当前位置:文档之家› 高中物理易错题精选

高中物理易错题精选

高中物理易错题精选
高中物理易错题精选

高考物理易错题精选讲解1:质点的运动错题集

一、主要内容

本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、角速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。

二、基本方法

本章中所涉及到的基本方法有:利用运动合成与分解的方法研究平抛运动的问题,这是将复杂的问题利用分解的方法将其划分为若干个简单问题的基本方法;利用物理量间的函数关系图像研究物体的运动规律的方法,这也是形象、直观的研究物理问题的一种基本方法。这些具体方法中所包含的思想,在整个物理学研究问题中都是经常用到的。因此,在学习过程中要特别加以体会。

三、错解分析

在本章知识应用的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的大小与速度大小、速度变化量的大小,加速度的方向与速度的方向之间常混淆不清;对位移、速度、加速度这些矢量运算过程中正、负号的使用出现混乱:在未对物体运动(特别是物体做减速运动)过程进行准确分析的情况下,盲目地套公式进行运算等。

例1 汽车以10 m/s 的速度行使5分钟后突然刹车。如刹车过程是做匀变速运动,加速度大小为5m/s 2 ,则刹车后

3秒钟内汽车所走的距离是多少?

【错解】因为汽车刹车过程做匀减速直线运动,初速v 0=10m/s 加速度a=5m/s 2,据S=2021at t v -

,则位移S=952

1310??-?=7.5(m )。 【错解原因】出现以上错误有两个原因。一是对刹车的物理过程不清楚。当速度减为零时,车与地面无相对运动,滑动摩擦力变为零。二是对位移公式的物理意义理解不深刻。位移S 对应时间t ,这段时间内a 必须存在,而当a 不存在时,求出的位移则无意义。由于第一点的不理解以致认为a 永远地存在;由于第二点的不理解以致有思考a 什么时候不存在。

【分析解答】依题意画出运动草图1-1。设经时间t 1速度减为零。据匀减速直线运动速度公式v 1=v 0-at 则有0=10-5t 解得t=2S 由于汽车在2S 时就停下来,所以则有452

121021222023??-?=-==at t v S S =10(m ) 【评析】物理问题不是简单的计算问题,当得出结果后,应思考是否与客观实际相符,如本题若要求刹车后6s 内的位移,据S=2021at t v -

,会求出s=-30m 的结果,这个结果是与实际不相符的。应思考在运用规律中是否出现与实际不符的问题。

本题还可以利用图像求解。汽车刹车过程是匀减速直线运动。据v 0,a 可作出v-t 图1-2。其中t v a tg 0=

=α,其中t 为v=0对应的时刻,即汽车停下来的时间a

v t 0==2(s). 由此可知三角形v 0Ot 所包围的面积即为刹车3s 内的位移。

例2 气球以10m/s 的速度匀速竖直上升,从气球上掉下一个物体,经17s 到达地面。求物体刚脱离气球时气球的

高度。(g=10m/s 2)

【错解】物体从气球上掉下来到达地面这段距离即为物体脱离气球时,气球的高度。以为物体离开气球做自由落体运动。据221gt h =则有217102

1??=h =1445(m ) 所以物体刚脱离气球时,气球的高度为 1445m 。

【错解原因】由于学生对惯性定律理解不深刻,导致对题中的隐含条件即物体离开气球时具有向上的初速度视而不见。误认为v0=0。实际物体随气球匀速上升时,物体具有向上10m/s 的速度当物体离开气球时,由于惯性物体继续向上运动一段距离,在重力作用下做匀变速直线运动。

【分析解答】本题既可以用整体处理的方法也可以分段处理。

方法一:可将物体的运动过程视为匀变速直线运动。根据题意画出运动草图如图1-3所示。规定向下方向为正,则V 0=-10m/sg=10m/s 2据h =v 0t+22

1gt ,则有21710211710??+?-=h ∴物体刚掉下时离地1275m 。

方法二:如图1-3将物体的运动过程分为A→B→C 和C→D 两段来处理。A→B→C 为竖直上抛运动,C→D 为

竖直下抛运动。

在A→B→C 段,据竖直上抛规律可知此阶段运动时间为

由题意知t CD =17-2=15(s )

据竖直下抛规律202

1gt t v h CD +=

=1275(m )

方法三:根据题意作出物体脱离气球到落地这段时间的V-t 图(如图1-4所示)。

其中△v 0ot B 的面积为A→B 的位移

△t B t c v c 的面积大小为B→C 的位移

梯形t C t D v D v C 的面积大小为C→D 的位移即物体离开气球时距地的高度。

则t B =1s 根据竖直上抛的规律tc=2s t B t D =17-1=16(s )

在△t B v D t D 中则可求v D =160(m/s )

梯形D C D C v v t t 的面积)(1275152

16010m S =?+= 【评析】在解决运动学的问题过程中,画运动草图很重要。解题前应根据题意画出运动草图。草图上一定要有规定的正方向,否则矢量方程解决问题就会出现错误。如分析解答方法一中不规定正方向,就会出现

例3 经检测汽车A 的制动性能:以标准速度20m/s 在平直公路上行使时,制动后40s 停下来。现A 在平直公路

上以20m/s 的速度行使发现前方180m 处有一货车B 以6m/s 的速度同向匀速行使,司机立即制动,能否发生撞车事故?

【错解】 设汽车A 制动后40s 的位移为s 1,货车B 在这段时间内的位移为S 2。据t v v a t 0-=

有A 车的加速度为 a=-0.5m/s 2,S 1=202

1at t v - S 2=v 2t=6×40=240(m )

两车位移差为400-240=160(m )

因为两车刚开始相距180m >160m

所以两车不相撞。

【错解原因】这是典型的追击问题。关键是要弄清不相撞的条件。汽车A 与货车B 同速时,两车位移差和初始时刻两车距离关系是判断两车能否相撞的依据。当两车同速时,两车位移差大于初始时刻的距离时,两车相撞;小于、等于时,则不相撞。而错解中的判据条件错误导致错解。

【分析解答】如图1-5汽车A 以v 0=20m/s 的初速做匀减速直线运动经40s 停下来。据加速度公式可求出a=-0.5m/s 2当A 车减为与B 车同速时是A 车逼近B 车距离最多的时刻,这时若能超过B 车则相撞,反之则不能相撞。据

as v v t 2202=-可求出A 车减为与B 车同速时的位移5.023640022

021?-=-=a v v S t

=364(m ) 此时间内B 车的位移为)(16828622m t v S =?==(s a

v v t 2802=-=) △S =364-168=196>180(m )

所以两车相撞。

【评析】分析追击问题应把两物体的位置关系图画好。如图1.5,通过此图理解物理情景。本题也可以借图像帮助理解图1-6中。阴影区是A 车比B 车多通过的最多距离,这段距离若能大于两车初始时刻的距离则两车必相撞。小于、等于则不相撞。从图中也可以看出A 车速度成为零时,不是A 车比B 车多走距离最多的时刻,因此不能作为临界条件分析。

例4 如图1-7所示,一人站在岸上,利用绳和定滑轮,拉船靠岸,在某一时刻绳的速度为v ,绳AO 段与水平面

夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?

【错解】将绳的速度按图1-8所示的方法分解,则v 1即为船的水平速度v 1=v·cosθ。

【错解原因】上述错误的原因是没有弄清船的运动情况。实际上船是在做平动,每一时刻船上各点都有相同的水平速度。而AO 绳上各点运动比较复杂,既有平动又有转动。以连接船上的A 点来说,它有沿绳的平动分速度v ,也有与v 垂直的法向速度v n ,即转动分速度,A 点的合速度v A 即为两个分速度的合。v A =v/cosθ

【分析解答】方法一:小船的运动为平动,而绳AO 上各点的运动是平动+转动。以连接船上的A 点为研究对象,如图1-9,A 的平动速度为v ,转动速度为v n ,合速度v A 即与船的平动速度相同。则由图可以看出v A =v/cosθ。

【评析】方法二:我们可以把绳子和滑轮看作理想机械。人对绳子做的功等于绳子对船做的功。我们所研究的绳

子都是轻质绳,绳上的张力相等。对于绳上的C 点来说即时功率P 人绳=F·v 。对于船上A 点来说P 绳船=Fv A ·cos 绳船人船P P =θ,则有θcos F F ??=?v v 。解得:θ

cos v v A =。本题采用分析解答的方法一,也许学生不易理解绳上各点的运动。从能量角度来讲也可以得到同样的结论。

还应指出的是要有实际力、实际加速度、实际速度才可分解。

例5 一条宽为L 的河流,河水流速为v 1,船在静水中的 速度为v 2,要使船划到对岸时航程最短,船头应指向什么方向?最短航程是多少?

【错解】要使航程最短船头应指向与岸垂直的方向。最短航程为L 。

【错解原因】上而错解的原因是对运动的合成不理解。船在水中航行并不是船头指向什么方向就向什么方向运动。它的运动方向是船在静水中的速度方向与水流方向共同决定的。要使航程最短应是合速度垂直于岸。

【分析解答】题中没有给出v 1与v 2的大小关系,所以应考虑以下可能情况。

①当2v >1v 时,船头斜向上游,与岸夹角θ如图1-10

21cos v v =θ,2

1arccos v v =θ 此种情况下航程最短为L 。

②当v 2<v 1时,如图1-11船头斜向上游,与岸夹角为θ时,用三角形法则分析当它的方向与圆相切时,航程最短,设为S ,由几何关系可知此时v 2⊥v (合速度)(θ≠0)

12cos v v =θ,12arccos v v =θ,有相似三角形关系=S L v v ?1

2 ③当v 2=v 1时,如图1-12,θ越小航程越短。(θ≠ 0)

【评析】航程最短与时间最短是两个不同概念。航程最短是指合位移最小。时间最短是指用最大垂直河岸的速度

过河的时间。解决这类问题的依据就是合运动与分运动的等时性及两个方向运动的独立性。

例6 有一个物体在h 高处,以水平初速度v 0抛出,落地时的速度为v 1,竖直分速度为v y ,下列公式能用来计算该物体在空中运动时间的是( )

【错解】因为平抛运动时a=g 的匀变速运动,据gt v v t +=0,则有g

v v t t 0-=,故B 正确。 【错解原因】形成以上错误有两个原因。第一是模型与规律配套。V t =v 0+gt 是匀加速直线运动的速度公式,而平抛运动是曲线运动,不能用此公式。第二不理解运动的合成与分解。平抛运动可分解为水平的匀速直线运动和竖直的自由落体运动。每个分运动都对应自身运动规律。

【分析解答】本题的正确选项为A ,C ,D 。

平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体,分运动与合运动时间具有等时性。

水平方向:x=v 0t ①

竖直方向:22

1gt h = ②

据式①~⑤知A ,C ,D 正确。

【评析】选择运动公式首先要判断物体的运动性质。运动性质确定了,模型确定了,运动规律就确定了。判断运动性要根据合外力和初速度的关系。当合外力与初速度共线时,物体做直线运动,当合外力与v 不共线时,物体做曲线运动。当合外力与v 0垂直且恒定时,物体做平抛运动。当物体总与v 垂直时,物体做圆运动。

