当前位置:文档之家› 高分子物理作业

高分子物理作业

高分子物理作业
高分子物理作业

(1) 高分子的多层次结构

高分子链的结构是指单个高分子链的结构与形态,包括两个结构层次上的内容:一次结构(近程结构):是构成的最基本微观结构,包括其组成和构型。(可以理解为与链节有关的结构);二次结构(远程结构):大分子链的空间结构(构象)以及链的柔顺性等。(可以理解为与整条链有关的结构)。

通常,高分子结构分为链结构和凝聚态结构两部分。链结构是指单个高分子的结构和形态,包括:1 化学组成、构型、构造、共聚物的序列结构;2 分子的大小、尺寸、构象和形态。凝聚态结构是指高分子链聚集在一起形成的高分子材料本体的内部结构,包括:1 聚合物的晶态结构;2 聚合物的非晶态结构;3 液晶态聚合物;4 聚合物的取向结构;5 多组分聚合物

1.1 化学组成、构型、构造和共聚物的序列结构

1.1.1高分子按化学组成可分为:碳链高分子、杂链高分子、元素有机高分子、元素无机高分子。

1.1.2构型(configuration)是指分子中由化学键所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型,必须通过化学键的断裂与重组。构型不同的异构体有旋光异构体、几何异构体和键接异构体。旋光异构体分为全同立构(isotactic)、间同立构(syndiotatic)、无规立构(atactic)。旋光异构高分子不是必定具有旋光性。对高分子来说,关心的不是具体构型(左旋或右旋),而是构型在分子链中的异同,即全同、间同或无规。当组成双键的两个碳原子同时被两个不同的原子或基团取代时,由于内双键上的基团在双键两侧排列方式的不同而有顺式构型和反式构型之分,称之为几何异构体(geometric isomerism)。键接异构是指结构单元在高分子链中的连接方式,它也是影响性能的主要因素之一。在缩聚和开环聚合中,结构单元的聚合方式是确定的,但在加聚过程中单体的键接方式可以有所不同。

1.1.3分子构造

所谓分子构造(architecture)是指聚合物分子的各种形状。一般高分子链的形状为线形,也有高分子链为支化或交联结构。支化高分子根据支链的长短可分为短支链支化和长支链支化。短支链的长度处于低聚物分子水平,长支链长度达聚合物分子水平。按照支链连接方式不同可分为无规(树状)、梳形和星形三种类型。高分子链之间通过化学键或链段连接成一个三维空间网状大分子即为交联高分子。

1.1.4共聚物的序列结构

高分子链由几种结构单元组成,称为共聚物。共聚物的类型包括:统计共聚物(statistical copolymers)、交替共聚物(alternating copolymers)、接枝共聚物(groft copolymers)和嵌段共聚物(block copolymers)。

1.2 构象

1.2.1微构象与宏构象

在有机化学中,“构象”(conformation)表示原子或原子基团围绕单键内旋转而产生的空间排布。在大分子科学中,这种构象称为微构象(microconformation)或局部构象。高分子具有沿着主链的微构象序列,从而导致整个分子链的构象,称为宏构象(macroconformation)或分子构象(molecular conformation),反映出高分子链在空间的形状。物质的动力学性质由位垒决定,热力学性质由构象能决定,即能量上有利的构象之间的能量差。由讨论可知,分子内旋转受阻的结果使得高分子链在空间可能有的构象数远小于自由内旋转的情况,但仍然是个很大的数,故长链同样呈线团状卷曲形态。但是,受阻程度越大,可能有的构象数越少,因此,高分子链的柔性大小取决于分子内旋转的受阻程度。

1.2.2高分子链的柔性

1.2.2.1平衡态柔性和动态柔性

高分子链的柔性是分子链能够改变其构象的性质。平衡态柔性是指热力学平衡条件下的柔性,取决于反式和旁式构象之间的能量差tg u ?。动态柔性是指在外界条件影响下从一种

平衡构象向另一种平衡构象转变的难易程度,转变速度取决于位能曲线上反式与旁式构象之间转变的位垒b u ?与外场作用能之间的关系。

通常,内旋转的单键数目越多,内旋转阻力越小,构象数越大,链段越短,柔性越好。

1.2.2.2影响柔性的因素

(1) 分子结构

主链结构 若主链全部由单键组成,一般链的柔性较好;若主链含有孤立双键时大分子的柔性也较大,如果主链为共轭双键,不能内旋转,则分子链呈刚性;若主链含有芳杂环结构时,由于芳杂环不能内旋转,则分子链柔性差;对于天然高分子纤维素来说,由于相邻结构单元间可生成内氢键,内旋转困难,链段活动性小,也属于刚性链高分子。

取代基 取代基的极性大,相互作用力大,分子链内旋转受阻严重,柔性变差。极性取代基的比例越大,即沿分子链排布距离小或数量多,则分子链内旋转越困难,柔性越差;对于非极性取代基来说,基团体积越大,空间位阻越大,内旋转越困难,柔性越差。

支化、交联 若支链很长,阻碍链的内旋转起主导作用时,柔性下降;对于交联结构,当交联程度不大时,对链的柔性影响不大。当交联程度达到一定程度时,则大大影响链的柔性。

分子链的长短 一般来说,分子链越长,构象数目越多,链的柔性越好。分子间作用力越大,聚合物中分子链所表现出的柔性越小。分子结构越规整,结晶能力越强,高分子一旦结晶,链的柔性就表现不出来,聚合物呈现刚性。

(2) 外界因素

温度 温度升高,分子热运动的能量增加,内旋转变易,构象数增加,柔性增加。 外力 当外力作用速度缓慢时,柔性容易显示;外力作用速度快,高分子链来不及通过内旋转改变其构象,柔性无法体现出来,分子链显得僵硬。

溶剂 溶剂分子和高分子链之间的相互作用对高分子的形态也有着十分重要的影响。 在影响高分子链柔性的诸多内、外因素中,除了外力影响指的是动态柔性之外,其余均为平衡态柔性。

高分子的聚集态结构

高分子的聚集态结构是指高分子链之间的几何排列和堆砌状态.包括固体和液体.固体又有静态和非晶态之分,非晶态聚合物属液相结构(即非晶固体),晶态聚合物属晶相结构。聚合物不存在气态,这是因为高分子的分子量很大,分子链很长,分子间作用力很大,超过了组成它的化学键的键能。

2.1 晶态聚合物结构

大量实验证明,如果高分子链本身具有必要的规整结构,同时给予适宜的条件(温度等),就会发生结晶,从玻璃体结晶,也可从溶液结晶。结晶聚合物最重要的实验证据为X 射线衍射花样和衍射曲线。通常,结晶聚合物是部分结晶的或半结晶的多晶体,既有结晶部分,又有非结晶部分,个别例外。结晶聚合物的晶体结构、结晶程度、结晶形态等对其力学性能、电学性能都有很大影响。

2.1.1 聚合物的结晶形态

随着结晶条件的不同,聚合物可以形成形态极不相同的晶体,其中主要有单晶、球晶、树枝状晶、纤维晶和串晶、柱晶、伸直链晶体等。

2.1.1.1单晶(single crystal) 聚合物单晶横向尺寸可以从几微米到几十微米,但其厚度都在10nm左右,最大不超过50nm。而高分子链通常长达数百纳米。电子衍射数据证明,单晶中分子链是垂直于晶面的。因此,可以认为,高分子链规则地近邻折叠,进而形成片状晶体——片晶(lamella),这就是Keller的“折叠链模型”。

