大催化剂的有效表面积和防止催化剂的表面积碳。具体载体有SiO2、Al2O3、沸石、锌和镧的复合氧化物,BaSO4,分子筛等,对苯的部分加氢有不同的活性。

在负载钌催化剂中加入K、Fe、Co、Cu、Ag等金属元素作催化剂,可以显著提高催化剂的活性和选择性[1]。另外,水的含量对催化活性也有影响。

2.1.

3.4、氯化钌

自从1960年Halpern[160]等证实RuCl2水溶液对烯烃加氢有活性以来,Adamson[112]系统地研究了RuCl2,RuCl3,RuCl4的活性,认为其中的活性物种是Ru(H2O)2Cl4-,Ru(H2O)Cl52-,RuCl63-,他们认为可能机理如下图所示:

RuCl(ph2P)3是端烯加氢很好的催化剂,能保留90%的立体结构,RuCl2(Pph3)3催化还原查尔酮[18],C=C选择性100%,且反应极为迅速。RuCl2(BINAP)/[CHPh(NH2)]2氢化不对称α,β-不饱和环酮得手性烯丙酮具有极高的立体选择性。[42]还有利用金属钌,铑络合手性膦、手性碳等配体制成手性催化剂对某些烯酮等化合物进行均相加氢,可以选择性地得到带有光学活性的物质,光学产率几近理论值。当然其中手性膦配体的设计对钌铑的立体选择加氢十分重要,这方面已有详细综述[1]。

为解决该问均相络合加氢的一个核心问题是过渡金属催化剂的分离和循环使用。另外,

题普遍采用的均相催化多相化方法,原则上分为2类:一是将钌、铑等催化剂静态固定在高分子或无机载体上的固载均相催化[1],另一类是采用水溶性膦的配体,将均相催化剂动态负载在与产物互不相溶的水相而实现水/有机两相催化[2]。两者在这方面都已有很大的进展,实现立体均相催化工业化应是指日可待。

2.1.4、铑(Rh)、铱(Ir)、锇(Os)

三种金属催化剂类型差不多,都有氧化物、氢氧化物、负载型、络合型金属催化剂,其制备方

法同钌、铂相似。铑的产量和少,极贵重对芳烃加氢具有较高活性和选择性[1]。胶体铑催化剂相当稳定,放置数月活性不下降。常见负载催化剂是Rh/Al2O3,Rh/CeO2,Rh/SiO2等多用于CO加氢成醇,芳烃和硝基加氢;铱的固体催化剂、均相催化剂形式、活性与铑相近。尤其在均相催化加氢中,也许是三价阳离子d6电子分配相似的原因,但铑加氢活性比铱要高得多,如RhCl (Pph3)3是有效的加氢催化剂,而IrCl(Pph3)3则不是。但RhCl(CO)(Pph2)3、和IrCl (CO)(Pph3)2都具有良好的加氢活性。催化剂活性还取决于实验条件、溶剂极性等。[1] 锇的氧化物易挥发,有刺激性和毒性,不用作催化剂,常用作环氧化物氢解成伯醇的反应,其负载型催化剂有Os-石棉、Os/Al2O3、Os/C等,其络合加氢催化剂研究不多,有报道OsHCl(CO)(Pph3)3、OsHCl2(Pph3)3对烯烃加氢有活性。

Rh、Ir的均相加氢研究与Ru很相近,尤其是`Rh,广泛由于不对称加氢,Ir相对少些,Os则更不常见。

2、加氢催化反应

随着改革开放,国民经济迅速发展,医药、燃料、农药、日用化工等精细化工行业在规模数量上已跻身世界大国行列,但技术水平与发达国家尚有较大的差距,产品质量不高,物耗与能耗较高,特别是三废治理不完善,严重制约了精细化工的进一步发展。

进几年我国催化加氢技术在技术开发与推广使用上都有了重大脱破,催化加氢技术已不仅仅在石油化工、石油炼制上得到广泛的应用,在精细化工上也得到了不断开发和应用。目前,我国许多企业仍普遍采用五、六十年代的铁粉、硫化碱、水合阱等还原方法组织生产,这与发达国家主要采用催化加氢法生产相比,技术上至少落后20年。因此,用先进的催化加氢技术来来改造传统落后的技术,是化工科技界一项十分迫切的任务。现就催化加氢反应的应用范围、加氢催化剂、加氢催化反应工艺及动力学和机理四个方面作一一阐述。