例7 一个物体从塔顶落下,在到达地面前最后一秒内通过的位移为整个位移的9/25,求塔高(g=10m/s 2)。

【错解】因为物体从塔顶落下,做自由落体运动。

最后1秒内的位移根据221gt H =

则有1102

12125921??==t g H 解得H=13.9m

【错解原因】物体从塔顶落下时,对整个过程而言是初速为零的匀加速直线运动。而对部分最后一秒内物体的运动则不能视为初速为零的匀加速直线运动。因为最后一秒内的初始时刻物体具有一定的初速,由于对整体和部分的关系不清,导致物理规律用错,形成错解。

【分析解得】根据题意画出运动草图,如图1-13所示。物体从塔顶落到地面所经历时间为t ,通过的位移为H 物体在t —1秒内的位移为h 。因为V 0=0 则有22

1gt H = ① 2)1(2

1-=t g H ② 25

9=-H h H ③

由①②③解得H=125m

【评析】解决匀变速直线运动问题时,对整体与局部,局部与局部过程相互关系的分析,是解题的重要环节。如本题初位置记为A 位置,t —1秒时记为B 位置,落地点为C 位置(如图1-13所示)。不难看出既可以把BC 段看成整体过程AC 与局部过程AB 的差值,也可以把BC 段看做是物体以初速度V B 和加速度g 向下做为时1s 的匀加速运动,而v B 可看成是局部过程AB 的末速度。这样分析就会发现其中一些隐含条件。使得求解方便。

另外值得一提的是匀变速直线运动的问题有很多题通过v -t 图求解既直观又方便简洁。如本题依题意可以做出v -t 图(如图1-14),由题意可知25

16=??OAD DBC S S ,所以54=OD OA ,即落地时间为5s 。

例8 正在与Rm 高空水平匀速飞行的飞机,每隔1s 释放一个小球,先后共释放5个,不计空气阻力,则( )

A.这5个小球在空中排成一条直线

B.这5个小球在空中处在同一抛物线上

C.在空中,第1,2两个球间的距离保持不变

D.相邻两球的落地间距相等

【错解】因为5个球先后释放,所以5个球在空中处在同一抛物线上,又因为小球都做自由落体运动,所以C 选项正确。

【错解原因】形成错解的原因是只注意到球做平抛运动,但没有理解小球做平抛的时间不同,所以它们在不同的抛物线上,小球在竖直方向做自由落体运动,但是先后不同。所以C选项不对。

【分析解答】释放的每个小球都做平抛运动。水平方向的速度与飞机的飞行速度相等,在水平方向做匀速直线运动,在竖直方向上做自由落体运动,只是开始的时刻不同。飞机和小球的位置如图1-15可以看出A,D选项正确。

【评析】解这类题时,决不应是想当然,而应依据物理规律画出运动草图,这样会有很大的帮助。如本题水平方向每隔1s过位移一样,投小球水平间距相同,抓住特点画出各个球的轨迹图,这样答案就呈现出来了。

例9物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图1-16所示,再把物块放到P点自由滑下则()

A.物块将仍落在Q点

B.物块将会落在Q点的左边

C.物块将会落在Q点的右边

D.物块有可能落不到地面上

【错解】因为皮带轮转动起来以后,物块在皮带轮上的时间长,相对皮带位移弯大,摩擦力做功将比皮带轮不转动时多,物块在皮带右端的速度将小于皮带轮不动时,所以落在Q点左边,应选B选项。

【错解原因】学生的错误主要是对物体的运动过程中的受力分析不准确。实质上当皮带轮逆时针转动时,无论物块以多大的速度滑下来,传送带给物块施的摩擦力都是相同的,且与传送带静止时一样,由运动学公式知位移相同。从传送带上做平抛运动的初速相同。水平位移相同,落点相同。

【分析解答】物块从斜面滑下来,当传送带静止时,在水平方向受到与运动方向相反的摩擦力,物块将做匀减速运动。离开传送带时做平抛运动。当传送带逆时针转动时物体相对传送带都是向前运动,受到滑动摩擦力方向与运动方向相反。物体做匀减速运动,离开传送带时,也做平抛运动,且与传送带不动时的抛出速度相同,故落在Q点,所以A选项正确。

【评析】若此题中传送带顺时针转动,物块相对传送带的运动情况就应讨论了。

(1)当v0=v B物块滑到底的速度等于传送带速度,没有摩擦力作用,物块做匀速运动,离开传送带做平抛的初速度比传送带不动时的大,水平位移也大,所以落在Q点的右边。

(2)当v 0>v B物块滑到底速度小于传送带的速度,有两种情况,一是物块始终做匀加速运动,二是物块先做加速运动,当物块速度等于传送带的速度时,物体做匀速运动。这两种情况落点都在Q点右边。

(3)v

0<v

B

当物块滑上传送带的速度大于传送带的速度,有两种情况,一是物块一直减速,二是先

减速后匀速。第一种落在Q点,第二种落在Q点的右边。

高考物理易错题精选讲解2:圆周运动错题集

一、主要内容

本章内容包括圆周运动的动力学部分和物体做圆周运动的能量问题,其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的具体应用。

二、基本方法

本章中所涉及到的基本方法与第二章牛顿定律的方法基本相同,只是在具体应用知识的过程中要注意结合圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体

的受力情况同样也是本章的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。根据牛顿第二定律合外力与加速度的瞬时关系可知,当物体在圆周上运动的某一瞬间的合外力指向圆心,我们仍可以用牛顿第二定律对这一时刻列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。

三、错解分析

在本章知识应用的过程中,初学者常犯的错误主要表现在:对物体做圆周运动时的受力情况不能做出正确的分析,特别是物体在水平面内做圆周运动,静摩擦力参与提供向心力的情况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不能综合地灵活应用,如对于被绳(或杆、轨道)束缚的物体在竖直面的圆周运动问题,由于涉及到多方面知识的综合,表现出解答问题时顾此失彼。

例1 假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则( )

A .根据公式v=ωr ,可知卫星运动的线速度增大到原来的2倍。

B. 根据公式r

v m F 2

=,可知卫星所需的向心力将减小到原来的21。 C. 根据公式2r

Mm G F =,可知地球提供的向心力将减小到原来的41。 D .根据上述选项B 和C 给出的公式,可知卫星运动的线速度将减小到原来的

22。 【错解】选择A ,B ,C

因为A ,B ,C 中的三个公式都是正确的,将2r 代入公式v v 2'=,F F 2

1'=, 1'4

F F = 所以选择A ,B ,C 正确。

【错解分析】A ,B ,C 中的三个公式确实是正确的,但使用过程中A ,B 用错了。A 中的r v ω=,在ω一定时,

v r ∝,B 中的r

v m F 2

=是在v 一定是1F r ∝,而此问题中r 的变化将引起ω,v 的变化。因此就不存在3v r ∝或1F r ∝的结论。所以A ,B 是错误的。

【分析解答】正确选项为C ,D 。

A 选项中线速度与半径成正比是在角速度一定的情况下。而r 变化时,角速度也变。所以此选项不正确。同理

B 选项也是如此,F ∝是在v 一定时,但此时v 变化,故B 选项错。而

C 选项中G ,M ,m 都是恒量,所以F ∝21r

,即'2r r =

时,1'

4F F =,C 正确。B ,C 结合得22v Mm m G r r =,可以得出2GM v r =,V 'v =,D 正确。 【评析】物理公式反映物理规律,不理解死记硬背经常会出错。使用中应理解记忆。知道使用条件,且知道来拢去脉。

卫星绕地球运动近似看成圆周运动,万有引力提供向心力,由此将

根据以上式子得出

例2一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1,B球的质量为m2。它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足关系式是。

【错解】依题意可知在A球通过最低点时,圆管给A球向上的弹力N1为向心力,则有

B球在最高点时,圆管对它的作用力N2为m2的向心力,方向向下,则有

因为m2由最高点到最低点机械能守恒,则有

由式①②③解得

v=

【错解原因】错解形成的主要原因是向心力的分析中缺乏规范的解题过程。没有做受力分析,导致漏掉重力,表面上看分析出了N1=N2,但实际并没有真正明白为什么圆管给m2向下的力。总之从根本上看还是解决力学问题的基本功受力分析不过关。

【分析解答】首先画出小球运动达到最高点和最低点的受力图,如图4-1所示。A球在圆管最低点必受向上弹力N1,此时两球对圆管的合力为零,m2必受圆管向下的弹力N2,且N1=N2。

据牛顿第二定律A球在圆管的最低点有

同理m2在最高点有

m2球由最高点到最低点机械能守恒

由式①~

④解得

v=

【评析】比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。找出其中的联系就能很好地解决问题。

例3从地球上发射的两颗人造地球卫星A和B,绕地球做匀速圆周运动的半径之比为R A∶R B=4∶1,求它们的线速度之比和运动周期之比。

【错解】卫星绕地球作匀速圆周运动所需的向心力

2

v F mg m

R ==

设A,B两颗卫星的质量分别为m A,m B。

【错解原因】这里错在没有考虑重力加速度与高度有关。根据万有引力定律知道:

可见,在“错解”中把A,B两卫星的重力加速度g A,g B当作相同的g来处理是不对的。

【分析解答】卫星绕地球做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有

【评析】我们在研究地球上的物体的运动时,地面附近物体的重力加速度近似看做是恒量。但研究天体运动时,应注意不能将其认为是常量,随高度变化,g值是改变的。

例4使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?

【错解】如图4-2所示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点B 时的动

能(以B 点作为零势能位置),所以为

从而得

【错解原因】小球到达最高点A 时的速度v A 不能为零,否则小球早在到达A 点之前就离开了圆形轨道。要使小

球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足

式中,N A 为圆形轨道对小球的弹力。上式表示小球在A 点作圆周运动所需要的向心力由轨道对它的弹力和它本

身的重力共同提供。当N A =0时,A v 最小,A v gR =

。这就是说,要使小球达到A 点,则应该使小球在A 点具有的速度A v gR ≥。

【分析解答】以小球为研究对象。小球在轨道最高点时,受重力和轨道给的弹力。

小球在圆形轨道最高点A 时满足方程

根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程

解(1),(2)方程组得

当N A =0时,vB 为最小,5B v gR =。

所以在B 点应使小球至少具有5B v gR =的速度,才能使它到达圆形轨道的最高点A 。

例5 用长L=1.6m 的细绳,一端系着质量M=1kg 的木块,另一端挂在固定点上。现有一颗质量m=20g 的子弹以v 1=500m /s 的水平速度向木块中心射击,结果子弹穿出木块后以v 2=100m /s 的速度前进。问木块能运动到多高?(取g=10m /s 2,空气阻力不计)

【错解】在水平方向动量守恒,有

mv 1=Mv+mv 2 (1)

式①中v 为木块被子弹击中后的速度。木块被子弹击中后便以速度v 开始摆动。由于绳子对木块的拉力跟木块的位移垂直,对木块不做功,所以木块的机械能守恒,即

h 为木块所摆动的高度。解①,②联立方程组得到

v=8(m/s)

h=3.2(m)

【错解原因】这个解法是错误的。h=3.2m ,就是木块摆动到了B 点。如图4-3所示。则它在B 点时的速度v B 。应满足方程

这时木块的重力提供了木块在B 点做圆周运动所需要的向心力。解上述方程得

4B v =(m/s )