2.1.1.2球晶(spherulite) 当结晶性聚合物从浓溶液中析出或从熔体冷却结晶时,在不存在应力或流动的情况下,都倾向于生成球晶形态。球晶呈圆球形,直径通常在0.5~100um 之间,大的甚至达厘米数量级。

2.1.1.3树枝状晶溶液中析出结晶时,当结晶温度较低或溶液浓度较大或分子量过大,聚合物不再形成单晶,结晶的生长将导致较为复杂的结晶形式,生成树枝晶。在树枝晶生长过程中,也重复发生分叉支化,但这是在特定方向上择优生长的结果。

2.1.1.4纤维状晶和串晶当存在流动场时,高分子链伸展,并沿着流动方向平行排列。在适当的情况下,可以发生成核结晶,形成纤维状晶。应力越大,伸直链成分越多。纤维状晶的长度可以不受分子链平均长度的限制,电子衍射实验进一步证实,分子链的取向是平行纤维轴的,因此,这样得到的纤维有较好的强度。高分子溶液温度较低时,边搅拌边结晶,可以形成一种类似于串珠式结构的特殊结构形态——串晶。这种聚合物串晶具有伸直链结构的中心线,中心线周围间隔的生长着折叠链的片晶,它是同时具有伸直链和折叠链两种结构单元组成的多晶体。应力越大,伸直链组分越多。

2.1.1.5柱晶当聚合物熔体在应力作用下冷却结晶时,还常常形成一种柱状晶。即由于应力作用,聚合物沿应力方向成行地形成晶核,然后以这些形成核为中心向四周生长成折叠链片晶。

2.1.1.6伸直链晶体聚合物在极高压力下进行熔融结晶或者对熔体结晶加压热处理,可以得到完全伸直链的晶体。晶体中分子链平行于晶面方向,片晶的厚度基本上等于伸直了的分子链长度,其大小与聚合物分子量有关,但不随热处理条件而变化。该种晶体的熔点高于其他结晶形态,接近厚度趋于无穷大时的晶体熔点。为此,目前公认,伸直链结构是聚合物中热力学上最稳定的一种聚集态结构。

2.2 非晶态聚合物结构

由于温度和结构不同,非晶态聚合物呈现出不同的物理、力学行为,包括:玻璃体、高弹体和熔体。非晶态聚合物通常是指完全不结晶的聚合物。从分子结构角度来看,包括:链结构的规整性很差,一直不能形成可观的结晶,如无规立构聚合物,其熔体冷却时,仅能形成玻璃体;链结构具有一定的规整性,可以结晶,但由于结晶速度十分缓慢,以至于熔体在通常的冷却速度下得不到可观的结晶呈现玻璃体结构;链结构虽然具有规整性,但因分子链扭折不易结晶,常温下呈现高弹体结构,低温时才能形成可观的结晶。对于晶态聚合物,非晶态包括:过冷的液体;晶区间的非晶区。

高分子链如何堆砌在一起形成非晶态结构,一直是高分子科学界热烈探索和争论的课题。20世纪70年代以来,出现了两种对立的学说;Flory学派的无规线团模型和Y eh等的局部有序模型。

2.2高分子液晶

一些物质的结晶结构受热熔融或被溶剂溶解之后,表观上虽然失去了固体物质的刚性,变成了具有流动性的液体物质,但结构上仍然保持着一维或二维有序排列,从而在物理性质上呈现各向异性,形成一种兼有部分晶体液体性质的过渡状态,这种中介状态称为液晶态,处于这种状态下的物质称为液晶(liquid crystal)。液晶包括液晶小分子和液晶高分子。液晶高分子与液晶小分子相比,具有高分子量和高分子化合物的特性;与其他高分子相比,又有液晶相所特有的分子取向序和位置序。

液晶高分子是具有液晶性的高分子。它是由小分子液晶基元键合而成的。这里所谓的液

晶基元(mesogenic unit)是指高分子液晶中具有一定长径比的结构单元。这些液晶基元可以是棒状的,也可以是盘状的,或者更为复杂的二维乃至三维形状,甚至可以两者兼而有之。也还可以是双亲分子。根据液晶基元在高分子中的存在方式,人们将液晶高分子分成两大类:主链液晶高分子,其液晶基元位于主链之内;侧链型液晶高分子,其液晶基元是作为支链链段悬挂在主链之上的。一般情况下,侧链液晶高分子的主链是相当柔顺的。如果侧链型液晶高分子的主干链和支链上均含有液晶基元,这种高分子称为组合式液晶高分子。

2.3聚合物的取向结构

聚合物的取向结构(oriented structure)是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构。取向条件(温度、拉伸速度等)不同,非晶态聚合物的取向单元也不同。按照外力作用的方式不同,取向又可分为单轴取向和双轴取向两种类型。单轴取向的最常见例子是合成纤维的牵伸。薄膜也可以单轴拉伸取向,但是,这种薄膜平面上出现明显的各向异性,取向方向上原子间主要以化学键相连接,而垂直于取向方向上则是范德华力。

2.4多组分聚合物

多组分聚合物(multicomponent polymer)又称高分子合金。该体系中存在两种或以上不同的聚合物组分,不论组分之间是否以化学键相互连接。连接的基本方式为:聚合物共聚物、接枝共聚物、嵌段共聚物、半互穿聚合物网络、互穿聚合物网络、邻接聚合物。

多组分聚合物的制备方法可分为两类:一类是化学共混,另一类是物理共混。共混得到的高分子合金是非均相体系,也可能是均相体系,依赖于共混组分之间的相容性。按照聚合物各组分的凝聚态结构特点,聚合物共混物可分为:非晶态/非晶态共混聚合物;晶态/非晶态共混聚合物;晶态/晶态共混聚合物。按照共混物的链结构特点分为:均聚物与均聚物共混体系、接枝或嵌段共聚物与相应均聚物共混体系、无规共聚物和均聚物共混体系、刚性链/半刚性链或柔性链聚合物共混体系等。

(2)高分子材料的性能

1 高分子材料的力学性能

聚合物作为必须具备所需要的力学强度.对大多数高分子材料,力学性能是其最重要的性能.聚合物的力学特性是由其结构特性所决定的。

1.1高弹性

处于高弹态的聚合物表现出高弹性能。高弹性是高分子材料极重要的性能。

1.1.1高弹性的特点高弹性即橡胶弹性,同一般的固体物质所表现的普弹性具有如下主要特点:

a 弹性模量小,形变大;

b 弹性模量与绝对温度成正比,而一般固体的模量随温度的提高而下降;

c 形变时有热效应,伸长时放热,回缩时吸热;

d 在一定条件下,高弹形态表现明显的松弛现象。这些特点是由高弹形态的本质所决定的。

由线型无交联的大分子构成的聚合物,虽然在高弹态能表现一定的高弹性形变,但作用力时间稍长时,会发生大分子之间的相对位移而产生永久变形,所以不能表现典型的高弹性。适度交联的聚合物,如交联的天然橡胶,则表现出典型的高弹行为。