1、加氢催化反应的应用

1.1、硝基化合物加氢

硝基烷烃的加氢活稍逊于烯键。在骨架镍上的加氢活性和铂催化剂相似,甚至稍高一些。在骨架镍上,共扼的硝基烯烃如CH3CH2C(NO2)=CH2的加氢不是选择性的,而非共扼的硝基烯烃可先还原硝基。硝基烷烃的加氢在骨架镍上的活化能比亚当斯铂低,而指前因子却小于后者。这表示在镍上较易活化,在铂上却有较多的吸附氢与之作用。脂肪烃硝基化合物甚至在室温时亦可与产物胺缓缓作用产生复杂的缩聚物,这方面有点似醛。所以要想得到高收率的胺,必须选用低温度加氢的活性催化剂。与芳烃硝基化合物不同,在一定条件下,它先还原成肟:相对于硝基烷烃,在科研和工业上研究最多的是芳烃的硝基化合物。我国自50年代开始对催化加氢进行研究,1978年成功地自行开发了硝基气相催化加氢制苯技术,催化加氢技术便有了长足的进展,用催化加氢工艺生产了许多产品,如苯胺、邻苯二胺、间苯二胺、对氨基苯酚、3,3`-二氯苯胺、2,4-二氨基甲苯、邻氯苯胺等等,其中3,3`-二氯苯胺、对导致质量不过关而国内十分紧邻氯苯胺由于以前没有生产技术或生产技术落后,氨基苯酚、.

缺,在近年来却在催化加氢工艺研究上取得了可喜的突破。以上芳胺具体的研究情况如下:

对氨基苯酚催化加氢制对氨基苯酚方法的研究始于本世纪二十年代。Bamberger提出机理为[16]:

1979年英国的Hartington公司率先将该工艺工业化[17],目前该方法在美国、日本均已工业化,国内对此工艺也进行了一些研究[1-3]。北京医科大学的研究已有专利的报道[18],天津大学等也进行了该工艺的研究开发,但还未见有成功的工业化生产的报道。其合成方法为:由硝基苯在稀硫酸介质中加氢使硝基苯还原成苯基羟胺,同时发生Bamberger重排,制得对氨基苯酚,主催化

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

加氢催化剂及其设备制作方法和应用与相关技术

本技术提供了一种加氢催化剂及其制备方法和应用。所述催化剂制备方法包括将成型的载体先负载活性金属镍得到载体S1,再负载磷源得到载体S2,然后将载体S2在氢氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为1:31:7;载体占所述加氢催化剂总重量的60%80%。该催化剂适用于缓和条件下柴油的加氢脱硫和加氢脱氮反应,其主要特点是在反应过程中具有较高的直接脱硫和/或脱氮选择性。 权利要求书 1.一种加氢催化剂的制备方法,其中,所述方法包括将成型的载体先负载活性金属镍得到载体S-1,再负载磷源得到载体S-2,然后将载体S-2在氢氛围下活化得到含有金属磷化物NixPy 的加氢催化剂,其中x:y为1:3-1:7;在制备得到的加氢催化剂中,载体占所述加氢催化剂总重量的60%-80%;优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:3-1:7。 2.根据权利要求1所述的制备方法,其中,所述方法中负载活性金属镍的步骤包括,将镍的前驱体与水配制成溶液A,通过等体积浸渍方法将镍负载到载体上,干燥后得到负载了活性金属镍的载体S-1;其中优选是在80-120℃下干燥;其中还优选干燥3-7h;优选通过等体积浸渍将镍负载到载体后,先室温放置8-16h,再干燥得到载体S-1。 3.根据权利要求1所述的制备方法,其中,所述方法中负载磷源的步骤包括,将磷的前驱体与水配制成溶液B,通过等体积浸渍方法将磷负载到载体S-1上,干燥后得到负载了磷的载体S-2;其中优选是在80-120℃下干燥;其中还优选干燥3-7h。 4.根据权利要求1所述的制备方法,其中,所述方法中活化的步骤包括,先将载体S-2在氢气气氛中,在750-900℃下活化,活化结束后降温至室温,在2%的O2/N2条件下钝化得到所述的加氢催化剂;优选氢气体积空速为600-3000h-1;优选载体S-2在氢气气氛中,以10℃/min 升温至300℃,保温30min后,再以1-10℃/min的速度升温至750-900℃进行活化;优选钝化的持续时间为3h。

奇人徐荣祥与他的身后事

奇人徐荣祥与他的身后事 发明了不用做植皮手术只需抹点药膏就能治疗烧伤的徐荣祥走了,但他的医疗方法与药方却仍在治愈着世界上无数的烧伤病人3月下旬的北京遭遇倒春寒,行人缩着肩膀匆匆走在路上。但在北京东三环CBD尚都国际中心的31层,徐鹏走出电梯一进办公室就脱下外套,只穿一件黑色的短袖。公司所有墙面都是翠绿色的玻璃,搭配着金黄色,与阴冷晦暗的楼外相比,是另一个世界。这里的确有个不一样的“世界”——徐鹏站在半圆形办公桌边,看着桌子背后的墙面上用金黄色瓷砖在天蓝色背景上拼出的五大 洲版图。这是两年前27岁的他接管美宝国际集团以后要求重新改装的,金黄色是他们的主打产品湿润烧伤膏的颜色,他希望“烧伤膏能把这个世界给覆盖住”。“老爹的理想就是湿润烧伤膏能够铺遍世界的每一个角落,这样就没有烧伤植皮和截肢残疾的病人了。”他口中的“老爹”就是创造这个金黄色世界的徐荣祥。他发明的烧伤湿性医疗技术与湿润烧伤膏,前者曾被国家卫生部定为首批十项全国推广普及的重大医药技术之一,后者已于2006年正式被纳入国家医保药物名单。公司里到处是徐荣祥的照片,甚至整体装潢仍然是2006年他设计的样子。对于徐鹏来说,老爹尽管并没有像一般人的父亲那样陪伴子女成长,但却是他的精神领袖与