如果v B <4 m/s ,则木块不能升到B 点,在到达B 点之前的某一位置以某一速度开始做斜向上抛运动。而木块在B 点时的速度v B =4m/s ,是不符合机械能守恒定律的,木块在 B 点时的能量为(选A 点为零势能点)

木块在A 点时的能量为

2211110 3.21422

B mgh Mv +=??+?? 22111832()22

Mv J =??= 两者不相等。可见木块升不到B 点,一定是h <3.2 m 。

实际上,在木块向上运动的过程中,速度逐渐减小。当木块运动到某一临界位置C 时,如图4-4所示,木块所受的重力在绳子方向的分力恰好等于木块做圆周运动所需要的向心力。此时绳子的拉力为零,绳子便开始松弛了。木块就从这个位置开始,以此刻所具有的速度v c 作斜上抛运动。木块所能到达的高度就是C 点的高度和从C 点开始的斜上抛运动的最大高度之和。

【分析解答】如上分析,从式①求得v A =v=8m/s 。木块在临界位置C 时的速度为v c ,高度为

h′=l(1+cosθ)

如图所示,根据机船能守恒定律有

即222(1cos )C v v gl θ=-+ ③ 又2cos C v Mg M l

θ=,即2cos C v gl θ= ④ 从式③和式④得

22cos 33

v gl gl θ-== 2arccos 3

θ= 所以5'(1cos )3

h l l θ=+=

木块从C 点开始以速度v c 做斜上抛运动所能达到的最大高度h″为

222sin cos (1cos )''22C v gl h g g

θθθ-== 所以木块能达到的最大高度h 为

5550''' 2.96()32727

h h h h l l m =+=+== 【评析】物体能否做圆运动,不是我们想象它怎样就怎样这里有一个需要的向心力和提供向心力能否吻合的问题,当需要能从实际提供中找到时,就可以做圆运动。所谓需要就是符合牛顿第二定律F 向=ma 向的力,而提供则是实际中的力若两者不相等,则物体将做向心运动或者离心运动。 高中物理易错题精选讲解

3:牛顿定律错题集

一、主要内容

本章内容包括力的概念及其计算方法,重力、弹力、摩擦力的概念及其计算,牛顿运动定律,物体的平衡,失重和超重等概念和规律。其中重点内容重力、弹力和摩擦力在牛顿第二定律中的应用,这其中要求学生要能够建立起正确的“运动和力的关系”。因此,深刻理解牛顿第一定律,则是本章中运用牛顿第二定律解决具体的物理问题的基础。

二、基本方法

本章中所涉及到的基本方法有:力的分解与合成的平行四边形法则,这是所有矢量进行加、减法运算过程的通用法则;运用牛顿第二定律解决具体实际问题时,常需要将某一个物体从众多其他物体中隔离出来进行受力分析的“隔离法”,隔离法是分析物体受力情况的基础,而对物体的受力情况进行分析又是应用牛顿第二定律的基础。因此,这种从复杂的对象中隔离出某一孤立的物体进行研究的方法,在本章中便显得十分重要。

三、错解分析

在本章知识应用的过程中,初学者常犯的错误主要表现在:对物体受力情况不能进行正确的分析,其原因通常出现在对弹力和摩擦力的分析与计算方面,特别是对摩擦力(尤其是对静摩擦力)的分析;对运动和力的关系不能准确地把握,如在运用牛顿第二定律和运动学公式解决问题时,常表现出用矢量公式计算时出现正、负号的错误,其本质原因就是对运动和力的关系没能正确掌握,误以为物体受到什么方向的合外力,则物体就向那个方向运动。

例1甲、乙两人手拉手玩拔河游戏,结果甲胜乙败,那么甲乙两人谁受拉力大?

【错解】因为甲胜乙,所以甲对乙的拉力比乙对甲的拉力大。就像拔河一样,甲方胜一定是甲方对乙方的拉力大。

【错解原因】产生上述错解原因是学生凭主观想像,而不是按物理规律分析问题。按照物理规律我们知道物体的运动状态不是由哪一个力决定的而是由合外力决定的。甲胜乙是因为甲受合外力对甲作用的结果。甲、乙两人之间的拉力根据牛顿第三定律是相互作用力,甲、乙二人拉力一样大。

【分析解答】甲、乙两人相互之间的拉力是相互作用力,根据牛顿第三定律,大小相等,方向相反,作用在甲、乙两人身上。

【评析】生活中有一些感觉不总是正确的,不能把生活中的经验,感觉当成规律来用,要运用物理规律来解决问题。

例2如图2-1所示,一木块放在水平桌面上,在水平方向上共受三个力,F1,F2和摩擦力,处于静止状态。其中F1=10N,F2=2N。若撤去力F1则木块在水平方向受到的合外力为

A.10N向左

B.6N向右

C.2N向左

D.0

【错解】木块在三个力作用下保持静止。当撤去F1后,另外两个力的合力与撤去力大小相等,方向相反。故A

正确。

【错解原因】造成上述错解的原因是不加分析生搬硬套运用“物体在几个力作用下处于平衡状态,如果某时刻去掉一个力,则其他几个力的合力大小等于去掉这个力的大小,方向与这个力的方向相反”的结论的结果。实际上这个规律成立要有一个前提条件,就是去掉其中一个力,而其他力不变。本题中去掉F1后,由于摩擦力发生变化,所以结论不成立。

【分析解答】由于木块原来处于静止状态,所以所受摩擦力为静摩擦力。依据牛二定律有F1-F2-f=0此时静摩擦力为8N方向向左。撤去F1后,木块水平方向受到向左2N的力,有向左的运动趋势,由于F2小于最大静摩擦力,所以所受摩擦力仍为静摩擦力。此时—F2+f′=0即合力为零。故D选项正确。

【评析】摩擦力问题主要应用在分析物体运动趋势和相对运动的情况,所谓运动趋势,一般被解释为物体要动还未动这样的状态。没动是因为有静摩擦力存在,阻碍相对运动产生,使物体间的相对运动表现为一种趋势。由此可以确定运动趋势的方向的方法是假设静摩擦力不存在,判断物体沿哪个方向产生相对运动,该相对运动方向就是运动趋势的方向。如果去掉静摩擦力无相对运动,也就无相对运动趋势,静摩擦力就不存在。

例3 如图2-2所示水平放置的粗糙的长木板上放置一个物体m,当用于缓慢抬起一端时,木板受到的压力和摩擦力将怎样变化?

【错解】以木板上的物体为研究对象。物体受重力、摩擦力、支持力。因为物体静止,则根据牛顿第二定律有

错解一:据式②知道θ增加,f增加。

错解二:另有错解认为据式②知θ增加,N减小则f=μN说明f减少。

【错解原因】错解一和错解二都没能把木板缓慢抬起的全过程认识透。只抓住一个侧面,缺乏对物理情景的分析。若能从木块相对木板静止入手,分析出再抬高会相对滑动,就会避免错解一的错误。若想到f=μN是滑动摩擦力的判据,就应考虑滑动之前怎样,也就会避免错解二。

【分析解答】以物体为研究对象,如图2-3物体受重力、摩擦力、支持力。物体在缓慢抬起过程中先静止后滑动。静止时可以依据错解一中的解法,可知θ增加,静摩擦力增加。当物体在斜面上滑动时,可以同错解二中的方法,据f=μN,分析N的变化,知f滑的变化。θ增加,滑动摩擦力减小。在整个缓慢抬起过程中y方向的方程关系不变。依据错解中式②知压力一直减小。所以抬起木板的过程中,摩擦力的变化是先增加后减小。压力一直减小。

【评析】物理问题中有一些变化过程,不是单调变化的。在平衡问题中可算是一类问题,这类问题应抓住研究变量与不变量的关系。可从受力分析入手,列平衡方程找关系,也可以利用图解,用矢量三角形法则解决问题。如此题物体在未滑动时,处于平衡状态,加速度为零。所受三个力围成一闭合三角形。如图2-4。类似问题如图2-5用绳将球挂在光滑的墙面上,绳子变短时,绳的拉力和球对墙的压力将如何变化。从对应的矢量三角形图2-6不难看出,当绳子变短时,θ角增大,N增大,T变大。图2-7在AC绳上悬挂一重物G,在AC绳的中部O点系一绳BO,以水平力F牵动绳BO,保持AO方向不变,使BO绳沿虚线所示方向缓缓向上移动。在这过程中,力F和AO绳上的拉力变化情况怎样?用矢量三角形(如图2-8)可以看出T变小,F先变小后变大。这类题的特点是三个共点力平衡,通常其中一个力大小、方向均不变,另一个力方向不变,大小变,第三个力大小、方向均改变。还有时是一个力大小、方向不变,另一个力大小不变,方向变,第三个力大小、方向都改变。

例4如图2-9物体静止在斜面上,现用水平外力F推物体,在外力F由零逐渐增加的过程中,物体始终保持静止,物体所受摩擦力怎样变化?

【错解】错解一:以斜面上的物体为研究对象,物体受力如图2-10,物体受重力mg,推力F,支持力N,静摩擦力f,由于推力F水平向右,所以物体有向上运动的趋势,摩擦力f的方向沿斜面向下。根据牛顿第二定律列方程f+mgsinθ=Fcosθ①

N-Fsinθ-mgcosθ=0 ②

由式①可知,F增加f也增加。所以在变化过程中摩擦力是增加的。

错解二:有一些同学认为摩擦力的方向沿斜面向上,则有F增加摩擦力减少。

【错解原因】上述错解的原因是对静摩擦力认识不清,因此不能分析出在外力变化过程中摩擦力的变化。

【分析解答】本题的关键在确定摩擦力方向。由于外力的变化物体在斜面上的运动趋势有所变化,如图2-10,当外力较小时(Fcosθ<mgsinθ)物体有向下的运动趋势,摩擦力的方向沿斜面向上。F增加,f减少。与错解二的情况相同。如图2-11,当外力较大时(Fcosθ>mgsinθ)物体有向上的运动趋势,摩擦力的方向沿斜面向下,外力增加,摩擦力增加。当Fcosθ=mgsinθ时,摩擦力为零。所以在外力由零逐渐增加的过程中,摩擦力的变化是先减小后增加。

【评析】若斜面上物体沿斜面下滑,质量为m ,物体与斜面间的摩擦因数为μ,我们可以考虑两个问题巩固前面

的分析方法。

(1) F 为怎样的值时,物体会保持静止。

(2)F 为怎样的值时,物体从静止开始沿斜面以加速度a 运动。

受前面问题的启发,我们可以想到F 的值应是一个范围。

首先以物体为研究对象,当F 较小时,如图2-10物体受重力mg 、支持力N 、斜向上的摩擦力f 和F 。物体刚好静止时,应是F 的边界值,此时的摩擦力为最大静摩擦力,可近似看成f 静=μN (最大静摩擦力)如图建立坐标,据牛顿第二定律列方程

解得mg F ?+-=θμθθμθsin cos cos sin 当F 从此值开始增加时,静摩擦力方向开始仍然斜向上,但大小减小,当F 增加到Fcos θ=mgsinθ时,即F=mg·tgθ时,F 再增加,摩擦力方向改为斜向下,仍可以根据受力分析图2-11列出方程

随着F 增加,静摩擦力增加,F 最大值对应斜向下的最大静摩擦力。

依据式④式①解得:mg F ?-+=

θ

μθθμθsin cos cos sin 要使物体静止F 的值应为

关于第二个问题提醒读者注意题中并未提出以加速度a 向上还是向下运动,应考虑两解,此处不详解此,给出答

案供参考。 当θ

μθθμθsin cos )cos (sin +--=

ma mg F 时,物体以a 斜向下运动。 当θμθθμθsin cos )cos (sin -++=ma mg F 时,物体以a 斜向上运动。 例5 如图2-12,m 和M 保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M 和m 间的摩擦力大小是多少?