1.2黏弹性

聚合物的黏弹性是指既有粘性又有弹性的性质,实际是聚合物的力学松弛行为。在玻璃化转变温度以上,非晶态线性聚合物的粘弹性表现最为明显。

1.2.1静态黏弹性静态黏弹性是指在固定的应力(或应变)下形变(或应力)随时间延长而发展的性质。典型的表现是蠕变和应力松弛。在一定温度、一定应力作用下,材料的形变随时间的延长而增加的现象称为蠕变。对线型聚合物,形变可无限发展且不能完全回复,保留

一定的永久变形。对交联聚合物,形变可达一平衡值。在温度、应变恒定的条件下,材料的内应力随时间延长而逐渐减小的现象称为应力松弛。在应力松弛过程中,模量随时间而减小,所以这时的模量称为松弛模量。

1.2.2 动态黏弹性动态黏弹性是指在应力周期性变化作用下聚合物的力学行为,也称为动态力学性质。

1.2.3 黏谈模型聚合物的黏弹性可采用表示弹性的弹簧与表示粘性的黏壶组合而成的模型来模拟分析。最简单的例子是由模量为E的弹簧和黏度为 的黏壶串联而成的Maxwell

模型和由两者并联而成的V oigt模型。然而,所有这些模型都只是实际聚合物粘弹行为的近似表示。

松弛现象是热运动对聚合物分子取向的影响。形变及形变的回复要克服大分子内及分子间的相互作用力,因而需要一定的时间去完成。同时克服阻力,就使一部分弹性能以热能的形式消耗掉,从而产生内耗。当机械应力作用在聚合物上时引起大分子链构象的改变,体系熵减小,自由焓增大。若维持形变状态不变,由于链的热运动,使分子构象的改变逐渐减小,从而产生应力松弛,过剩的自由焓以热能的形式耗散。蠕变过程的本质也完全一样,是同一个问题的另一种表现形式。松弛过程即黏弹过程有多种途径,对应于大分子链的多种复杂运动。这些运动可用分子链中链段的一系列不同程度的长程协同运动的特征形式来描述。整个分子的移动需要最大的协同运动,最长的协同时间,大小不同链段的各种协同运动也都对应各种不同的特征松弛时间。由于运动的形式极多,所以存在一系列不同的松弛时间。实际聚合物的粘弹行为是由这些众多的松弛时间构成的。这些不同的松弛时间构成了近似连续的松弛时间谱。所以任何黏弹模型只能是实际聚合物粘弹行为的近似表示。

1.3聚合物的力学屈服

力学屈服现象当应力达到屈服点之后,在应力基本不变的情况下产生较大的形变,当除去应力后,材料也不能恢复到原样,称为屈服现象。屈服前就出现断裂的玻璃态聚合物表现为脆性,屈服之后才断裂的玻璃态聚合物表现为韧性。

1.4聚合物的力学强度

1.4.1 理论强度与实际强度从微观的角度看,聚合物的断裂包括以下三种可能性:化学键破坏;分子间或晶粒群体间的滑脱;范德华力或氢键的破坏。将聚合物材料按结构完全均匀的理想情况计算而得到的理论强度要比聚合物的实际强度高出几十倍乃至上百倍。至于弹性模量,实际值与理论值是比较接近的。聚合物实际强度远低于理论强度的原因在于结构的不完全均匀。聚合物结构中存在各种大小不一的缺陷,这就引起了应力的局部集中。应力集中到少数化学键上,是这些键断裂,产生裂缝,最后导致材料的破裂。这就是说,由于结构上存在缺陷,造成材料破坏时各个击破的局面。这就是实际强度远低于理论强度的根本原因。

1.4.2 抗张强度和抗冲击强度聚合物的破坏过程具有松弛的特点,所以聚合物的抗张强度除与聚合物本身的结构、取向情况、结晶度、添加填料、增塑剂等因素有关外,尚与在和速率及温度等外界条件有关。冲击破坏是塑料构件及制品常见的破坏形式。抗冲击性能在很大程度上取决于试样缺口的特性。

1.5 摩擦与磨耗

摩擦和磨耗是聚合物重要的力学性能,对橡胶轮胎的设计十分重要。在织物制造中,纤维之间的摩擦也很重要。在由摩擦而引起的剪切过程中,能量的消耗在很大程度上取决于材料的黏弹特性,因而取决于温度和应变速率。

磨耗与摩擦是同一种现象的两个方面。黏合和嵌入的形式均可因剪切而使材料从较软的表面磨去,这成为磨耗,因此磨耗与摩擦是紧密相关的。磨耗是基本力学过程复杂地相互作用的结果。磨耗力引起大的局部形变,摩擦生热引起局部温度升高,这可能显著地改变了材

料的黏弹特性。因此磨耗过程常决定于聚合物材料表面的性质。表面的黏弹特性往往有别于本体聚合物。

1.5疲劳强度

聚合物材料在周期性交变应力作用下会在低于静态强度的应力下破裂,这种现象称为疲劳现象。疲劳现象同样是在应力作用下有裂纹的发展引起的。对于热塑性聚合物,疲劳极限约为静态强度的1/4,对增强聚合物材料,此比值稍大一些。某些聚合物,如聚甲醛和聚四氟乙烯,此比值可达0.4~0.5。一般而言,此比值随分子量的增大及温度的提高而有所增加。

2 高分子材料的物理性能

1.6热性能

2.1.1 热导率聚合物一般是靠分子间力结合的,所以导热性一般较差。固体聚合物的热导率范围较窄。结晶聚合物的热导率稍高一些。非晶聚合物的热导率随分子量的增大而增大,这是因为热传递沿分子链进行比在分子间进行的要容易。同样加入低分子的增塑剂会使热导率下降。聚合物热导率随温度的变化有所波动,但波动范围不超过10%。取向引起热导率的各向异性,沿取向方向热导率增大,横向减小。

2.1.2 比热容及热膨胀性高分子材料的比热容主要是由化学结构决定的,比金属及无机材料的大。聚合物的热膨胀性比金属及陶瓷大。其膨胀系数随温度的提高而增大,但一般并非温度的线性函数。

2.2 电性能电阻率和介电常数、介电损耗、介电强度、静电现象、聚合物驻极体和热释电流。

2.3 光性能折射、透明性及光泽、反射及内反射。

2.4 渗透性渗透或渗析是指液体分子或气体分子可从聚合物膜的一侧扩散到其浓度较低的另一侧的现象。根据聚合物的渗透性,高分子材料在薄膜包装、提纯、医学、海水淡化等方面都获得了广泛的应用。

(3) 聚合物分子运动的特点

1.1 运动单元和模式的多重性

高分子材料的结构是多层次、多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次、多类型的,相应的转变和松弛也具有多重性。从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。在各种运动单元和模式中,链段的运动最为重要,链段的运动决定着高分子材料的许多特性。链段运动状态是判断材料处于玻璃态或高弹态的关键结构因素:链段运动既可以引起大分子构象变化,也可以引起分子整链中心位移,使材料发生塑性形变和流动。