奋斗的楷模。“病人7天后就能见效果” 年近三十的徐 鹏与徐荣祥一样留着寸头,戴眼镜,有着和父亲差不多的身高及山东人常见的健壮体型。虽然他称呼父亲为“老爹”,但 实际关系并没有这么亲密。他坦言,由于自己在美国生活,与长期在国内工作的父亲相处时间不多,在父亲去世以前,自己并没有真正了解过他。在徐荣祥去世到葬礼之间的短暂空隙,徐鹏迅速搜集资料,将父亲的一生经历做成PPT。在这一过程中,他才拼凑出了父亲的完整形象。1990年9月24日晚上,泰国首都曼谷一辆运输液化天然气的货车发 生交通事故,气罐爆炸,随后附近其他40余辆汽车和摩托 车的汽油罐也被点燃,共造成81人死亡,113人受伤。当 时国外媒体报道的画面显示,夜色中现场的居民楼火势冲天,消防员肩上扛着一个个烧伤病人冲向救护车,当地的医院里也挤满了送过来的病人。这场灾难延续数月,10月初,受到泰国政府邀请的中国政府派出徐荣祥等三人前去救助。徐荣祥1996年接受北京电视台采访时回忆,当时不少媒体 在机场等着采访中国来的医生。32岁的他走出来,被人拦住询问“你认识徐教授吗?”对方以为他是一位从业经验丰富的 老医生。徐荣祥不仅年轻,使用的技术也不同于主流的烧伤植皮技术,而是自己研发的湿润暴露疗法,国外医生不认可,国内甚至也有人专门打电话过来称徐荣祥是个“骗子”。但徐荣祥是中国政府派去的医生。经过几番讨论,泰国最终同

加氢催化剂的预硫化及其影响因素

加氢催化剂的预硫化及其影响因素 张笑剑 摘要:加氢催化剂的预硫化是提高催化剂活性,优化加氢催化剂操作,获得理想经济效益的关键之一。为获得理想的硫化效果,必须严格控制各阶段的反应条件。本文介绍了加氢催化剂预硫化的反应原理,探讨了在预硫化过程中影响催化剂预硫化效果的因素。 关键词:加氢催化剂硫化技术操作条件影响因素 加氢催化剂硫化是提高催化剂活性,优化装置操作,延长装置运转周期,提 高经济效益的关键技术之一。加氢催化剂主要由金属组分(一般为W,Mo,Co, , Ni 等)和载体(氧化铝 ,二氧化硅,沸石,活性炭,黏土,渗铝水泥和硅藻土等)两部分组成,金属组分以氧化态的形式负载在多孔的载体上,促进加氢脱氮,加氢脱硫,加氢脱芳烃,加氢脱金属,加氢脱氧和加氢裂化等反应。生产经验和理论研究表明:氧化态催化剂的加氢活性,稳定性和选择性均低于硫化态催化剂。只有将催化剂进行硫化预处理,使金属组分从氧化态转变为硫化态,催化剂才具有较高的活性,稳定性和选择性,抗毒性强,寿命长,才能够最大限度地发挥加氢催化剂的作用。 1硫化原理 1.1 H 2 S的制备 H 2 S主要来自硫化剂的分解:硫化剂的分解均为放热反应,且理论分解温度与 实际操作条件下的分解温度有所差别,一般有机硫化物在催化剂和H 2 条件下分解温度通常比常温下分解温度低10~25o C。 CS 2+4H 2 =CH 4 +2H 2 S CH 3SSCH 3 +3H 2 =2CH 4 +2H 2 S 1.2金属氧化物的硫化 金属氧化物的硫化是放热反应。理想的硫化反应应为 MoO 3+2H 2 S+H 2 =MS 2 +3H 2 O 9CoO+8H 2S+H 2 =Co 9 S 8 +9H 2 O 3NiO+2H 2S+H 2 =NiS+3HO WO 3+2H 2 S+H 2 =WS 2 +3H 2 O