【错解】以m 为研究对象,如图2-13物体受重力mg 、支持力N 、摩擦力f ,如图建立坐标有

再以m +N 为研究对象分析受力,如图2-14,(m +M )g·sinθ=(M +m )a ③

据式①,②,③解得f=0

所以m 与M 间无摩擦力。

【错解原因】造成错解主要是没有好的解题习惯,只是盲目的模仿,似乎解题步骤不少,但思维没有跟上。要分析摩擦力就要找接触面,摩擦力方向一定与接触面相切,这一步是堵住错误的起点。犯以上错误的客观原因是思维定势,一见斜面摩擦力就沿斜面方向。归结还是对物理过程分析不清。

【分析解答】因为m 和M 保持相对静止,所以可以将(m +M )整体视为研究对象。受力,如图2-14,受重力(M 十m )g 、支持力N′如图建立坐标,根据牛顿第二定律列方程

x :(M+n)gsin θ=(M+m)a ①

解得a=gsin θ

沿斜面向下。因为要求m 和M 间的相互作用力,再以m 为研究对象,受力如图2-15。

根据牛顿第二定律列方程

因为m ,M 的加速度是沿斜面方向。需将其分解为水平方向和竖直方向如图2-16。

由式②,③,④,⑤解得f=mgsinθ·cosθ

方向沿水平方向m 受向左的摩擦力,M 受向右的摩擦力。

【评析】 此题可以视为连接件问题。连接件问题对在解题过程中选取研究对象很重要。有时以整体为研究对象,

有时以单个物体为研究对象。整体作为研究对象可以将不知道的相互作用力去掉,单个物体作研究对象主要解决相互作用力。单个物体的选取应以它接触的物体最少为最好。如m 只和M 接触,而M 和m 还和斜面接触。

另外需指出的是,在应用牛顿第二定律解题时,有时需要分解力,有时需要分解加速度,具体情况分析,不要形成只分解力的认识。

例6 如图2-17物体A 叠放在物体B 上,B 置于光滑水平面上。A ,B 质量分别为m A =6kg ,m B =2kg ,A ,B 之间的动摩擦因数μ=0.2,开始时F=10N ,此后逐渐增加,在增大到45N 的过程中,则

A .当拉力F <12N 时,两物体均保持静止状态

B .两物体开始没有相对运动,当拉力超过12N 时,开始相对滑动

C .两物体间从受力开始就有相对运动

D .两物体间始终没有相对运动

【错解】 因为静摩擦力的最大值近似等于滑动摩擦力。f max =μN=0.2×6=12(N )。所以当F >12N 时,A 物体就相对B 物体运动。F <12N 时,A 相对B 不运动。所以A ,B 选项正确。

【错解分析】 产生上述错误的原因一致是对A 选项的理解不正确,A 中说两物体均保持静止状态,是以地为参考物,显然当有力F 作用在A 物体上,A ,B 两物体对地来说是运动的。二是受物体在地面上运动情况的影响,而实际中物体在不固定物体上运动的情况是不同的。

【分析解答】 首先以A ,B 整体为研究对象。受力如图2-18,在水平方向只受拉力F ,根据牛顿第二定律列方程

F=(m

A +m

B )a ①

再以B 为研究对象,如图2-19,B 水平方向受摩擦力

f=m B a ②

当f 为最大静摩擦力时,式①②得62

12==a (m/s 2) 代入式①F=(6+2)×6=48N

由此可以看出当F <48N 时A ,B 间的摩擦力都达不到最大静摩擦力,也就是说,A ,B 间不会发生相对运动。所以D 选项正确。

【评析】 物理解题中必须非常严密,一点的疏忽都会导致错误。避免错误发生的最好方法就是按规范解题。每一步都要有依据。

例7 如图2-20,用绳AC 和 BC 吊起一重物,绳与竖直方向夹角分别为30°和60°,AC 绳能承受的最大的拉力

为150N ,而BC 绳能承受的最大的拉力为100N ,求物体最大重力不能超过多少?

【错解】以重物为研究对象,重物受力如图2-21。由于重物静止,则有

T AC sin30°=T BC sin60°

T AC cos30°+T BC cos60°=G

将T AC =150N ,T BC =100N 代入式解得G=200N 。

【错解原因】以上错解的原因是学生错误地认为当T AC =150N 时,T BC =100N ,而没有认真分析力之间的关系。实际当T BC =100N 时,T BC 已经超过150N 。

【分析解答】以重物为研究对象。重物受力如图2-21,重物静止,加速度为零。据牛顿第二定律列方程

T AC sin30°-T BC sin60°=0 ①

T AC cos30°+T BC cos60°-G=0 ②

由式①可知BC AC T T 3=,当N T BC 100=时,N T AC 173=,AC 将断。

而当T AC =150N 时,T BC =86.6<100N

将T AC =150N ,T BC =86.6N 代入式②解得G=173.32N 。

所以重物的最大重力不能超过173.2N 。

例8 如图2-22质量为M ,倾角为α的楔形物A 放在水平地面上。质量为m 的B 物体从楔形物的光滑斜面上由

静止释放,在B 物体加速下滑过程中,A 物体保持静止。地面受到的压力多大?

【错解】以A ,B 整体为研究对象。受力如图2-23,因为A 物体静止,所以N=G=(M +m )g 。

【错解原因】由于A ,B 的加速度不同,所以不能将二者视为同一物体。忽视了这一点就会造成错解。

【分析解答】分别以A ,B 物体为研究对象。A ,B 物体受力分别如图2-24a ,2-24b 。根据牛顿第二定律列运动方程,A 物体静止,加速度为零。

x :N l sinα-f=0 ①

y :N-Mg-N l cosα=0 ②

B 物体下滑的加速度为a ,

x :mgsinα=ma ③

y :N l -mgcosα=0 ④

由式①,②,③,④解得N=Mg +mgcosα

根据牛顿第三定律地面受到的压力为Mg 十mgcosα。

【评析】 在解决物体运动问题时,在选取研究对象时,若要将几个物体视为一个整体做为研究对象,应该注意这

几个物体必须有相同的加速度。

例9 如图2-25天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。两小球均保持静止。当突然剪断细绳时,上面小球A 与下面小球B 的加速度为 [ ]

A .a 1=g a 2=g

B .a 1=g a 2=g

C .a 1=2g a 2=0

D .a 1=0 a 2=g

【错解】 剪断细绳时,以(A+B)为研究对象,系统只受重力,所以加速度为g ,所以A ,B 球的加速度为g 。故选A 。

【错解原因】 出现上述错解的原因是研究对象的选择不正确。由于剪断绳时,A ,B 球具有不同的加速度,不能做为整体研究。

【分析解答】 分别以A ,B 为研究对象,做剪断前和剪断时的受力分析。剪断前A ,B 静止。如图2-26,A 球受三个力,拉力T 、重力mg 和弹力F 。B 球受三个力,重力mg 和弹簧拉力F′

A 球:T-mg-F=0 ①

B 球:F′-mg=0 ②

由式①,②解得T=2mg ,F=mg

剪断时,A 球受两个力,因为绳无弹性剪断瞬间拉力不存在,而弹簧有形米,瞬间形状不可改变,弹力还存在。

如图2-27,A 球受重力mg 、弹簧给的弹力F 。同理B 球受重力mg 和弹力F′。

A 球:-mg-F=ma A ③

B 球:F′-mg=ma B ④

由式③解得a A =-2g (方向向下)

由式④解得a B =0

故C 选项正确。

【评析】 (1)牛顿第二定律反映的是力与加速度的瞬时对应关系。合外力不变,加速度不变。合外力瞬间改变,加速度瞬间改变。本题中A 球剪断瞬间合外力变化,加速度就由0变为2g ,而B 球剪断瞬间合外力没变,加速度不变。

(2)弹簧和绳是两个物理模型,特点不同。弹簧不计质量,弹性限度内k 是常数。绳子不计质量但无弹性,瞬间就可以没有。而弹簧因为有形变,不可瞬间发生变化,即形变不会瞬间改变,要有一段时间。

例10 如图2-28,有一水平传送带以2m /s 的速度匀速运动,现将一物体轻轻放在传送带上,若物体与传送带间的动摩擦因数为0.5,则传送带将该物体传送10m 的距离所需时间为多少?

【错解】由于物体轻放在传送带上,所以v 0=0,物体在竖直方向合外力为零,在水平方向受到滑动摩擦力(传送带施加),做v 0=0的匀加速运动,位移为10m 。

据牛顿第二定律F=ma 有f=μmg=ma ,a=μg=5m/s 2 据初速为零的匀加速直线运动位移公式221at S =可知,s a

S t 22== 【错解原因】上述解法的错误出在对这一物理过程的认识。传送带上轻放的物体的运动有可能分为两个过程。一是在滑动摩擦力作用下作匀加速直线运动;二是达到与传送带相同速度后,无相对运动,也无摩擦力,物体开始作匀速直线运动。关键问题应分析出什么时候达到传送带的速度,才好对问题进行解答。

【分析解答】以传送带上轻放物体为研究对象,如图2-29在竖直方向受重力和支持力,在水平方向受滑动摩擦

力,做v 0=0的匀加速运动。

据牛二定律F=ma

有水平方向:f=ma ①

竖直方向:N-mg=0 ②

f=μN ③

由式①,②,③解得a=5m /s 2

设经时间t l ,物体速度达到传送带的速度,据匀加速直线运动的速度公式

v 0=v 0+at ④

解得t 1=0.4s

时间t 1内物体的位移4.04.052

121221=??==at S <10(m ) 物体位移为0.4m 时,物体的速度与传送带的速度相同,物体0.4s 后无摩擦力,开始做匀速运动

S 2=v 2t 2 ⑤

因为S 2=S-S 1=10—0.4=9.6(m ),v 2=2m /s

代入式⑤得t 2=4.8s

则传送10m 所需时间为t=0.4+4.8=5.2s 。

【评析】本题是较为复杂的一个问题,涉及了两个物理过程。这类问题应抓住物理情景,带出解决方法,对于不能直接确定的问题可以采用试算的方法,如本题中错解求出一直做匀加速直线运动经过10m 用2s ,可以拿来计算一下,2s 末的速度是多少,计算结果v=5×2=10(m/s ),已超过了传送带的速度,这是不可能的。当物体速度增加到2m/s 时,摩擦力瞬间就不存在了。这样就可以确定第2个物理过程。

例11 如图2-30,一个弹簧台秤的秤盘质量和弹簧质量都可以不计,盘内放一个物体P 处于静止。P 的质量为12kg ,弹簧的劲度系数k=800N/m 。现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速运动。已知在前0.2s 内F 是变化的,在0.2s 以后F 是恒力,则F 的最小值是多少,最大值是多少?