1.2 分子运动的时间依赖性

在外场作用下,高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态是需要时间的,这种时间演变过程称为松弛过程,所需要的时间为松弛时间。低分子物质对外场的响应往往是瞬时完成的,因此,松弛时间很短,而高分子材料的松弛时间可能很长。高分子的这种松弛特性来源于其结构特性,由于分子链的相对分子质量巨大,几何构型具有明显不对称性,分子间相互作用很强,本体粘度很大,因此,其松弛过程进行得较慢。不同运动单元的松弛时间不同。运动单元越大,运动中所受阻力越大,松弛时间越长。由于高分子材料结构具有多重性,因此,其总的运动模式具有一个广阔的松弛时间谱。了解材料的松弛时间谱十分重要,因为材料的不同性质是在不同的松弛过程中表现出来的。在实际测试或使用材料时,只有那些松弛时间与外场作用时间数量级相当的分子运动模式或性质最早和最明显

的被测试或表现出来。例如,要研究链段的运动,实验进行的速度应当掌握在分钟数量级,太快或太慢的实验都不能测到链段的运动。如果要研究分子整链的运动(如聚合物的流动),实验时间必须长得多。换句话说,高分子材料的松弛特性使得其物理和力学性能与观察和测量的速度(或时间)相关。

1.3 分子运动的温度依赖性

温度是分子运动激烈程度的描述,高分子材料的分子运动也强烈地依赖于温度的高低。一般规律是:温度升高,各运动单元热运动能力增强,同时由于热膨胀,分子间距增加,材料内部自由体积增加,有利于分子运动,使松弛时间缩短。

由于高分子材料的分子运动即与温度有关,也与时间有关,因此观察同一个松弛现象,升高温度和延长外场作用时间得到的效果是等同的,这一性质也决定了我们在研究测量高分子材料物理性能时,或者规定好测量温度,或者规定好测量时间或速度,否则不易得到正确可靠的结果。

由此可见,聚合物的各种性能是其结构内部分子运动多重性的宏观体现,分子运动是联系聚合物结构与性能之间的桥梁。

高分子物理第1、2章习题答案

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 所谓构型(configuration),包括:旋光异构(全同、间同、无规立构),由不对称中心(或手性C原子)的存在而引起的;几何异构(顺、反异构),由主链上存在双键引起的;键接异构(头尾、头头、尾尾相连)。聚氯丁二烯的各种可能构型有如下六种: 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答:(1)由于等规立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。 6.从结构出发,简述下列各组聚合物的性能差异:

高分子物理习题及答案

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动 B.链段运动 C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯 4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。 (1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是( ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠 B.剪切变稀 C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶 B.伸直链晶体 C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ 1 ( A )聚合物能溶解在所给定的溶剂中 A. χ 1<1/2 B. χ 1 >1/2 C. χ 1 =1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态;

高分子物理习题 答案

高分子物理部分复习题 构象;由于单键(σ键)的内旋转,而产生的分子在空间的不同形态。它是不稳定的,分子热运动即能使其构象发生改变 构型;分子中由化学键所固定的原子在空间的排列。稳定的,要改变构型必需经化学键的断裂、重组 柔顺性;高聚物卷曲成无规的线团成团的特性 等同周期、高聚物分子中与主链中心轴平行的方向为晶胞的主轴,其重复的周期 假塑性流体、无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体 取向;高分子链在特定的情况下,沿特定方向的择优平行排列,聚合物呈各向异性特征。 熵弹性、聚合物(在Tg以上)处于高弹态时所表现出的独特的力学性质 粘弹性;外力作用,高分子变形行为有液体粘性和固体弹性的双重性质,力学质随时间变化的特性 玻尔兹曼叠加、认为聚合物在某一时刻的弛豫特性是其在该时刻之前已经历的所有弛豫过程所产生结果的线性加和的理论原理 球晶、球晶是由一个晶核开始,以相同的速度同时向空间各方向放射生长形成高温时,晶核少,球晶大 应力损坏(内耗)、聚合物在交变应力作用下产生滞后现象,而使机械能转变为热能的现象 应力松弛、恒温恒应变下,材料的内应变随时间的延长而衰减的现象。 蠕变、恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象 玻璃化转变温度Tg:玻璃态向高弹态转变的温度,链段开始运动或冻结的温度。挤出膨大现象、高分子熔体被强迫挤出口模时,挤出物尺寸大于口模尺寸,截面形状也发生变化的现象 时温等效原理、对于同一个松驰过程,既可以在低温下较长观察时间(外力作用时间)观察到,也可以在高温下较短观察时间(外力作用时间)观察出来。 杂链高分子、主链除碳原子以外,还有其他原子,如:氧、氮、硫等存在,同样以共价键相连接 元素有机高分子、主链含Si、P、Se、Al、Ti等,但不含碳原子的高分子 键接结构、结构单元在高分子链中的联结方式 旋光异构、具有四个不同取代基的C原子在空间有两种可能的互不重叠的排列方式,成为互为镜像的两种异构体,并表现出不同的旋光性 均相成核、处于无定型的高分子链由于热涨落而形成晶核的过程 异相成核、是指高分子链被吸附在固体杂质表面而形成晶核的过程。Weissenberg爬杆效应当插入其中的圆棒旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。 强迫高弹形变对于非晶聚合物,当环境温度处于Tb<T <Tg时,虽然材料处于 玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大变形 冷拉伸;环境温度低于熔点时虽然晶区尚未熔融,材料也发生了很大拉伸变形 溶度参数;单位体积的内聚能称为内聚物密度平方根 介电损耗;电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。 聚合物的极化:聚合物在一定条件下发生两极分化,性质偏离的现象 二、填空题

高分子物理课后答案何曼君第三版

高分子物理课后答案,何曼君,第三版 第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ① 稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ② 亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可

高分子物理作业答案-2

高分子物理习题集-答案 适用:高分子专业班级 第二章 高分子溶液 4.什么是Θ温度?如何测定Θ温度?若温度高于、等于和低于Θ温度时,试分别讨论高分子溶液的热力学性质及高分子在溶液中的形态。 答:(1)当112χ→时,高分子溶液可以视为理想溶液,Flory 导出 ()112-=-1-T θχκφ 当T θ→时,112χ→,此时的温度称为Θ温度。(0.4) (2)测定Θ温度的方法有:渗透压法和外推法。(0.3) (3)当T >θ时,1E μ?<0.说明高分子溶液比理想溶液更倾向于溶解, 也就是说,高分子链在T >θ时的溶液中由于溶剂化作用而扩张。T=θ时, 1E μ?=0。即高分子溶液符合理想溶液的规律,高分子链此时是溶解的,但是 链不溶胀也不紧缩。T <θ时,1E μ?>0,。链会紧缩,溶液发生沉淀。(0.3) 6.在室温下,有无溶剂可以使下列各高聚物溶解?为什么? A .聚乙烯 B .聚丙烯 C .聚丙烯腈 D .聚酰胺(尼龙-6) E .聚苯乙烯 F .PMMA G .聚对苯二甲酸乙二酯 H .硫化橡胶 I .固化的环氧树脂 答:A .聚乙烯,结晶聚合物,非极性,在室温下无溶剂可溶 B .聚丙烯,同上 C .聚丙烯腈,极性结晶高聚物,室温下可溶于极性溶剂 D .聚酰胺(尼龙-6),结晶聚合物,极性,在室温下有溶剂可溶 E .聚苯乙烯,非晶聚合物,非极性,在室温下有溶剂可溶 F .PMMA ,极性非晶聚合物,分子堆砌松散,室温下可溶于极性溶剂 G .聚对苯二甲酸乙二酯,同D H .硫化橡胶,分子间交联,无溶剂可溶,可溶胀 I .固化的环氧树脂,同H 7、35℃时,环己烷为聚苯乙烯(无规立构)的θ溶剂。现将300mg 聚苯乙烯(ρ=1.05 g/cm 3,Mn=1.5×105)于35℃溶于150ml 环己烷中,试计算:(1)第二维利系数A2;(2)溶液的渗透压。 答:(1)θ溶液,所以A2=0