加氢催化剂及其设备制作方法和应用与制作流程

本技术提供了一种加氢催化剂及其制备方法和应用。所述方法包括将成型的载体先负载活性金属镍得到载体S1,再负载磷源得到载体S2,然后将载体S2在氢氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为1:31:7;载体占所述加氢催化剂总重量的 60%80%;优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:31:7。该催化剂适用于缓和条件下柴油的加氢脱硫和加氢脱氮反应,其主要特点是在反应过程中具有较高的直接脱硫和/或脱氮选择性。 权利要求书 1.一种加氢催化剂的制备方法,其中,所述方法包括将成型的载体先负载活性金属镍得到载体S-1,再负载磷源得到载体S-2,然后将载体S-2在氢气氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为(1:3)-(1:7);在制备得到的加氢催化剂中,载体占所述加氢催化剂总重量的60%-80%;(优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:3-1:7)。 2.根据权利要求1所述的制备方法,其中,所述方法中负载活性金属镍的步骤包括,将镍的前驱体与水配制成溶液A,通过等体积浸渍方法将镍负载到载体上,干燥后得到负载了活性金属镍的载体S-1;其中优选是在80-120℃下干燥;其中还优选干燥3-7h;优选通过等体积浸渍将镍负载到载体后,先室温放置8-16h,再干燥得到载体S-1。 3.根据权利要求1所述的制备方法,其中,所述方法中负载磷源的步骤包括,将磷的前驱体与水配制成溶液B,通过等体积浸渍方法将磷负载到载体S-1上,干燥后得到负载了磷的载体S-2;其中优选是在80-120℃下干燥;其中还优选干燥3-7h。 4.根据权利要求1所述的制备方法,其中,所述方法中活化的步骤包括,先将载体S-2在氢气气氛中,在750-900℃下活化,活化结束后降温至室温,在2%的O2/N2条件下钝化得到所述的加氢催化剂;优选氢气体积空速为600-3000h-1;优选载体S-2在氢气气氛中,以1-10℃/min

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

2015年高校专业代码参考目录汇总

2015年高校专业代码参考目录汇总 01哲学 0101哲学类 010101哲学 010102逻辑学 010103宗教学 010104伦理学 02经济学 0201经济学类 020101经济学 020102国际经济与贸易 020103财政学 020104金融学 020105国民经济管理 020106贸易经济 020107保险 020109金融工程 020110税务 020111信用管理 020112网络经济学 020113体育经济 020114投资学 020115环境资源与发展经济学 020116海洋经济学 020117国际文化贸易 020120经济与金融 03法学 0301法学类 030101法学 030103知识产权 030120监狱学 0302马克思主义理论类 030201科学社会主义与国际共产主义运动030202中国革命史与中国共产党党史0303社会学类 030301社会学 030302社会工作 030303家政学 030304人类学 030305女性学 0304政治学类 030401政治学与行政学 030402国际政治 030403外交学 030404思想政治教育 030405国际文化交流 030406国际政治经济学 030407国际事务 0305公安学类 030501治安学 030502侦查学 030503边防管理 030504火灾勘查 030505禁毒学 030506警犬技术 030507经济犯罪侦查 030508边防指挥 030509消防指挥 030510警卫学

030511公安情报学 030512犯罪学 030513公安管理学 030514涉外警务 04教育学 0401教育学类 040101教育学 040102学前教育 040103特殊教育 040104教育技术学 040105小学教育 040106艺术教育 040107人文教育 040108科学教育 040109言语听觉科学 040110华文教育 0402体育学类 040201体育教育 040202运动训练 040203社会体育 040204运动人体科学 040205民族传统体育 040206运动康复与健康 040207休闲体育 0403其他类 040301农艺教育 040302园艺教育 040303特用作物教育 040306畜禽生产教育 040307水产养殖教育 040308应用生物教育 040311农产品储运与加工教育040312农业经营管理教育040313机械制造工艺教育040314机械维修及检测技术教育040315机电技术教育 040316电气技术教育 040317汽车维修工程教育040318应用电子技术教育040322食品工艺教育 040328建筑工程教育 040329服装设计与工艺教育040330装潢设计与工艺教育040331旅游管理与服务教育040332食品营养与检验教育040333烹饪与营养教育 040334财务会计教育 040335文秘教育 040336市场营销教育 040337职业技术教育管理 05文学 0501中国语言文学类 050101汉语言文学 050102汉语言 050103对外汉语 050104中国少数民族语言文学050105古典文献 050106中国语言文化 050107应用语言学

预加氢催化剂预硫化方法

精心整理 中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕, (2)绘出催化剂干燥脱水升、恒温曲线。 (3) 2、干燥示意流程 ↓N2 ↑↓ ↓放水 3 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2催化剂干燥温度要求 反应器入口温度 ℃ 床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h 常温→250- 10~15 15

250~280 ≮200- 至干燥结束 250→<150≯15020~25 4~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力1.5MPa/h的升 温速度将反应器入口温度升至250℃, 不到200 (2)在干燥过程中,每2 (3) (4) <150 (如DMDS)分解生成H2S,H2S使 H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。 1、预硫化前的准备工作 (1)催化剂干燥结束后,将催化剂床层温度降至150℃,泄压至0.2MPa,引氢气置换至氢纯度>85%,再升压至操作压力,建立氢气循环。