【错解】

F 最大值即N=0时,F=ma+mg=210(N)

【错解原因】错解原因是对题所叙述的过程不理解。把平衡时的关系G=F+N ,不自觉的贯穿在解题中。

【分析解答】解题的关键是要理解0.2s 前F 是变力,0.2s 后F 的恒力的隐含条件。即在0.2s 前物体受力和0.2s 以后受力有较大的变化。

以物体P 为研究对象。物体P 静止时受重力G 、称盘给的支持力N 。

因为物体静止,∑F=0

N=G=0 ①

N=kx 0 ②

设物体向上匀加速运动加速度为a 。

此时物体P 受力如图2-31受重力G ,拉力F 和支持力N′

据牛顿第二定律有

F+N′-G=ma ③

当0.2s 后物体所受拉力F 为恒力,即为P 与盘脱离,即弹簧无形变,由0~0.2s 内物体的位移为x 0。物体由静止开始运动,则

将式①,②中解得的x 0=0.15m 代入式③解得a=7.5m/s 2

F 的最小值由式③可以看出即为N′最大时,即初始时刻N′=N=kx 。

代入式③得

F min =ma+mg-kx 0

=12×(7.5+10)-800×0.15

=90(N)

F最大值即N=0时,F=ma+mg=210(N)

【评析】本题若称盘质量不可忽略,在分析中应注意P物体与称盘分离时,弹簧的形变不为0,P物体的位移就不等于x0,而应等于x0-x(其中x即称盘对弹簧的压缩量)。

高中物理易错题精选讲解4:机械运动、机械波错题集

一、主要内容

本章内容包括机械振动、回复力、振幅、周期、频率、简谐振动、受迫振动、共振、机械波、波长、波速、横波、纵波、波的干涉和衍射等基本概念,以及单摆振动的周期规律、简谐运动的图像、简谐运动中的能量转化规律、波的图像、波长和频率与波速之间的关系等规律。

二、基本方法

本章中所涉及到的基本方法有:由于振动和波动的运动规律较为复杂,且限于中学数学知识的水平,因此对于这部分内容不可能像研究直线运动、平抛、圆周运动那样从运动方向出发描述和研究物体的运动,而是利用图象法对物体做简谐运动的运动规律及振动在介媒中的传播过程进行描述与研究。图像法具有形象、直观等优点,其中包含有丰富的物理信息,在学习时同学们要注意加以体会;另外,在研究单摆振动的过程中,对于单摆所受的回复力特点的分析,采取了小摆角的近似的处理,这是一种理想化物理过程的方法。

三、错解分析

在本章知识应用的过程中,初学者常犯的错误主要表现在:对于诸如机械振动、简谐运动、受迫振动、共振、阻尼振动、等幅振动等众多的有关振动的概念不能深刻的理解,从而造成混淆;不能从本质上把握振动图象和波的图象的区别和联系,这主要是由于振动的图象与波的图象形式上非常相似,一些学生只注意图象的形状,而忽略了图象中坐标轴所表示的物理意义,因此造成了将两个图象相混淆。另外,由于一些学生对波的形成过程理解不够深刻,导致对于波在传播过程中时间和空间的周期性不能真正的理解和把握;由于干涉和衍射的发生条件、产生的现象较为抽象,所以一些学生不能准确地把握相关的知识内容,表现为抓不住现象的主要特征、产生的条件混淆不清。

例1 一个弹簧振子,第一次被压缩x后释放做自由振动,周期为T1,第二次被压缩2x后释放做自由振动,周期为T2,则两次振动周期之比T1∶T2为

A.1∶1 B.1∶2

C.2∶1 C.1∶4

【错解】压缩x时,振幅为x,完成一次全振动的路程为4x。压缩2x时,振幅即为2x,完成一次全振动的路程为8x。由于两种情况下全振动的路程的差异,第二次是第一次的2倍。所以,第二次振动的周期一定也是第一次的2倍,所以选B。

【错解原因】上述解法之所以错误是因为把振子的运动看成是匀速运动或加速度恒定的匀加速直线运动了。用了匀速或匀加速运动的规律。说明这些同学还是没有掌握振动的特殊规律。

【分析解答】事实上,只要是自由振动,其振动的周期只由自身因素决定,对于弹簧振子而言,就是只由弹簧振子的质量m和弹簧的劲度系数k决定的,而与形变大小、也就是振幅无关。所以只要弹簧振子这个系统不变(m,k不变),周期就不会改变,所以正确答案为A。

【评析】本题给出的错解是初学者中最常见的错误。产生这一错误的原因是习惯于用旧的思维模式分析新问题,而不善于抓住新问题的具体特点,这反映了学习的一种思维定势。只有善于接受新知识、新方法,并将其运用到实际问题中去,才能开阔我们分析、解决问题的思路,防止思维定势。

例2 一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的1

2

,则单摆的

A.频率不变,振幅不变 B.频率不变,振幅改变C.频率改变,振幅不变 D.频率改变,振幅改变

【错解】 错解一:因为单摆的周期(频率)是由摆长l 和当地重力加速度g 决定的,所以频率是不变的,而从动能公式上看:212k E mv =,质量变为原来的4倍,速度变为原来的12

,结果动能不变,既然动能不变(指平衡位置动能也就是最大动能),由机械能守恒可知,势能也不变。所以振幅也不变,应选A 。 错解二:认为速度减为原来的

12,即运动得慢了,所以频率要变,而振幅与质量、速度无关(由上述理由可知)所以振幅不变,应选C 。

错解三:认为频率要改变,理由同错解二。而关于振幅的改变与否,除了错解一中所示理由外,即总能量不变,而因为重力势能E P =mgh ,E P 不变,m 变为原来的4倍,h 一定变小了,即上摆到最高点的高度下降了,所以振幅要改变,应选D 。

【错解原因】此题主要考查决定单摆频率(周期)和振幅的是什么因素,而题中提供了两个变化因素,即质量和最大速度,到底频率和振幅与这两个因素有没有关系。若有关系,有什么关系,是应该弄清楚的。

而错解二和错解三中都认为频率不变,这是因为为不清楚决定单摆的因素是摆长l 和当地重力加速度g ,而与摆球质量及运动到最低点的速度无关。

错解二中关于频率不变的判断是正确的,错误出现在后半句的结论上。判断只从能量不变去看,当E 总不变时,E P =mgh ,m 变大了,h 一定变小。说明有些同学考虑问题还是不够全面。

【分析解答】 (1)实际上,通过实验我们已经了解到,决定单摆周期的是摆长及当地重力加速度,并进一步找

到周期公式:2T =以不能选C ,D 。

(2)决定振幅的是外来因素。反映在单摆的运动中,可以从能量去观察,从上面分析我们知道,在平衡位置(即最低点)时的动能212k E mv =。当m 增为原来的4倍,速度减为原来的12

时,动能不变,最高点的重力势能也不变。但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能E P =mgh 不变,m 大了,h 就一定变小了,也就是说,振幅减小了。因此正确答案应选B 。

【评析】 本题的分析解答提醒我们,一是考虑要全面,本题中m ,v 两因素的变化对确定的单摆振动究竟会产生怎样的影响,要进行全面分析;二是分析问题要有充分的理论依据,如本题中决定单摆振动的频率的印度应由周期

公式1f T ==212k P mv E E mgh ===为依据。 例3 如图6-1所示,光滑圆弧轨道的半径为R ,圆弧底部中点为O ,两个相同的小球分别在O 正上方h 处的A 点和离O 很近的轨道B 点,现同时释放两球,使两球正好在O 点相碰。问h 应为多高?

【错解】对B 球,可视为单摆,延用单摆周期公式可求B 球到达O 点的时间:

对A 球,它做自由落体运动,自h 高度下落至O 点

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

高考物理力学知识点之曲线运动易错题汇编附答案(2)

高考物理力学知识点之曲线运动易错题汇编附答案(2) 一、选择题 1.如图所示,一个内侧光滑、半径为R的四分之三圆弧竖直固定放置,A为最高点,一小球(可视为质点)与A点水平等高,当小球以某一初速度竖直向下抛出,刚好从B点内侧进入圆弧并恰好能过A点。重力加速度为g,空气阻力不计,则() A.小球刚进入圆弧时,不受弹力作用 B.小球竖直向下抛出的初速度大小为gR C.小球在最低点所受弹力的大小等于重力的5倍 D.小球不会飞出圆弧外 2.光滑水平面上,小球m的拉力F作用下做匀速圆周运动,若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法正确的是() A.若拉力突然消失,小球将沿轨迹Pb做离心运动 B.若拉力突然变小,小球将沿轨迹Pa做离心运动 C.若拉力突然变大,小球将可能沿半径朝圆心运动 D.若拉力突然变大,小球将可能沿轨迹Pc做近心运动 3.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则() A.A球受绳的拉力较大 B.它们做圆周运动的角速度不相等 C.它们所需的向心力跟轨道半径成反比 D.它们做圆周运动的线速度大小相等

4.如图所示,小孩用玩具手枪在同一位置沿水平方向先后射出两粒弹珠,击中竖直墙上M、N两点(空气阻力不计),初速度大小分别为v M、v N,、运动时间分别为t M、t N,则 A.v M=v N B.v M>v N C.t M>t N D.t M=t N 5.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其他轨迹最高点,机械能的增量为 A.2mgR B.4mgR C.5mgR D.6mgR 6.小明玩飞镖游戏时,从同一位置先后以速度v A和v B将飞镖水平掷出,依次落在靶盘上的A、B两点,如图所示,飞镖在空中运动的时间分别t A和t B.不计空气阻力,则 () A.v A<v B,t A<t B B.v A<v B,t A>t B C.v A>v B,t A>t B D.v A>v B,t A<t B 7.关于曲线运动,以下说法中正确的是() A.做匀速圆周运动的物体,所受合力是恒定的 B.物体在恒力作用下不可能做曲线运动 C.平抛运动是一种匀变速运动 D.物体只有受到方向时刻变化的力的作用才可能做曲线运动 8.一条小河宽100m,水流速度为8m/s,一艘快艇在静水中的速度为6m/s,用该快艇将人员送往对岸.关于该快艇的说法中正确的是()

高中物理易错题分析集锦——7热学之令狐文艳创作

第七单元:热学 令狐文艳 [内容和方法] 本单元内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 本单元中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。

对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本单元中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 下列说法中正确的是[ ] A.温度低的物体内能小 B.温度低的物体分子运动的平均速率小 C.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大 D.外界对物体做功时,物体的内能不一定增加 【错解分析】错解一:因为温度低,动能就小,所以内能就小,所以应选A 而温度低的物体分子平均动能小,所以速率也小。所以应选B。 错解三:由加速运动的规律我们了解到,物体的速度大小由初速和加速度与时间决定,随着时间的推移,速度肯定越来越快再由动能公式