高分子物理习题答案作业

共混型TPE在共混技术上经历哪些阶段及其特点。 答:以热塑性乙丙橡胶为例, 第一阶段:在PP中掺入未硫化的乙丙橡胶进行简单的机械共混制备TPE(称为TPO),PP含量一般在50份以下(以橡胶100份计)。 特点:密度小,抗冲击性特别是低温脆性好。可用于制造汽车保险杠。 第二阶段:在PP与乙丙橡胶共混时,借助交联剂和机械剪切应力作用使橡胶组分部分动态硫化,产生少量交联结构。 特点:该种材料强度、压缩永久形变、耐热、耐溶剂等性能都比TPO有很大提高,橡胶含量也高,但这两种TPE中,橡胶组分继续增加,共混物流动性大大降低。 第三阶段:制备完全硫化了的EPDM和PP共混物,该种TPE称作热塑性硫化胶(TPV)。 特点:由于橡胶组分已被充分交联,所以,材料的强度、弹性、抗压缩永久形变性能及耐热性均有很大提高。同时,耐疲劳、耐化学药品性及加工稳定性也明显改善,橡胶共混比可在较大范围内变化,材料性能具有更大的调节余地。 第6章橡胶弹性 1.高弹性有哪些特征?为什么聚合物具有高弹性?在什么情况下要求聚合物充分体现高弹性?什么情况下应设法避免高弹性? 答:特征:①弹性形变大,可高达1000%; ②弹性模量小。高弹模量约为105N/m2; ③弹性模量随绝对温度的升高正比地增加; ④形变时有明显的热效应。 聚合物的柔性、长链结构使其卷曲分子在外力作用下通过链段运动改变构象而舒展开来,除去外力又恢复到卷曲状态。橡胶的适度交联可以阻止分子链间质心发生位移的粘性流动,使其充分显示高弹性。 2.试述交联橡胶平衡态高弹形变热力学分折的依据和所得结果的物理意义。答:依据:热力学第一定律和第二定律 物理意义:橡胶变形后的张力可以看成是有熵的变化和内能的变化两部分组成。只有熵才能贡献的弹性叫熵弹性,橡胶拉伸时内能变化很小,主要是熵的变化。内能的变化是橡胶拉伸时放热的原因。 3. 简述橡胶弹性统计理论的研究现状与展望,说明橡胶弹性唯象理论的优缺点。 4.什么叫热塑性弹性体?举例说明其结构与性能关系。 答:热塑性弹性体兼有塑料和橡胶的特性,在常温下显示橡胶高弹性,高温下又能塑化成型。 苯乙烯—丁二烯—苯乙烯三嵌段共聚物:B:弹性,S:塑性 5.—交联橡胶试片,长2.8cm、宽1.0cm、厚0.2cm、重0.518g,于25℃时将其

高分子物理课后答案

第9章聚合物的流变性 1.什么是假塑性流体?绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现假塑性流体的性质?试用缠结理论加以解释。 答:(1)流动指数n<1的流体称为假塑性流体; (2)略 2.聚合物的粘性流动有何特点?为什么? 3.为什么聚合物的粘流活化能与分子量无关? 答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,这种流动的类似于蚯蚓的蠕动。因而其流动 活化能与分子的长短无关。,由实验结果可知当碳链不长时,随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,与相对分子质量无关。 4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。 答:低切变速率下,当时,略依赖于聚合物化学结构和温度,当 时,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链 缠结结构破坏程度增加,分子量对体系粘度影响减小。 聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。 5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。 答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温敏性的;当温度处于一定范围即Tg

【高分子物理】第一章作业参考答案

本习题参考答案大部分均来自于《高分子物理》(修订版),何曼君,复旦大学出版社,1990 1.名词解释 ●旋光异构体:分子中含有不对称碳原子,能够形成互为镜像的两种异构体,表现出不同 的旋光性,称为旋光异构体。p12 ●顺序异构体:由结构单元间的联结方式不同所产生的异构体称为顺序异构体,即头尾、 头头、无规表示的键接异构。p6 ●有规立构高分子:“等规高聚物”。分子链中旋光异构单元有规律性地排列的高分子。一 般指全同或间同高分子。p13 ●立构规整度:“等规度”。是指高聚物中含有全同立构和间同立构的总的百分数。p13 ●链段:我们把由若干个键组成的一段链算作一个独立的单元,称它为“链段”。P27 ●柔顺性:高分子链能够改变其构象的性质称为柔顺性。P17 ●平衡态柔顺性:静态柔顺性又称平衡态柔顺性,是指大分子链在热力学平衡条件下的柔 顺性。高分子链的平衡态柔顺性,通常用链段长度和均方末端距来表征。链段是指从分子链划分出来可以任意取向的最小运动单元。动态柔顺性是指高分子链在一定外界条件下,从一种平衡态构象转变到另一种平衡态构象的速度。 ●高斯链:高分子链段分布符合高斯分布函数的高分子链。P28 ●受阻旋转链:分子中的某些基团对于分子骨架中环绕单键的旋转造成了阻碍,这种类型 的高分子链称为受阻旋转链。 ●自由旋转链:假定分子链中每一个键都可以在键角所允许的方向自由转动,不考虑空间 位阻对转动的影响,我们称这种链为自由旋转链。P21 ●自由联结链:假定分子是由足够多的不占有体积的化学键自由结合而成,内旋转时没有 键角限制和位垒障碍,其中每个键在任何方向取向的几率都相等,我们称这种链为自由联结链。P20 ●等效自由结合链:令链段与链段自由结合,并且无规取向,这种链称为“等效自由结合 链”。P27 2.判断下列说法的正误,并说明理由。 (1)错误构象数与规整度无关。 (2)错误共轭双键间的单键实际上具有双键的性质,不能旋转。 (3)错误与结晶条件有关(如淬火样品中可能没有结晶);正确,具有结晶能力。 (4)正确温度高,内旋转越容易,内旋转异构体数目越多。 (5)正确结晶是三维有序,取向是一维、二维有序,有序代表着构象数减少,显然结晶构象数最少。 (6)错误高分子处于无定形态时,其末端距相等。 (7)错误自由结合链统计单元是一个化学键。而高斯链的统计单元是一个链段。高斯链包括自由结合链,而自由结合链只是高斯链的一个特例。 (8)错误高分子链段无固定长度,无固定位置,是个统计概念。可以通过le=h2/lmax求得平均链段长度,但是h2仍需通过实验得到。 (9)正确对于极端刚性链,高斯统计理论不适用。 (10)错误依据分子链柔顺性的不同,几何计算得到的末端距可能等于,也可能小于无扰状态分子链的末端距。 (11)正确键角变大,均方末端距变大;键长变大,均方末端距变大;键个数变多,均方末端距变大。 (12)错误长支化---分子链之间的物理缠结作用增加,分子链活动受阻,柔顺性下降。短