(2)绘出预硫化过程的升、恒温曲线。 (3)注硫系统吹扫干净,并将硫化剂装入硫化罐内。 (4)准备好不同规格的H 2S 检测管。硫化过程中每1小时测一次循环氢中的H 2S 浓度。 2、催化剂硫化示意流程 硫化油↓DMDS ↑ ↑分液罐→循环压缩机↓ ↑ ←高分←水冷←空冷←换热器 3、催化剂硫化条件 反应压力:操作压力 (CS 2)。 则需按照CS 2硫化剂含硫量的不同进行硫化温度及循环氢中H 2S 含量控制要求见表3。 表3催化剂硫化阶段温度要求 反应器入温度 ℃ 升温速度 ℃/h 升、恒温参考时间 h 循环氢H 2S 控制 v% 常温→150 15~20

加氢精制催化剂安全生产要点(2021新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 加氢精制催化剂安全生产要点 (2021新版)

加氢精制催化剂安全生产要点(2021新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1工艺简述 用于油品精制的加氢精制催化剂品种很多,性能各异,基质均为氧化铝,浸渍不同金属做活性组分。RN—1加氢精制催化剂是加工成形为三叶草条状的r—Al2O3担体,分别浸渍氟和钨镍金属制成。简要生产工艺过程是将高纯氢氧化铝粉与胶溶剂,助挤剂等混捏后挤成三叶形条状,经干燥和活炉焙烧脱水成为担体。担体经含氟盐溶液浸渍、干燥焙烧、再经含镍、钨的溶液浸渍、干燥焙烧即制成RN—1加氢精制催化剂。 生产中使用的原料有硝酸、氟盐等强氧化剂和腐蚀性物质,炼厂干气做为燃料,系易燃易爆物质。 2重点部位 2.1浸渍工序此工序有前氟盐浸渍工序和后镍、钨浸渍工序。浸渍液制备和浸渍作业均与多种有毒、有害及腐蚀性物质接触,如果设备腐蚀可靠性不足或操作防护等失误将造成严重的伤害事故。

2.2成品焙烧炉该炉系用瓦斯加热空气进行浸渍金属后的催化剂成品干燥活化的高温设备。在此设备中,如果活化温度控制不当和物料太湿或粉状物太多,可能造成局部超温而烧料;燃料系统可因泄漏、带水等原因发生着火或其他事故;还可因防护用品等操作失误造成灼烫、伤害等危害。 3安全要点 3.1浸渍定期对浸渍液制备、浸渍罐等易被腐蚀的设备进行检查鉴定,防止物料因设备腐蚀而泄漏造成事故;经常对有毒、有害作业岗位作业人员的防护措施的正确实施进行检查,纠正冒险或违章作业,防止中毒和化学灼伤。 3.2成品焙烧炉对每批进行活化的催化剂进炉前,应检查控制粉状物不能太多和太湿;检查并严格控制活化温度在480?20℃和料层超温的紧急放料措施及操作机构应灵活好用;经常对燃料系统运行情况进行严格检查,随时督促消除发现的隐患;焙烧作业中特别是活化炉放料时,应督促作业人员佩戴防烫护具,防止烫伤。 3.3其他部位 3.3.1混捏挤条机的孔板和螺栓,在运转挤条前要经仔细检查,不能有裂纹等缺陷,防止挤条时折断伤人。

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

再生资源科学与技术专业毕业实习周记范文原创全套

再生资源科学与技术专业毕业实习周记全 套 (本人在再生资源科学与技术专业相关岗位3个月的实习,十二篇周记,总结一篇,全部原创,共6500字,欢迎下载参考) 姓名:杜宗飞 学号:2011090118 专业:再生资源科学与技术专业 班级:再生资源科学与技术专业01班 指导教师:赵晓明

第1周 作为再生资源科学与技术专业的大学生,我很荣幸能够进入再生资源科学与技术专业相关的岗位实习。相信每个人都有第一天上班的经历,也会对第一天上班有着深刻的感受及体会。尤其是从未有过工作经历的职场大学们。 头几天实习,心情自然是激动而又紧张的,激动是觉得自己终于有机会进入职场工作,紧张是因为要面对一个完全陌生的职场环境。刚开始,岗位实习不用做太多的工作,基本都是在熟悉新工作的环境,单位内部文化,以及工作中日常所需要知道的一些事物等。对于这个职位的一切还很陌生,但是学会快速适应陌生的环境,是一种锻炼自我的过程,是我第一件要学的技能。这次实习为以后步入职场打下基础。第一周领导让我和办公室的其他职员相互认识了一下,并给我分配了一个师父,我以后在这里的实习遇到的问题和困难都可以找他帮忙。 一周的时间很快就过去了,原以为实习的日子会比较枯燥的,不过老实说第一周的实习还是比较轻松愉快的,嘿嘿,俗话说万事开头难,我已经迈出了第一步了,在接下去的日子里我会继续努力的。生活并不简单,我们要勇往直前!再苦再累,我也要坚持下去,只要坚持着,总会有微笑的一天。虽然第一周的实习没什么事情,比较轻松,但我并不放松,依然会本着积极乐观的态度,努力进取,以最大的热情融入实习生活中。 虽然第一周的实习没什么事情,比较轻松,但我并不放松,依然会本着积极乐观的态度,努力进取,以最大的热情融入实习生活中。 第2周 过一周的实习,对自己岗位的运作流程也有了一些了解,虽然我是读是再生资源科学与技术专业,但和实习岗位实践有些脱节,这周一直是在给我们培训那些业务的理论知识,感觉又回到了学校上课的时候。虽然我对业务还没有那么熟悉,也会有很多的不懂,但是我慢慢学会了如何去处理一些事情。在工作地过程中明白了主动的重要性,在你可以选择的时候,就要把主动权握在自己手中。有时候遇到工作过程中的棘手问题,心里会特别的憋屈,但是过会也就好了,我想只要积极学习积极办事,做好自己份内事,不懂就问,多做少说就会有