高考物理力学知识点之曲线运动易错题汇编及解析

高考物理力学知识点之曲线运动易错题汇编及解析 一、选择题 1.如图所示,B和C 是一组塔轮,固定在同一转动轴上,其半径之比为R B∶R C=3∶2,A 轮的半径与C轮相同,且A轮与B轮紧靠在一起,当A 轮绕其中心的竖直轴转动时,由于摩擦的作用,B 轮也随之无滑动地转动起来.a、b、c 分别为三轮边缘上的三个点,则a、b、c 三点在运动过程中的() A.线速度大小之比为 3∶2∶2 B.角速度之比为 3∶3∶2 C.向心加速度大小之比为 9∶6∶4 D.转速之比为 2∶3∶2 2.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则() A.A球受绳的拉力较大 B.它们做圆周运动的角速度不相等 C.它们所需的向心力跟轨道半径成反比 D.它们做圆周运动的线速度大小相等 平面内运动,在x方向的速度图像和y方向的位移图3.有一个质量为4kg的物体在x y 像分别如图甲、乙所示,下列说法正确的是() A.物体做匀变速直线运动B.物体所受的合外力为22 N C.2 s时物体的速度为6 m/s D.0时刻物体的速度为5 m/s 4.如图所示,质量为m的物体,以水平速度v0离开桌面,若以桌面为零势能面,不计空气阻力,则当它经过离地高度为h的A点时,所具有的机械能是( )

A.mv02+mg h B.mv02-mg h C.mv02+mg (H-h) D.mv02 5.如图所示为一皮带传动装置,右轮的半径为,a是它边缘上的一点。左侧是一轮轴,大轮的半径为,小轮的半径为。b点在大的边缘轮上,c点位于小轮上。若在传动过程中,皮带不打滑。则() A.a点与c点的角速度大小相等B.b点与c点的角速度大小相等 C.b点与c点的线速度大小相等D.a点与c点的向心加速度大小相等 6.关于曲线运动,以下说法中正确的是() A.做匀速圆周运动的物体,所受合力是恒定的 B.物体在恒力作用下不可能做曲线运动 C.平抛运动是一种匀变速运动 D.物体只有受到方向时刻变化的力的作用才可能做曲线运动 7.一辆汽车在水平公路上转弯,沿曲线由N向M行驶速度逐渐减小。图A,B,C,D分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是() A. B. C.

高中物理易错题专题三物理牛顿运动定律(含解析)

高中物理易错题专题三物理牛顿运动定律(含解析) 一、高中物理精讲专题测试牛顿运动定律 1.利用弹簧弹射和传送带可以将工件运送至高处。如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。B 、C 分别是传送带与两轮的切点,相距L =6.4m 。倾角也是37?的斜面固定于地面且与传送带上的B 点良好对接。一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能; (2)工件沿传送带由B 点上滑到C 点所用的时间; (3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。 【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】 (1)由能量守恒定律得,弹簧的最大弹性势能为: 2P 01sin 37cos372 E mgx mgx mv μ??=++ 解得:E p =42J (2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ??+= 解得:a 1=10m/s 2 工件与传送带共速需要时间为:011 v v t a -= 解得:t 1=0.4s 工件滑行位移大小为:22 0112v v x a -= 解得:1 2.4x m L =< 因为tan 37μ? <,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:

高一物理易错题(整理)

易错题第四季 【例1】 如图所示,质量为M 的楔形木块放在水平桌面上,它的顶角为90 ,两 底角为α和β.a 、b 为两个位于斜面上的质量均为m 的小木块,已 知所有的接触面都是光滑的,现发现a 、b 沿斜面下滑,而楔形木块不 动,这时楔形木块对水平桌面的压力等于( ) A .Mg mg + B .2Mg mg + C .(sin sin )Mg mg αβ++ D .(cos cos )Mg mg αβ++ 例题1: 【答案】A 【解析】本体最好以整体的方法受力分析,直接就可以得到N F Mg mg =+ 下面我们用隔离的方法来解决一下: 取a 为研究对象,受到重力和支持力的作用,则加速度沿斜面向下,设大小为1a ,由牛顿第二定律得1sin mg ma α= ?1sin a g α= 同理,b 的加速度也沿斜面向下,大小为2sin a g β=. 将1a 和2a 沿水平方向和竖直方向进行分解,a 、b 竖直方向的分加速度分别为 2212sin sin y y a g a g αβ== 再取a 、b 和楔形木块的组成的整体作为研究对象,仅在竖直方向受到重力和桌面支持力N F ,由牛顿第二定律得22(2)sin sin N M m g F mg mg αβ+-=+ 又o 90αβ+=,所以sin cos αβ= 则(2)N M m g F mg +-= ? N F Mg mg =+ 【例2】 如图所示,用三根轻绳将质量均为m 的A 、B 两小球以及水平天花板上的固 定点O 之间两两连接.然后用一水平方向的力F 作用于A 球上,此时三根轻 绳均处于直线状态,且OB 绳恰好处于竖直方向,两球均处于静止状态.三根 轻绳的长度之比为::3:4:5OA AB OB =.则下列说法正确的是( ) A .O B 绳中的拉力小于mg B .OA 绳中的拉力大小为53 mg C .拉力F 大小为45mg D .拉力F 大小为43 mg 例题2: 【答案】BD 易错:先分析B 球,根据平衡应该知道AB 绳子是不受力的,而不是受到三个力。 【解析】由于A 、B 两球均处于静止状态,且OB 绳中的拉力等于mg ,AB 绳中的拉力为零,此时,A 球受重力、 拉力F 、OA 绳拉力T F 三个力作用处于平衡,据平衡条件可求得5/3,4/3T F mg F mg = =,故B D 、正确. 【例3】 一根轻质弹簧一端固定,用大小为1F 的力压弹簧的另一端,平衡时长度为1l ;改用大小为2F 的力拉弹簧, 平衡时长度为2l 。弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为 A .2121F F l l -- B .2121F F l l ++ C .2121F F l l +- D .2 121F F l l -+ b a β α

高中物理易错题分析集锦——4动量

第四单元:动量、动量守恒定律 [内容和方法] 本单元内容包括动量、冲量、反冲等基本概念和动量定理、动量守恒定律等基本规律。冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变化。冲量和动量都是矢量,它们的加、减运算都遵守矢量的平行四边形法则。 本单元中所涉及到的基本方法主要是一维的矢量运算方法,其中包括动量定理的应用和动量守定律的应用,由于力和动量均为矢量。因此,在应用动理定理和动量守恒定律时要首先选取正方向,与规定的正方向一致的力或动量取正值,反之取负值而不能只关注力或动量数值的大小;另外,理论上讲,只有在系统所受合外力为零的情况下系统的动量才守恒,但对于某些具体的动量守恒定律应用过程中,若系统所受的外力远小于系统内部相互作用的内力,则也可视为系统的动量守恒,这是一种近似处理问题的方法。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度认识不清。对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。 例1 、从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:[ ] C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 【错解分析】错解:选B。 认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t =△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。 【正确解答】设玻璃杯下落高度为h。它们从h高度落地瞬间的 量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子 所以掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。正确答案应选C,D。 【小结】判断这一类问题,应从作用力大小判断入手,再由动量

高二物理选修易错题练习

高二物理综合题&易错题练习 (选修3-2、3-5) 班别:___________ 姓名:____________ 学号:___________ 一、选择题(本大题共15小题,在每题所给的四个选项中,第1~8题只有一项符合题目要求,第8~15题有多个选项符合要求。) 1. 关于原子结构,下列说法错误的是( ) A. 汤姆孙根据气体放电管实验断定阴极射线是带负电的粒子流,并求出了这种粒子的比荷 B. 卢瑟福α粒子散射实验表明:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动 C. 各种原子的发射光谱都是连续谱 D. 玻尔在原子核式结构模型的基础上,结合普朗克的量子概念,提出了玻尔的原子模型 2. 一群处于基态的氢原子受到某种单色光照射时,只能发生甲、乙、丙三种单色光,其中甲光的波长最短,丙光的波长最长,则甲、丙这两种单色光的光子能量之比E 甲:E 丙等于( ) A. 3:2 B. 6:1 C. 32:5 D. 9:4 3. 法拉第发明了世界上第一台发电机---法拉第圆盘发电机。铜质圆盘竖直放置在水平向左的匀强磁场中,铜盘圆心处有一个摇柄,边缘和圆心处各有一个铜电刷与其紧贴,用导线将电刷与电阻R 连接起来形成回路。转动摇柄,使圆盘如图所示方向转动。已知匀强磁场的磁感应强度大小为B ,圆盘半径为l ,圆盘匀速转动的角速度为ω。下列说法中正确的是( ) A. 圆盘产生的感应电动势为212B l ω,流过电阻R 的电流方向为从b →a B. 圆盘产生的感应电动势为212 B l ω,流过电阻R 的电流方向为从a →b C. 圆盘产生的感应电动势为2B l ω,流过电阻R 的电流方向为从b →a D. 圆盘产生的感应电动势为2B l ω,流过电阻R 的电流方向为从a →b 4. 某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R ,传送带背面固定有若干根间距为d 的平行细金属条,其电阻均为r ,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度匀速运动时,电压表的示数为U .则下列说法中正确的是( ) A. 传送带匀速运动的速率为U BL B. 电阻R 上产生的焦耳热的电功率为2U R r + C. 金属条每经过磁场区域受到的安培力大小为BUd R r + D. 每根金属条经过磁场区域的全过程中克服安培力做功为BLUd R 5. 矩形线圈abcd 在如图所示的磁场中以恒定的角速度ω绕ab 边转动,磁场方向垂直纸面向里,

高三试题解析高中物理易错题热学

热学 [内容和方法] 本单元内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 本单元中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本单元中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V —T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变

化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 下列说法中正确的是[ ] A.温度低的物体内能小 B.温度低的物体分子运动的平均速率小 C.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大 D.外界对物体做功时,物体的内能不一定增加 【错解分析】错解一:因为温度低,动能就小,所以内能就小,所以应选A 而温度低的物体分子平均动能小,所以速率也小。所以应选B。 错解三:由加速运动的规律我们了解到,物体的速度大小由初速和加速度与时间决定,随着时间的推移,速度肯定越来越快再由动能公式 错解一是没有全面考虑内能是物体内所有分子的动能和势能的总和。温度低只表示物体分子平均动能小,而不表示势能一定也小,也就是所有分子的动能和势能的总和不一定也小,所以选项A是错的。 实际上因为不同物质的分子质量不同,而动能不仅与速度有关,也与分子质量有关,单从一方面考虑问题是不够全面的,所以错解二选项B也是错的。 错解三的原因是混淆了微观分子无规则运动与宏观物体运动的差别。分子的平均动能只是分子无规则运动的动能,而物体加速运动时,物体内所有分子

高考物理力学知识点之相互作用易错题汇编附答案(3)