关于高分子物理习题答案

高分子物理习题答案 第一章高分子链的结构 3?高分子科学发展中有二位科学家在高分子物理领域作出了重大贡献并获得诺贝尔奖,他们是谁?请列举他们的主要贡献。 答:(1)H. Staudinger (德国):"论聚合”首次提出高分子长链结构模型,论证高分子由小分子以共价键结合。1953年获诺贝尔化学奖。 贡献:(1)大分子概念:线性链结构 (2)初探[]=KM关系 (3 )高分子多分散性 (4)创刊《die Makromol.Chemie》1943 年 (2)P. J. Flory(美国),1974年获诺贝尔化学奖 贡献:(1)缩聚和加聚反应机理 (2)高分子溶液理论 (3 )热力学和流体力学结合 (4 )非晶态结构模型 6?何谓高聚物的近程(一级)结构、远程(二级)结构和聚集态结构?试分别举例说明用什么方法表征这些结构和性能,并预计可得到哪些结构参数和性能指标。 答:高聚物的一级结构即高聚物的近程结构,属于化学结构,它主要包括链节、键接方式、构型、支化和交联结构等,其表征方法主要有:NMR, GC, MS, IR, EA, HPLC, UV 等。而高聚物的二级结构即高聚物的远程结构,主要包括高分子链的分子量、分子尺寸、分子形态、链的柔顺性及分子链在各种环境中所采取的构象,其表征方法主要有:静态、动态光散射、粘度法、膜渗透压、尺寸排除色谱、中子散射、端基分析、沸点升高、冰点降低法等。高聚物的聚集态结构主要指高分子链间相互作用使其堆积在一起形成晶态、非晶态、取向态等结构。其表征方法主要有:X-射线衍射、膨胀计法、光学解偏振法、偏光显微镜法、光学双折射法、声波传播法、扫描电镜、透射电镜、原子力显微镜、核磁共振,热分析、力学分析等。 &什么叫做高分子的构型?试讨论线型聚异戊二烯可能有哪些不同的构型。 答:由化学键所固定的原子或基团在空间的几何排布。 1 , 2:头-头,全同、间同、无规;头-尾,全同、间同、无规 3, 4:头-头,全同、间同、无规;头-尾,全同、间同、无规 1 , 4:头-头,顺、反;头-尾,顺、反 9?什么叫做高分子构象?假若聚丙烯的等规度不高,能不能用改变构象的办法提高其等规度?说明理由。答:由于单键内旋转而产生的分子在空间的不同形态(内旋转异构体)称为构象。不能用改变构象的办法提高其更规度。等规度是指高聚物中含有全同和间同异构体的总的百分数,涉及的是构型问题,要改变等规度,即要改变构型。而构型是由化学键所固定的原子或基团在空间的几何排布,改变构型必须通过化学键的断裂和重组。 11 ?假定聚丙烯主链上的键长为0.154纳米,键角为109.5,根据下表所列数据,求其等效自由结合链的 链段长度

高分子物理作业答案

第五章聚合物的转变与松弛 1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的5个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。 (1)玻璃态区类似玻璃,脆性,如:室温下的PS、PMMA。 温度不足以克服内旋转位垒,链段以上运动“冻结”,分子运动主要限于振动和短程的旋转运动 (2)玻璃—橡胶转变区远程、协同分子运动的开始。链段(约10—50个主链原子)获得了足够的热能开始以协同方式运动,不断改变构象 (3)橡胶-弹性平台区分子间存在物理缠结,聚合物呈现远程橡胶弹性(蜷曲链受力扩张,产生大形变外力除去后,自发地回复到蜷曲形态) (4) 粘弹转变区分子链发生解缠作用,导致由链段运动向整个分子滑移运动过渡。 (5) 粘流区聚合物容易流动,类似糖浆;热运动能量足以使分子链解缠蠕动,导致整链运 动。 2. 讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。 答:在轻度结晶的高聚物中,微晶体起着类似交联点的作用,这种试样仍然存在明显的玻璃化转变,随着结晶度的增加,相当于交联度的增加,非晶部分处在高弹态的结晶高聚物的硬度将逐渐增加,到结晶度大于40%后,微晶体彼此衔接,形成贯穿整个材料的连续晶相,宏观上不易察觉明显的玻璃化转变,其曲线在熔点以前不出现明显的转折。 交联聚合物,不存在(4)(5)区,因为交联阻止了滑移运动,在达到聚合物的分解温度之前,一直保持在③区状态。 结晶聚合物 1.处于晶态

a.轻度结晶 微晶体起着类似交联点的作用,存在明显的玻璃化转变, 形变小于非晶 b.结晶度大于40%时,无玻璃化转变,在熔点以前不出现明显的转折。 ?分子量不太大,T f T m熔融后→高弹态→粘流态 2.处于非晶态 类似于非晶态高聚物但有可能出现冷结晶现象。即T>Tg 后,链段排入晶格→结晶,使形变变小。 (图见讲义) 3. 写出四种测定聚合物玻璃化温度的方法,不同实验方法所得结果是否相同?为什么? 答:①膨胀计法②量热法(DSC法)③温度-形变法(热机械法)④核磁共振法(NMR) 4.聚合物的玻璃化转变是否是热力学相变?为什么? 答:玻璃化温度与测定过程的冷却速度有关,不是热力学的平衡过程,而是属于力学松弛过程。因为在玻璃化转变前后聚合物都是无规的,热力学上都属于液态。 5. 试用玻璃化转变的自由体积理论解释: 按自由体积理论(熔体降温为固体) 冷却速度过快,则链段来不及调整构象就被冻结,使自由体积高于平衡态时的Vf,这样,Tg以下体积-温度曲线向上平移,使依据两条曲线交点确定的Tg偏高。 按松弛理论(固体升温变为熔体) 因Tg是链段运动的松弛时间与观察时间匹配时的温度,升温速率越快,观察时间越短,相应的更短松弛时间的温度就越高,故测得的Tg就越高。 7. 聚合物晶体结构和结晶过程与小分子晶体结构和结晶过程有何差别?造成这些差别的原因是什么? 相似:都发生突变,有明显的转折,都属于热力学一级相转变过程 差异:小分子熔点0.2度高聚物是一5~10℃温度范围,熔限 原因:结晶高聚物中有完善程度不同的晶体(结晶时造成的),结晶比较完善的晶体在较高温度下才能熔融,而结晶不完善的晶体在较低温度就能熔融,如果熔化过程中升温速度比较缓慢,不完整晶体可以再结晶形成比较完善的晶体,熔限也相应变窄; 8. 测定聚合物结晶速度有哪些方法? 答:(1)膨胀计法、光学解偏振法和差示扫描量热法(Dsc) (2)偏光显微镜法和小角激光光散射法 9. 比较下列各组聚合物的Tg高低并说明理由; (1) 聚二甲基硅氧烷,顺式聚1,4—丁二烯; (2) 聚已二酸乙二醇酯,聚对苯二甲酸乙二醇酯 (3) 聚丙烯,聚4-甲基1-戊烯; (4) 聚氯乙烯,聚偏二氯乙烯。 解:(1)Tg:聚二甲基硅氧烷< 顺式聚1,4—丁二烯,聚二甲基硅氧烷主链为饱和单