浅谈石油加氢精制催化剂用高纯三氧化钼的制备原理及生产工艺

浅谈石油加氢精制催化剂用高纯三氧化钼 的制备原理及生产工艺 马孝飞技术中心 摘要:对催化剂用高纯三氧化钼的制备原理以及生产工艺做了简单的分析,提出了生产过程中需要解决和避免的问题。 关键词:热解、晶型、温度、通风、溶解 Abstract :Of high purity molybdenum trioxide catalyst preparation principle and the production process to do a simple analysis, the production process need to address and avoid problems. Key words :pyrolysis, crystal, temperature, exhaust ,dissolved, 一、前言 金属钼是一种不可再生的矿产资源,我国钼资源储量居世界第二。钼具有优异的性能,可应用于化工、钢铁、生物、电子、医药和农业等领域。随着工业化水平的发展,钼的应用领域不断扩大。其中钼系催化剂已在石油、医药等工业领域广泛应用。 钼系列催化剂的特点是:具有不易中毒,使用寿命长;在催化反应过程中具有很高的活性、好的选择性和机械强度;不仅可处理一般原油,而且对品质低劣的重质油也很有效。因此,石油化工生产离不开催化剂,催化剂是炼油和石油化工技术的核心,在催化剂领域含钼催化剂占据着十分重要的地位,特别是石油加氢精制、加氢脱硫催化剂,需要在特定浸渍体系、浸渍条件下中具有高溶性的高纯三氧化钼(MoO3),其在催化剂中所占比例可达20%以上,因此三氧化钼

(MoO3)其及其化合物是石油化工和化学工业中一类非常重要且用量较大的的原料,发挥着愈来愈重要的作用。 二、生产原理 高纯三氧化钼可以分为两种,一种为催化剂用高纯三氧化钼,颜色为蓝灰色,另外一种为深加工用高纯三氧化钼,颜色为淡黄色。制备方法主要体现在热分解温度的不同。 高纯三氧化钼可以利用热分解钼酸铵来制取,钼酸铵在空气中加热焙解,使钼酸铵失去结晶水和氨转变为三氧化钼。 反应式为:MS A 加热MoO3 + NH3↑+ H2O↑ 由于钼酸铵转变为三氧化钼是热解过程,在不同的温度段存在着不同的相变过程。

徐荣祥及其人体再生复原科学

徐荣祥及其人体再生复原科学: 他让诺贝尔奖委员会低下了头足羽 2015-08-17 18:31 收藏29 评论18 徐荣祥(1958年—2015年)山东沾化人,毕业于青岛医学院 徐荣祥是我国烧伤医学研究的带头人,出身于中医世家,早年发明了美宝湿润烧伤膏,并创造了断指再生的奇迹。他通过研究断指再生的机理,创立了人体再生复原科学,并欲将断指中的再生在人体其他组织器官实现,从而达到延缓人体衰老甚至返老还童的效果。 徐荣祥教授是谁? 徐荣祥是77届高考的医学院医疗系本科毕业的医生,一直从事外科学医疗和研究,主编了国家系列丛书150万字的《当代外科新进展》,以及出版了《再生医学研究》《烧伤治疗

蓝皮书》等著作,在瑞士出版了人类第一部再生医学英文专著。 徐荣祥发明的烧伤湿性医疗技术和国家烧伤新药,被国家科委登记为重大机密级科技成果,被国家卫生部定为首批十项全国推广普及的重大医药技术之一,现在已被世界上23个国家的政府批准为临床医疗治疗技术和药物,也被联合国确立为全球急救技术和药品。1990年应泰国政府邀请,代表中国政府赴泰国抢救成批烧伤病人,获得成功,赢得泰国国王、政府“最好医生”的称号,给国家和人民争得了荣誉。 徐荣祥的再生医学研究和医疗成就,在国内医学界始终遭遇打压而不获重视。但是在国际医学界则引起革命性震动,并且受到美国最高层政界的高度关注。 徐荣祥生前创立“人体细胞及器官再生复原”学说