高考物理力学知识点之相互作用易错题汇编附答案(3) 一、选择题 1.如图所示,物块A 放在直角三角形斜面体B 上面,B 放在弹簧上面并紧挨着竖直墙壁,初始时A 、B 静止,现用力F 沿斜面向上推A ,但A 、B 仍未动.则施加力F 后,下列说法正确的是( ) A .A 、 B 之间的摩擦力一定变大 B .B 与墙面间的弹力可能不变 C .B 与墙之间可能没有摩擦力 D .弹簧弹力一定不变 2.一质量为中的均匀环状弹性链条水平套在半径为R 的刚性球体上,已知不发生形变时环状链条的半径为R/2,套在球体上时链条发生形变如图所示,假设弹性链条满足胡克定律,不计一切摩擦,并保持静止.此弹性链条的弹性系数k 为 A .22 3(31)2mg R π+ B .3(31)2mg R π- C . 3(31)mg + D . 3(31)mg + 3.某小孩在广场游玩时,将一氢气球系在了水平地面上的砖块上,在水平 风力的作用下,处于如图所示的静止状态.若水平风速缓慢增大,不考虑气球体积及空气密度的变化,则下列说法中正确的是 A .细绳受到拉力逐渐减小 B .砖块受到的摩擦力可能为零 C .砖块一定不可能被绳子拉离地面

D.砖块受到的摩擦力一直不变 4.如图所示,细绳MO与NO所能承受的最大拉力相同,长度MO>NO,则在不断增加重物G的重力过程中(绳OC不会断)() A.绳ON先被拉断 B.绳OM先被拉断 C.绳ON和绳OM同时被拉断 D.条件不足,无法判断 5.如图所示,铁质的棋盘竖直固定,每个棋子都是一个小磁铁,能吸在棋盘上保持静止,不计棋子间的相互作用力,下列说法正确的是 A.小棋子共受三个力作用 B.棋子对棋盘的压力大小等于重力 C.磁性越强的棋子所受的摩擦力越大 D.棋子质量不同时,所受的摩擦力不同 6.叠放在水平地面上的四个完全相同的排球如图所示,质量均为m,相互接触,球与地面间的动摩擦因数均为μ,则: A.上方球与下方3个球间均没有弹力 B.下方三个球与水平地面间均没有摩擦力 C.水平地面对下方三个球的支持力均为4 3 mg D.水平地面对下方三个球的摩擦力均为4 3 mg 7.一物体m受到一个撞击力后沿不光滑斜面向上滑动,如图所示,在滑动过程中,物体m受到的力是()

高中物理高三试题解析高中物理易错题分析集锦——光学

第13单元:光学 [内容和方法] 本单元内容包括光的直线传播、棱镜、光的色散、光的反射、光的折射、法线、折射率、全反射、临界角、透镜(凸、凹)的焦点及焦距、光的干涉、光的衍射、光谱、红外线、紫外线、X射线、γ射线、电磁波谱、光电子、光子、光电效应、等基本概念,以及反射定律、折射定律、透镜成像公式、放大率计算式,光的波粒二象性等基本规律,还有光本性学说的发展简史。 本单元涉及到的方法有:运用光路作图法理解平面镜、凸透镜、凹透镜等的成像原理,并能运用作图法解题;根据透镜成像规律,运用逻辑推理的方法判断物象变化情况。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:解题操作过程不规范导致计算错误;将几何光学与物理光学综合时概念不准确;不善于用光路图对动态过程作分析。 例1 光从玻璃射入空气里时传播方向如图13-l所示,请在图中标出入射角和折射角。 【错解分析】错解: 如图13-2所示,α为入射角,β为折射角。 错解原因一是受思维定势的影响,不加分析地认定玻璃与空气总是上下接触的;二是对光的折射及其规律未吃透,将题设文字条件与图形条件结合起来的分析能力差。根据光的折射规律,光从水或玻璃等透明物质射入空气里时,折射角大于入射角,题设文字条件是“从玻璃射入空气”,因此折射角大于入射角,再结合题设所给图形,可知CD为界面,AB为法线。 【正确解答】 如图 13-3所示,α′为入射角,β′折射角(CD左面为玻璃,右面为空气)。

【小结】 解光的折射现象的题目,首先应对光线是从光疏媒质进入光密媒质呢?还是光线是从光密媒质进入光疏媒质作出判断。为了保证你每次做题时,能够不忘判断,建议同学们做光的折射题时,先画出光路图,标出入射光线和出射光线的方向,在界面处标出哪一个是光密媒质,哪一个是光疏媒质。然后再解题。 例2 一束白光从玻璃里射入稀薄空气中,已知玻璃的折射率为1.53,求入射角为下列两种情况时,光线的折射角各为多少? (1)入射角为50° (2)入射角为30° 【错解分析】错解: r=30°3′ r=19°4′ 此解法中没有先分析判断光线是从光疏媒质进入光密媒质,还是从光密媒质进入光疏媒质,会不会发生全反射。而是死套公式,引起错误。 【正确解答】 光线由玻璃里射入空气中,是由光密媒质射入光疏媒质,其临界角为 由已知条件知,当i=50°时,i>A,所以光线将发生全反射,不能进入空气中。当i=30°时,i<A,光进入空气中发生折射现象。 sinr=n·sini=1.53×sin30°=0.765 r= 49°54′ 【小结】 解光的折射现象的题目时,首先应做出判断:光线是从光疏媒质进入光密媒质,还是光线是从光密媒质进入光疏媒质。如是前者则i>r,如是后者则i<r。其次,如果是从光密媒质进入光疏媒质中,还有可能发生全反射现象,应再判断入射角是否大于临界角,明确有无折射现象。 例3如图13-4所示,放在空气中折射率为n的平行玻璃砖,表面M和N平行,P,Q两个面相互平行且与M,N垂直。一束光射到表面M上(光束不与M平行),则: [ ]

初三物理力学易错题及解析

初中物理经典易错题-力和运动 1.在湖中划船时,使船前进的的动力是() A.桨划水的推力 B.水直接对船的推力 C.人对船的推力 D.水对桨的推力 2.踢到空中的足球,受到哪些力的作用( ) A受到脚的作用力和重力 B受到重力的作用C只受到脚的作有力 D没有受到任何力的作用 3.一辆汽车分别以6米/秒和4米/秒的速度运动时,它的惯性大小:() A.一样大; B.速度为4米/秒时大; C.速度为6米/秒时大; D.无法比较 4.站在匀速行驶的汽车里的乘客受到几个力的作用( ) A.1个 B.2 个 C.3个 D.4个 5.甲、乙两个同学沿相反的方向拉测力计,各用力200牛.则测力计的示数为( ) A、100牛 B、200牛 C、0牛 D、400牛 6.一物体受到两个力的作用,这两个力三要素完全相同,那么这两个力( ) A 一定是平衡力 B 一定不是平衡力 C 可能是平衡力 D 无法判断 7.体育课上,小明匀速爬杆小刚匀速爬绳。有关他们受到的摩擦力下面说法正确的是() A、因为爬杆时手握杆的压力大,所以小明受到的摩擦力一定大 B、因为绳子粗糙,所以小刚受到的摩擦力一定大 C、小明和小刚受到的摩擦力一定相等 D、若小明的体重大,则他受到的摩擦力一定大 8.如图所示,物体A在水平力F的作用下,静止在竖直墙壁上.当水平力减小为F/2时,物体A恰好沿竖直墙壁匀速下滑.此时物体A所受摩擦力的大小() A.减小为原来的1/2 B.和原来一样 C.增大为原来的2倍D.无法判断9.蹦极游戏是将一根有弹性的绳子一端系在身上,另一端固定在高处,从高处跳下,a是弹性绳自然下垂的位置,C点是游戏者所到达的最低点,游戏者从离开跳台到最低点的过程中,物体速度是如何变化的?_______________ 10.A、B两物体叠放在水平桌面上,在如图所示的三种情况下:①甲图中两物体均处于静止状态;②乙图中水平恒力F作用在B物体上,使A、B一起以2m/s的速度做匀速直线运动; ③丙图中水平恒力F作用在B物体上,使A、B一起以20m/s的速度做匀速直线运动。比较上述三种情况下物体A在水平方向的受力情况,以下说法正确的是() A、三种情况下,A在水平方向都不受力B三种情况下,A在水平方向都受力且受力相同C、①中A在水平方向不受力,②、③中A在水平方向都受力但受力 不同 D、①中A在水平方向不受力,②、③中A在水平方向都受力但受力 相同 11.饮料厂生产的饮料装瓶后,要在自动化生产线上用传送带传送。如图所示,一瓶饮料与传送带一起水平向左匀速运动,不计空气阻力。请在图中画出饮料瓶受力的示意图。(图中的A点表示重心) 答案及分析 1.可能错误A.生活经验,用桨划船船才能前进,不划桨船将不动.所以选A

高中物理易错题错误分析及正确解法

高中物理易错题错误分析及正确解法 第9单元稳恒电流 [内容和方法] 本单元内容包括电流、产生持续电流的条件、电阻、电压、电动势、内电阻、路端电压、电功、电功率等基本概念,以及电阻串并联的特点、欧姆定律、电阻定律、闭合电路的欧姆定律、焦耳定律、串联电路的分压作用、并联电路的分流作用等规律。 本单元涉及到的基本方法有运用电路分析法画出等效电路图,掌握电路在不同连接方式下结构特点,进而分析能量分配关系是最重要的方法;注意理想化模型与非理想化模型的区别与联系;熟练运用逻辑推理方法,分析局部电路与整体电路的关系[例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:不对电路进行分析就照搬旧的解题套路乱套公式;逻辑推理时没有逐步展开,企图走“捷径”;造成思维“短路”;对含有电容器的问题忽略了动态变化过程的分析。 例1 如图9-1所示,ε1=3V,r1=0.5Ω,R1=R2=5.5Ω,平行板电容器的两板距离d=1cm,当电键K接通时极板中的一个质量m=4×10-3g,电量为q=1.0×10-7C的带电微粒恰好处于静止状态。求:(1)K断开后,微粒向什么方向运动,加速度多大?(2)若电容为1000pF,K断开后,有多少电量的电荷流过R2?