高分子物理第二章作业

第二章 一.解释名词、概念 1.高分子的聚集态结构 2.结晶性聚合物 3.液晶性聚合物 4.球晶 5.高分子液晶 6.液晶原(介原) 7.内聚能密度 8.结晶度 9.结晶聚合物的熔点10.取向聚 合物11.晶面指数 二.高分子聚集态结构包括哪些内容?试述高分子聚集态结构有哪些特点及与成型加工条件、性能的关系。 四.如何从结构上分析某种聚合物属于结晶性聚合物? 五.以聚乙烯为例,说明在什么条件下可以形成单晶、球晶、串晶、伸直链片晶,这些形态的晶体特征是什么?为什么在聚合物不易形成100%结晶的宏观单晶体? 六.在正交偏光显微镜上观察球晶时,可以看到消光黒十字、明暗相间的同心圆环(消光环,对某些球晶),解释这些现象。 七.将下列三组聚合物的结晶难易程度排列成序,并说明原因 (1)PE,PP,PVC,PS,PAN; (2)聚对苯二甲酸乙二酯,聚间苯二甲酸乙二酯,聚己二酸乙二酯; (3)PA 66,PA 1010. 八.试述Avrami方程在本体聚合物结晶动力学研究中的意义。 九.已知聚乙烯、聚偏氯乙烯,全同聚甲基丙烯酸甲酯的玻璃化温度分别为-80℃,-18℃和45℃,其熔点分别为141℃、198℃和160℃,试用经验方法估算: (1)它们最大结晶速度时的温度Tc max; (2)找出Tc max/Tm比例的经验规律. 十.温度对本体聚合物结晶速度影响的规律是什么?解释其原因。

十一.均聚物A是一种结晶聚合物,若加入10%体积分数的增塑剂(x1=-0.1)或者用10%摩尔的单体B与单体A进行无规共聚(单体B的均聚物为非结晶性聚合物),增塑均聚物A的熔点与AB无规共聚物的熔点何者高? 能从中得到什么规律? 十二.两种聚丙烯丝,在纺丝过程中,牵伸比相同,而分别采用冰水冷却和90℃热水冷却。将这两种丝加热到90℃,何者收缩率大?为什么? 十三.有两种乙烯和丙稀的共聚物,其组成相同,其中一种在室温时是橡胶状的,一直到温度降低到-70℃时才变硬;另一种在室温时却是硬而韧又不透明的材料,试解释它们内在结构上的差别。 十四.在聚合物纺丝工艺中,都有牵伸和热定型两道工序,为什么?热定型温度如何选择? 十五.高分子液晶的结构有几种类型?特征如何?液晶性聚合物溶液的η-C、η-T、η-τ的关系如何?这些关系的意义如何? 十六.Flory的结晶聚合物、非结晶聚合物结构模型的要点是什么?有什么实验事实支持他的模型? 十七.(1)将熔融态的聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)和聚苯乙烯(PS)淬冷到室温,PE是半透明的,而PET和PS是透明的。为什么? (2)将上述的PET透明试样,在接近玻璃化温度下进行拉伸,发现试样外观由透明变为混浊,试从热力学观点来解释这一现象。 十八. 由文献查得涤纶树脂的密度ρc=1.50×103kg·m-3,和ρa=1.335×103kg·m-3,内聚能ΔΕ=66.67kJ·mol-1(单元).今有一块1.42×2.96×0.51×10-6m3的涤纶试样,重量为2.92×10-3kg,试由以上数据计算: (1)涤纶树脂试样的密度和结晶度; (2)涤纶树脂的内聚能密度.

高分子物理作业解答

高分子物理作业-2-答案 聚合物的力学状态及转变 1. 解释名词: (1)聚合物的力学状态及转变 由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。 (2)松弛过程与松弛时间 松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。 松弛时间τ是用来描述松弛快慢的物理理。在高聚物的松弛曲线上,?x t ()变到等于?x o 的1/e 倍时所需要的时间,即松弛时间。 (3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积; 在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。因而高聚物的玻璃态可视为等自由体积状态。 (4)玻璃态与皮革态 当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态; 部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。 2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上) 1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M ) 3) 线性非晶态聚合物(212,M M M ?212,M M M ?>1 M ) 4) 晶态聚合物(1M )

高分子物理课后习题

第1章高分子的链结构 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子)σ,实测的无扰均方末端距与自由旋转链的均方末端距之比,σ值愈大,内旋转阻碍越大,柔顺性愈差; (2)特征比Cn,无扰链与自由连接链均方末端距的比值,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解:(1)聚乙烯>聚氯乙烯>聚丙烯腈,取代基极性越大,高聚物柔顺性越差; (2)聚甲醛>聚苯醚>聚苯,主链刚性基团比例越大,柔顺性越差,苯环柔顺性比亚甲基差; (3)聚丁二烯>聚氯丁二烯>聚氯乙烯;孤立双键的柔顺性较单键主链好,极性取代基是的聚合物柔顺性变差; (4)聚偏二氟乙烯>聚氟乙烯>聚二氟乙烯,对称取代的柔顺性优于单取代,取代基比例越大,柔顺性越差;

第2章聚合物的凝聚态结构 3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么? 答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体; (2)形态特征:单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm 左右;树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状;球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环;纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度;串晶:在电子显微镜下,串晶形如串珠;柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状;伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。 4.测定聚合物的结晶度的方法有哪几种?简述其基本原理。不同方法测得的结晶度是否相同?为什么? 答:(1)密度法,X射线衍射法,量热法; (2)密度法的依据:分子链在晶区规整堆砌,故晶区密度大于非晶区密度;X射线衍射法的依据:总的相干散射强度等于晶区和非晶区相干散射强度之和;量热法的依据:根据聚合物熔融过程中的热效应来测定结晶度的方法。 (3)不同,因为结晶度的概念缺乏明确的物理意义,晶区和非晶区的界限很不明确,无法准确测定结晶部分的量,所以其数值随测定方法不同而不同。 11.某一聚合物完全结晶时的密度为0.936g/cm3,完全非晶态的密度为 0.854g/cm3,现知该聚合物的实际密度为0.900g/cm3,试问其体积结晶度应为多少? 答:根据体积结晶度计算公式 带入ρ=0.900g/cm3,ρa=0.854g/cm3,ρc=0.936g/cm3 得=0.561

高分子物理第一-二章作业解答(class)

一:名词解释 a.高分子链的近程结构和远程结构 近程结构:高分子链所组成单元的化学结构和立体化学结构,即高分子的构造和构型。构造:高分子中原子的种类和排列,构型:某一原子的取代基在空间的排列 远程结构:单个分子链的大小和形态,链的柔顺性以及在各种环境中分子所采取的构象。 b.高分子链的构型和构象 构象:由围绕单键内旋转所形成的分子中原子在空间的不同排列形式。 构型:由化学键固定的分子中原子在空间的不同排列形式。 c.高分子链的柔性和刚性 柔性:高分子链每个单键内旋转而产生无数种构象,并具有强烈卷曲的倾向的特性, 刚性:与柔性相对,指的是高分子链不发生单键内旋转产生无数构象的特性。 d.自由结合链、自由旋转链和等效自由结合链 自由结合链:高分子链由N个长度相等的链节组成,并且每个链节的相互连接不受键角和内旋转势垒的限制,即自由旋转任意取向,同时链本身不占有体积。