徐荣祥通过长期研究,结合实验观察和干细胞理论,创立了人体再生复原科学,合理地解释了:通过激活休眠细胞,产生干细胞,进而分化出各种组织、器官,修复受损组织和器官的现象。 上世纪80年代,徐荣祥在青岛医学院读书期间做临床实习时,第一次接触了烧伤病人,当时医院普遍使用的是传统的干性暴露效法,先把创面坏死的表皮清除干净,然后用药让它保持干燥,结痂。但这个过程会给病人带来极大的痛苦,换药时病人表情痛苦,不时惨叫。徐荣祥深受震撼,开始质疑传统疗法: 传统疗法的抗菌药、手术治疗创面只是杀灭、抑制细菌、扩大清除创面,把烧伤变创伤,却没有治疗烧伤组织,也不是再生修复;手术植皮更是将烧伤组织及连带活组织切除,在创造的刀口创面上植皮,它治的是刀伤,而不是烧伤。

加氢催化剂再生

中国石油股份有限公司乌鲁木齐石化分公司 失活AT-505、FH-5加氢催化剂 器外再生技术总结 受中国石油股份有限公司乌鲁木齐石化分公司的委托,温州瑞博催化剂有限公司于2009年9月23日至9月26日,在山东再生基地对该公司失活AT-505、FH-5加氢催化剂进行了器外再生,现将有关技术总结如下: 一、催化剂再生前的物性分析及再生后催化剂指标要求 根据合同和再生的程序要求,首先对待生剂进行了硫、碳含量、比表面、孔容、强度等物性分析,其结果如下表: AT-505加氢催化剂再生前物性分析表 ◆中国石油股份有限公司乌鲁木齐石化分公司对再生后AT-505、FH-5加氢催化剂质量要求如下: 催化剂碳含量:≯0.5m% 硫含量不大于实验室数据+0.3 m% 三项指标(比表面、孔体积、强度)达到在实验室再生结果的95%以上。

二、实验室和工业再生 温州瑞博催化剂有限公司加氢催化剂器外再生是网带炉式集预热脱油、烧硫、烧碳和冷却降温于一体,实现电脑控制、上位管理的临氢催化剂烧焦再生作业线,系半自动、全密封、进行颗粒分离并实施除尘和烟气脱硫的清洁工艺生产的作业线。 针对中国石油股份有限公司乌鲁木齐石化分公司提出的再生后催化剂质量要求,在物性分析检查的基础上,温州瑞博催化剂有限公司首先对AT-505、FH-5加氢催化剂进行了实验室模拟再生,并根据本公司设备特点制定出了工业再生的方案和操作条件。在确保安全和再生剂质量的前提下组织了本次工业再生工作。现将催化剂再生前后,实验室再生和工业再生的综合样品分析结果列于下表: AT-505加氢催化剂物化分析数据

FH-5加氢催化剂物化分析数据 三、催化剂再生前后物料平衡

2018资源循环科学与工程专业就业方向与就业前景分析

2018资源循环科学与工程专业就业方向与就业前景分析 资源循环科学与工程专业面向国家节能减排、循环经济、低碳经济等战略性新兴产业需要,适应未来科技发展,培养系统掌握资源循环科学与工程基础理论知识,具有宽厚的专业知识、实践能力和良好的科学素养,能在资源循环利用、能源开发与利用以及循环经济等领域的高等院校、科研机构、政府机关、工矿企业等部门从事资源循环利用的科学研究、规划管理、技术研发等工作的高级复合型人才。 2、资源循环科学与工程专业就业方向 本专业学生毕业后可从事医药产品的生产、科技开发、应用研究和经营管理等方面工作 从事行业: 毕业后主要在新能源、环保、互联网等行业工作,大致如下: 1新能源 2环保 3互联网/电子商务 4广告 5机械/设备/重工 6非盈利机构 7专业服务(咨询、人力资源、财会) 8中介服务 从事岗位: 毕业后主要从事销售工程师、设备工程师、等工作,大致如下: 1销售工程师

2设备工程师 3研发工程师 4验证工程师 5qa 6工艺工程师 7销售经理 8制剂研究员 工作城市: 毕业后,哈密、南京、深圳等城市就业机会比较多,大致如下: 1哈密 2南京 3深圳 4福州 5上海 6北京 7厦门 8成都 3、资源循环科学与工程专业就业前景 学生就业有多种选择,可以在国家和北京市企事业单位、外资企业、上市公司中就业;通过出国留学、推荐或考取研究生、双学位、工程硕士等多种途径进一步深造。我院已经形成了本科生、硕士研究生、博士研究生培养的完整体系,每年招收硕士研究生约120人,博士研究生约30人,为本科生的学习和深造提供了广阔的空间。学生就业行业分布广泛,本专业毕业的学生可在资源循环、以及与资源综合利用相关的建材、冶金、新材料产业、原材料产业等行业从事工业规划、技术开发、工艺及设备设计、清洁生产评估与咨询等工作。 资源循环科学与工程和它的“同胞兄弟”再生资源科学与技术专业相比,更加重了对实践能力的锻炼。以南开大学为例,该校的资源循环专业主要教授

预加氢催化剂预硫化方案

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力: 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2 催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h

常温→250-10~1515 250~280≮200-至干燥结束 250→<150≯15020~254~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