在直流电路中,如果串联或并联了电容器应该注意,在与电容器串联的电路中没有电流,所以电阻不起降低电压作用(如R2),但电池、电容两端可能出现电势差,如果电容器与电路并联,电路中有电流通过。电容器两端的充电电压不是电源电动势ε,而是路端电压U。 【正确解答】 (1)当K接通电路稳定时,等效电路图如图9-2所示。

【小结】 本题考查学生对电容器充放电物理过程定性了解程度,以及对充电完毕后电容所在支路的电流电压状态是否清楚。学生应该知道电容器充电时,随着电容器内部电场的建立,

物理易错题集--力学篇

东辰学校初2011级中考复习 物理易错题集--力学篇 一、选择题 1、某研究性学习小组在老师的指导下,完成“水的体积随温度变化” 的研究,得到如图1所示的图像,根据这个图线,可得到水的温度从8℃ 降到2℃的过程中有关水的变化的一些信息,下列说法正确的是( ) A 、水遵从热涨冷缩的规律 B 、水的体积先变大后变小 C 、水的密度先变小后变大 D 、水在4℃时密度最大 2、在绵阳新益大厦乘坐观光电梯上行的过程中,以下描述对所选参照 物正确的是( ) A.观光者离地面越来越远,是以观光电梯为参照物 B.地面离观光者越来越远,是以观光电梯为参照物 C.地面离观光者越来越远,是以地面为参照物 D.观光者静止不动,是以地面为参照物 3、汽车甲和汽车乙由同一地点,向同一方向,同时开始运动,开始运 动时开始计时,它们的v -t 图像如右图所示。关于两辆汽车的运动情 况.下列说法中正确的是 ( ) A.汽车甲做变速运动,汽车乙做匀速运动 B.开始运动时,汽车乙的速度是汽车甲的速度的4倍 C.运动到30s 时,两车又相遇 D.运动30s 后,汽车乙的速度大于汽车甲的速度 4、如图3,放在M 、N 两水平桌面上的P 、Q 两物体,分别在F P =5N 、F Q =3N 的水平拉力作用下做匀速直线运动,可以确定 ( ) A .桌面M 一定比桌面N 粗糙 B .P 的速度一定大于Q 的速度 C .P 的质量一定大于Q 的质量 D .P 受到的摩擦力一定大于Q 受到的摩擦力 5、如图4所示,物体A 在水平力F 的作用下,静止在竖直墙壁上。当水平力减 小为F /2时,物体A 恰好沿竖直墙壁匀速下滑。此时物体A 所受摩擦力的大小 将( ) A.减小为原来的1/2 B.和原来一样 C.增大为原来的2倍 D.无法判断 6、如图5所示,小华将弹簧测力计一端固定,另一端钩住长方体 木块A ,木块下面是一长木板,实验时拉着长木板沿水平地面 向左运动,读出弹簧测力计示数即可测出木块A 所受摩擦力大 小。在木板运动的过程中,以下说法正确的是( ) A.木块A 受到的是静摩擦力 B.木块A 相对于地面是运动 的 图 1 图 2 图 3 图 4 图5

高中物理易错题精选 电磁感应错题集

第十一章电磁感应错题集 一、主要内容:电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 二、基本方法:要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 三、错解分析:错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1 长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[] 错解:t=0时,线圈平面与磁场平行、磁通量为零,对应的磁通量的变化率也为零,选A。 错解原因:磁通量Φ=BS⊥BS(S⊥是线圈垂直磁场的面积),磁通量的变化ΔΦ=Φ2-Φ1,两者的物理意义截然不同,不能理解为磁通量为零,磁通量的变化率也为零。 分析解答:实际上,线圈在匀强磁场中绕垂直于磁场的轴转动时,产生交变电动势e=εm cosωt=Babωcosωt。当t=0时,cosωt=1,虽然磁通量 可知当电动势为最大值时,对应的磁通量的变化率也最大,即 评析:弄清概念之间的联系和区别,是正确解题的前提条件。在电磁感应中要弄清 磁通量Φ、磁通量的变化ΔΦ以及磁通量的变化率ΔΦ/Δt之间的联系和区别。 例2 在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向 下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的 哪一端是正极?

高一物理易错题整理)

易错题第四季 【例1】 如图所示,质量为 M 的楔形木块放在水平桌面上,它 的顶角为90,两底角为α和β.a 、b 为两个位于斜面 上的质量均为m 的小木块,已知所有的接触面都是光滑的,现发现a 、b 沿斜面下滑,而楔形木块不动,这时楔形木块对水平桌面的压力等于() A .Mg mg + B .2Mg mg + C .(sin sin )Mg mg αβ++ D .(cos cos )Mg mg αβ++ 例题1: 【答案】A 【解析】本体最好以整体的方法受力分析,直接就可以得到N F Mg mg =+ 下面我们用隔离的方法来解决一下: 取a 为研究对象,受到重力和支持力的作用,则加速度沿斜面向下,设大小为1a ,由牛顿第二定律得1sin mg ma α=?1sin a g α= 同理,b 的加速度也沿斜面向下,大小为2sin a g β=. 将1a 和2a 沿水平方向和竖直方向进行分解,a 、b 竖直方向的分加速度 分别为 再取a 、b 和楔形木块的组成的整体作为研究对象,仅在竖直方向受到重力和桌面支持力N F ,由牛顿第二定律得22(2)sin sin N M m g F mg mg αβ+-=+ 又o 90αβ+=,所以sin cos αβ= 则(2)N M m g F mg +-=?N F Mg mg =+ 【例2】 如图所示,用三根轻绳将质量均为m 的A 、B 两小球以及水 平天花板上的固定点O 之间两两连接.然后用一水平方向的力F 作用于A 球上,此时三根轻绳均处于直线状态,且OB 绳恰好处于竖直方向,两球均处于静止状态.三根轻绳的长度之比为::3:4:5OA AB OB =.则下列说法正确的是() A .O B 绳中的拉力小于mg B .OA 绳中的拉力大小为 5 3 mg C .拉力F 大小为45 mg D .拉力F 大小为43 mg 例题2: 【答案】BD 易错:先分析B 球,根据平衡应该知道AB 绳子是不受力的,而不是受到三个 力。 b a β α

【2010高考轻松过系列专题】高中物理易错题分析——动量、动量守恒定律

高中物理易错题分析——动量、动量守恒定律 [内容和方法] 本单元内容包括动量、冲量、反冲等基本概念和动量定理、动量守恒定律等基本规律。冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变化。冲量和动量都是矢量,它们的加、减运算都遵守矢量的平行四边形法则。 本单元中所涉及到的基本方法主要是一维的矢量运算方法,其中包括动量定理的应用和动量守定律的应用,由于力和动量均为矢量。因此,在应用动理定理和动量守恒定律时要首先选取正方向,与规定的正方向一致的力或动量取正值,反之取负值而不能只关注力或动量数值的大小;另外,理论上讲,只有在系统所受合外力为零的情况下系统的动量才守恒,但对于某些具体的动量守恒定律应用过程中,若系统所受的外力远小于系统内部相互作用的内力,则也可视为系统的动量守恒,这是一种近似处理问题的方法。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度认识不清。对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。 例1 、从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:[ ] A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小 B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 【错解分析】错解:选B。 认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t =△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。 【正确解答】设玻璃杯下落高度为h。它们从h高度落地瞬间的 量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子 所以 掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。正确答案应选C,D。

高考物理力学知识点之牛顿运动定律易错题汇编附答案

高考物理力学知识点之牛顿运动定律易错题汇编附答案 一、选择题 1.荡秋千是一项娱乐,图示为某人荡秋千时的示意图,A点为最高位置,B点为最低位置,不计空气阻力,下列说法正确的是() A.在A点时,人所受的合力为零 B.在B点时,人处于失重状态 C.从A点运动到B点的过程中,人的角速度不变 D.从A点运动到B点的过程中,人所受的向心力逐渐增大 2.在匀速行驶的火车车厢内,有一人从B点正上方相对车厢静止释放一个小球,不计空气阻力,则小球() A.可能落在A处B.一定落在B处 C.可能落在C处D.以上都有可能 3.如图所示,质量为2 kg的物体A静止在竖直的轻弹簧上面。质量为3 kg的物体B用轻质细线悬挂,A、B接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B对A的压力大小为(g=10 m/s2) A.12 N B.22 N C.25 N D.30N 4.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m的小球,若升降机在匀速运行过程中突然停止,并以此时为零时刻,在后面一段时间内传感器显示弹簧弹力F随时间t变化的图象如图乙所示,g为重力加速度,则()

A .升降机停止前在向下运动 B .10t -时间内小球处于失重状态,12t t -时间内小球处于超重状态 C .13t t -时间内小球向下运动,动能先增大后减小 D .34t t -时间内弹簧弹性势能变化量小于小球动能变化量 5.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( ) A . B . C . D . 6.一物体放置在粗糙水平面上,处于静止状态,从0t =时刻起,用一水平向右的拉力F 作用在物块上,且F 的大小随时间从零均匀增大,则下列关于物块的加速度a 、摩擦力 f F 、速度v 随F 的变化图象正确的是( )

高中物理易错题

高中物理易错题.txt爱,就大声说出来,因为你永远都不会知道,明天和意外,哪个会先来!石头记告诉我们:凡是真心爱的最后都散了,凡是混搭的最后都团圆了。你永远看不到我最寂寞的时候,因为在看不到你的时候就是我最寂寞的时候!高中物理易错题 151.如图所示,人站在小车上不断用铁锤敲击小车的一端.下列各种说法中正确的是: (A)如果地面水平、坚硬光滑,则小车将向右运动. (B)如果地面水平、坚硬光滑,则小车将在原地附近做往复运动. (C)如果地面阻力较大,则小车有可能断断续续地向右运动. (D)敲打时,铁锤跟小车间的相互作用力是内力,小车不可能发生运动. 解析:敲打时,铁锤跟小车间的相互作用力是(人、车、铁锤)内力,如果地面水平、坚硬光滑,系统无水平方向的外力,合动量为零,不可能向一个方向运动,A错,B正确.又地面粗糙,系统合外力不为零,根据敲击技巧,车可能往复运动,也可能向一个方向运动,有点类似骑独轮车,手的摆动相当于铁锤的运动.本题选B、C. 152.三块完全相同的木块从同一高度由静止开始下落,A块自由下落,B块在开始下落的瞬间即被一水平飞来的子弹击中(击穿出),C块在下落到一半距离时被另一相同的水平飞来的子弹击中(未穿出),则三木块落地时间关系为: (A)tA=tB=tC. (B) tA<tB<tC. (C) tA<tB=tC. (D) tA=tB<tC 解析:由题分析出,A块自由下落,B块平抛,所以tA=tB,C块中途被水平子弹击中,击穿过程中,C块受到子弹在水平和竖直方向的阻力作用,此时C块竖直分速度变小,竖直方向相当于粘合了一个子弹,动量守恒,所以C块要比A、B到地时间要长,本题选D. 153.下列说法中正确的有: (A)一个质点在一个过程中如果其动量守恒,其动能也一定守恒. (B)一个质点在一个过程中如果其动量守恒,其机械能也一定守恒. (C)几个物体组成的物体系统在一个过程中如果动量守恒,其机械能也一定守恒. (D)几个物体组成的物体系统在一个过程中如果机械能守恒,其动量也一定守恒. 解析:动量守恒只能说明,考虑的对象合外力为0,当然对一质点来说,合外力的功也为O,所以A答正确;合外力为零,机械能不一定守恒,如匀速下落的物体,合外力为0,动量守恒,机械能在减少,B答错误;对于一个系统,内力作功也会影响机械能的变化,如子弹水平击穿光滑水平面的木块,系统动量守恒,内力(相互作用的摩擦力)做功机械能减少,所以C答错误;机械能是否守恒,与做功有关,动量守恒与合外力有关,两者条件不同,没有直接的联系,D答错误.本题选A. 154.三个半径相同的弹性球,静止置于光滑水平面的同一直线上,顺序如图所示,已知mA =mB=l kg,当A以速度vA=10 m/s向B运动,若B不再与A球相碰,C球质量最大为kg. 答案:mC≤mB=1kg 155.如图所示,质量为m的小物块沿光滑水平面以初速v0滑上质量为M的小车,物块与车间有摩擦,小车上表面水平且与小物块原所在平面等高,支承小车的平面水平光滑.小物块滑上小车后最终与小车一起运动而保持相对静止.从物体滑上车到物块与车相对静止的整个过程中,小物块受到的摩擦力总共做功W=,其中转化为热量的部分W1=,其余部分W-W1转化为. 答案:小车动能

相关主题
文本预览
相关文档 最新文档