自由旋转链:高分子链由N个相同单键组成,单键间夹角一定,单键内旋转不受阻碍,即是自由旋转的。 等效结合链:由于不存在自由结合链,也不存在自由旋转链,而只有无规线团状的链。假如这种线团的长度足够长,而且具有一定的柔性,则仍旧可以把它当作自由结合链进行统计处理,称为。 e.均方末端距和均方回转半径 均方末端距:线性高分子链一端至另一端的直线距离的平均值或其值平方的平均值。 均方回转半径:枝化高分子链的质量中心到各个链段的距离的平均值或其值的平方的平均值。 二:试比较下列聚合物(写出名称和缩写)分子链柔性的大小,阐述其理由 1 , C H2C H C H2C H C N C H2C H n n n C H3C l 以上三种高分子分别为聚丙烯(PP),聚乙烯腈(PAN),聚氯乙烯(PVC) 柔性由弱到强依次是:聚乙烯腈、PVC、PP,因为含极性侧基的高分子,侧基极性越强则链的柔性 越差。

高分子物理习题答案

高分子物理习题集-答案 第一章高聚物的结构 4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度? 答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。 构象:由于单键内旋转而产生的分子在空间的不同形态。构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。 不能。提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。 答:按照IUPAC有机命名法中的最小原则,CH3在2位上,而不是3位上,即异戊二烯应写成 (一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。 (二)不同的键接异构体可能还存在下列6中有规立构体。 ①顺式1,4-加成 ②反式1,4-加成 ③1,2-加成全同立构 ④1,2-加成间同立构 ⑤3,4-加成全同立构 ⑥3,4-加成间同立构 6.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力? 答:分子间作用力的本质是:非键合力、次价力、物理力。 影响因素有:化学组成、分子结构、分子量、温度、分子间距离。PE、PP是非极性聚合物,其分子间作用力为:色散力;

高分子物理第一章习题

第一章 1. 1 高分子链的近程结构 1.1.1 结构单元的化学组成 例1-1以下化合物,哪些是天然高分子化合物,哪些是合成高分子化合物 (1)蛋白质,(2)PVC,(3)酚醛树脂,(4)淀粉,(5)纤维素,(6)石墨,(7)尼龙66, (8)PVAc,(9)丝,(10)PS,(11)维尼纶,(12)天然橡胶,(13)聚氯丁二烯,(14)纸浆,(15)环氧树脂解:天然(1)(4)(5)(6)(9)(12)(14),合成(2)(3)(7)(8)(10)(11)(13)(15) 1.1.2 构型 例1-2试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。 解:聚异戊二烯可能有6种有规立构体,它们是: 常见错误分析:本题常见的错误如下: (1)将1,2加成与3,4加成写反了。 按IUPAC有机命名法中的最小原则,聚异戊二烯应写成

而不是 即CH3在2位上,而不是在3位上。 (2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。”顺1,4或 反1,4结构中没有不对称碳原子,没有旋光异构体。甲基与双键成120°角,同在一个平面上。 例1-3 环氧丙烷经开环聚合后,可得到不同立构的聚合物(无规、全同、间同), 试写出它们的立构上的不同,并大致预计它们对聚合物性能各带来怎样的影响? 解:聚环氧丙烷的结构式如下: 存在一个不对称碳原子(有星号的),因而有以下全同、间同和无规立构体。 性能的影响是:全同或间同立构易结晶,熔点高,材料有一定强度;其中全同立构的结晶度、 熔点、强度会比间同立构略高一点。无规立构不结晶或结晶度低,强度差。 常见错误分析:“只存在间同立构,不存在全同立构。” 以上写法省略了H,根据上述结构式,似乎只存在间同不存在全同。这是一种误解, 实际上碳的四个价键为四面体结构,三个价键不会在一个平面上。而在平面上表示的只是一个示意,全同与间同的真正区别在于CH3是全在纸平面之上(或之下),或间隔地在纸平面之上和之下。 例1-4 试述下列烯类高聚物的构型特点及其名称。式中D表示链节结构是D构型,L是L构型。 1.-D-D-D-D-D-D-D- 2.-L-L-L-L-L-L-L-

高分子物理习题

下列四种聚合物中,链柔顺性最好的是( D )。 A、聚氯乙烯, B、聚氯丁二烯, C、顺式聚丁二烯, D、反式聚丁二烯 反式聚丁二烯>顺式聚丁二烯>聚氯丁二烯>聚氯乙烯 下列四种聚合物中,链柔顺性最差的是( C )。取代基极性大CH2CH2n > CH2n CH 3> CH2CH n Cl> CH2n CH A、CH2CH2n, B、CH2CH n Cl, C、 CH2n CH CN, D、 CH2n CH CH3 下列四种聚合物中,链柔顺性最好的是( A )。取代基的空间位阻效应小、、CH2O n >Si O n CH3 3>n >O n A、CH2O n, B、O n, C、n, D、Si O n CH3 3 下列四种聚合物中,链柔顺性最差的是( D )。聚乙烯>聚丙烯>顺式聚1,4-丁二烯>聚苯乙烯 A 聚乙烯, B 聚丙烯, C 顺式聚1,4-丁二烯, D 聚苯乙烯 知识点: 定性讨论分子结构对链的柔性的影响: 1.主链结构在碳链高分子中,极性最小的是高分子碳氢化合物。它们分子内的相互 作用不大,内旋转位垒较小,高分子链具有较大的柔性。如聚乙烯,聚丙烯。 双烯类高聚物的主链中含有双键。虽然双键本身不可以旋转,但是它使邻接双键的单键的内旋转变得更为容易。如聚丁二烯。但是,具有共轭双键的高分子链,由于∏电子云没有轴对称性,且∏电子云在最大程度交叠时能量最低,而内旋转会使∏键电子云变形和破裂,这类高分子键就不能旋转。如聚乙炔。 所以聚乙炔<聚丁二烯<聚乙烯 在杂链高分子中,围绕C-O,C-N,Si-O等单键进行的内旋转,位垒均较C-C单键的为小,柔性较好。如聚酯,聚氨酯,聚酰胺,聚二甲基硅氧烷。 主链含有芳杂环结构时,由于芳杂环不能内旋转,所以这样的分子链柔性差。 2.取代基引进极性取代基将增加分子内的相互作用,从而影响高分子链的柔性。取 决于取代基的大小,沿分子链排布的距离以及对称情况。非极性取代基的影响则主要取决于取代基体积的大小。

何曼君 高分子物理课后答案_第三版

第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章 一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可见的,添加增容剂后,并经强烈的机械混合,增容剂提高了两相界面之间的相互作用,可形成稳定的微相分离结构 第五章聚合物的非晶态 3.何谓“松弛”?请举例说明松弛现象。用什么物理量表示松弛过程的快慢? 答:“松弛”过程是指一个从非平衡态到平衡态进行的过程,它首先是很快地进行,然后逐步放慢甚至于时间达到无穷长。√ 例如,一直杆的长度比两刚壁之间的固定距离L稍长;将直杆强制地装入两刚壁之间,在开始时,直杆与刚壁的接触面之间有相互作用的压力P,在直杆内任一截面上也有内压力P;以后,随着时间的增长,这些压力的数值渐渐减小,而且温度越高时减小得越快。岩石和

相关主题
文本预览
相关文档 最新文档