加氢精制催化剂及工艺技术

加氢精制催化剂及工艺技术 ?加氢精制技术应用概况 ?加氢精制主要反应及模型化合物加氢反应历程 主要反应 模型化合物加氢反应历程 典型工艺流程 ?加氢精制工艺技术 重整原料预加氢催化剂及工艺 二次加工汽油加氢精制催化剂及工艺 煤油加氢精制催化剂及工艺 劣质二次加工柴油加氢精制催化剂及工艺 进口高硫柴油加氢精制催化剂及工艺 焦化全馏分油加氢精制催化剂及工艺 石蜡加氢精制催化剂及技术 ?加氢精制催化剂 加氢精制技术应用概况 抚顺石油化工研究院(FRIPP)是国内最早从事石油产品临氢催化技术开发的科研机构。几十年来,FRIPP在轻质馏分油加氢精制、重质馏分油加氢处理、石油蜡类加氢精制、渣油加氢处理和临氢降凝等领域已开发成功5大类共30个品牌的商业催化剂,先后在国内45个厂家共115套加氢精制/加氢处理工业装置上应用,累计加工能力超过4000万吨/年。 FRIPP加氢精制技术开发的经历:

?1950s 页岩油加氢技术 ?1960s 重整原料预精制技术 ?1970s 汽、煤、柴油加氢精制技术 ?1980s 石油蜡类加氢精制技术 ?1990s 重质馏分油加氢精制技术、渣油加氢处理技术 FRIPP加氢精制系列催化剂: ?轻质馏分油 481、481-3、FH-5、FH-5A、FDS-4、FDS-4A、FH-98 ?重质馏分油 3926、3936、CH-20、3996 ?柴油临氢降凝 FDW-1 ?石油蜡类 481-2、481-2B、FV-1 ?渣油 FZC-10系列、FZC-20系列、FZC-30系列、FZC-40系列、FZC-100系列、 FZC-200系列、FZC-300系列 FRIPP加氢精制催化剂工业应用统计(1999年): 加氢精制主要反应及模型化合物加氢反应历程 加氢精制主要反应 加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其典型反应如下:

加氢精制再生催化剂的合理使用

加氢精制再生催化剂的合理使用 摘要:简要讨论了加氢精制再生催化剂的特点,说明了再生催化剂降级使用的技术方案是完全可行的,并介绍了在再生催化剂装填和硫化过程中,与新鲜催化剂的差别,及应该注意的事项。 关键词:加氢精制再生催化剂合理使用 前言 石油馏分的加氢工艺技术是目前生产清洁燃料应用最广泛、最成熟的主要加工手段之一,在石油化工企业中所占的地位越来越重要。近年来,随着炼油企业加氢精制工业装置加工量的逐渐增加,所使用加氢催化剂的品种越来越多,数量也越来越大,经过烧焦再生后继续使用的再生催化剂的品种和数量也越来越多。目前,全世界约有18 kt/a加氢催化剂需要再生[1],而预计其中的加氢精制催化剂至少在10 kt/a以上。因此,如何合理使用加氢精制再生剂,使之发挥更大的作用,提高炼油企业的经济效益变得越来越重要。 加氢精制催化剂经过1 个周期的运转,由于积炭等原因造成活性下降,必须经过烧焦再生处理后才能使催化剂的活性得到恢复,并继续使用。在正常使用的情况下,加氢精制催化剂可以再生1~2 次,催化剂总寿命在6~9 a之间。加氢精制再生催化剂的开工过程原则上与新鲜催化剂是一致的,但是也有一些不同之处。这主要是因为:再生催化剂的物理性质,如比表面积、孔容积和机械强度等都发生了变化;再生剂的催化活性要比新鲜剂低一些;再生剂上残留的硫、炭和其它杂质,对开工中催化剂的硫化过程会产生一定的影响。如果再生催化剂完全按新鲜催化剂的开工方法进行,将会造成开工成本提高,和因过量的硫化氢对设备腐蚀而造成的安全隐患,以及不能充分发挥催化剂的活性和稳定性,影响工业装置长周期安全稳定运转。本文主要讨论了加氢精制催化剂再生剂的合理使用及开工工艺过程中应当注意的一些问题。 1 加氢精制再生催化剂的特点 再生催化剂与新鲜催化剂相比,孔容积和比表面积都比新催化剂略有降低。这主要是由于积炭和杂质沉积堵塞催化剂孔道,降低了孔容积和比表面积,使催化剂活性金属的利用率降低,造成再生后的催化剂活性有所下降。表1列出了某柴油加氢精制催化剂新鲜剂与再生剂的理化性质。 表1 新鲜催化剂与再生剂的理化性质 Table1 The physicochemical properties of fresh catalyst and regenerated catalyst 催化剂再生剂新鲜剂 孔容积/(mL?g-1) 0.46 0.48 表面积/(m2?g-1) 218 226 耐压强度/(N?cm-1) 172 168 堆积密度/(g?cm-3) 0.90 0.88 硫含量,% 0.58 - 碳含量,% 0.22 - 由表1可以看出,再生催化剂的孔容积和表面积较新鲜催化剂要小;新催化剂上没有硫和碳,

相关主题
文本预览
相关文档 最新文档