1.1.2集合间的基本关系(两课时)
- 格式:ppt
- 大小:1.31 MB
- 文档页数:36
第一章集合与函数的概念第2课时集合间的基本关系【双向目标】能使用利用【课标知识】(),5.,,,则如果集合(或.AA A.D.A≠,=1}-2=0}=基础过关参考答案:3.【解析】因为集合A有且仅有2个子集,所以A仅有一个元素,即方程ax2+2x+a=0(a ∈)仅有一个根或两个相等的根.(1)当a=0时,方程为2x=0,此时A={0},符合题意.(2)当a≠0时,由Δ=22-4·a·a=0,即a2=1,∴a=±1.此时A={-1}或A={1},符合题意.∴a=0或a=±1.4.【解析】选A.因为A,B中的元素显然都是奇数,所以A,B都是由所有奇数构成的集合.故A=B5. 【解析】(1)(2)(3)∴的取值集合为【能力素养】探究一子集与真子集的求法例1:写出集合{a,b,c}的所有不同的子集【分析】根据子集的含义进行求解【解析】不含任何元素子集为,只含1个元素的子集为{a},{b},{c},含有2个元素的子集有{a,b},{a,c},{b,c},含有3个元素的子集为{a,b,c},即含有3个元素的集合共有23=8个不同的子集.如果集合增加第4个元素d,则以上8个子集仍是新集合的子集,再将第4个元素d放入这8个子集中,会得到新的8个子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n个元素的集合共有2n个不同的子集.【点评】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a起,a与每个元素搭配有{a,b},{a,c},然后不看a,再看b可与哪些元素搭配即可.同时还要注意两个特殊的子集:和它本身.【变式训练】1.已知,则这样的集合有个.【解析】集合A可以为{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}【答案】7个2.已知集合A={1,2,3},平面内以(x,y)为坐标的点集合B={(x,y)|x∈A,y∈A,x+y ∈A},则B的子集个数为()A.3 B.4 C.7 D.8【解析】∵集合A={1,2,3},平面内以(x,y)为坐标的点集合B={(x,y)|x∈A,y ∈A,x+y∈A},∴B={(1,1),(1,2),(2,1)}∴B的子集个数为:23=8个.【答案】D探究二集合间的关系例2. 集合,集合,那么间的关系是().A. B. C. = D.以上都不对【分析】根据集合间的关系进行判断.【点评】判断两个集合间的关系的关键在于:弄清两个集合的元素的构成,也就是弄清楚集合是由哪些元素组成的.这就需要把较为抽象的集合具体化(如用列举法来表示集合)、形象化(用Venn图,或数形集合表示).【变式训练】1.若集合,则().A. B. C. = D.【解析】因为A,B中的元素显然都是奇数,所以A,B都是由所有奇数构成的集合.故A=B 【答案】C2.设M={x|x=a2+1,a N+},N={x|x=b2-4b+5,b N+},则M与N满足( )A. M=NB. M NC. N MD. M≠ N【解析】当a N+时,元素x=a2+1,表示正整数的平方加1对应的整数,而当b N+时,元素x=b2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N中元素是自然数的平方加1对应的整数,即M中元素都在N中,但N中至少有一个元素x=1不在M中,即M N,故选B. 【答案】B探究三集合间关系具有的性质例3:已知若M=N,则= .A.-200 B.200 C.-100 D.0【分析】解答本题应从集合的概念、表示及关系入手,本题应侧重考虑集合中元素的互异性.由M=N可知必有x2=|x|,即|x|2=|x|,∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立若|x|=1即x=±1当x=1时,M中元素|x|与x相同,破坏了M中元素互异性,故 x≠1当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1=-2+2-2+2+…+2=0【答案】0【点评】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.【变式训练】1.设a,b R,集合,则b-a=( )【答案】22.集合A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},D={y=x2+1}是否表示同一集合?【解析】集合A={x|y=x2+1}的代表元素为x,故集合A表示的是函数y=x2+1中自变量x的取值范围,即函数的定义域A=;集合B={y|y=x2+1}的代表元素为y,故集合B表示的是函数y=x2+1中函数值y的取值范围,即函数的值域B=;集合C={(x,y)|y=x2+1}的代表元素为点(x,y),故集合C表示的是抛物线y=x2+1上的所有点组成的集合;集合D={y=x2+1}是用列举法表示的集合,该集合中只有一个元素:方程y=x2+1.【答案】都不相同【课时作业】1.已知全集,则正确表示集合和关系的韦恩(Venn)图是()2.已知集合,,则满足条件的集合C的个数为()A.1 B.2 C.3 D.43.设M={x|x=a2+1,a N+},N={x|x=b2-4b+5,b N+},则M与N满足( )A. M=NB. M NC. N MD. M≠ N4.已知集合A={x|x2-1=0},则有( )A.1∉A B.0⊆A C.∅⊆A D.{0}⊆A5.集合的所有真子集个数为( ).A.3 B. 7 C.15 D.316.同时满足:①M⊆{1,2,3,4,5};②a∈M,则6-a∈M的非空集合M有( )A.6个 B.7个 C.15个 D.16个7.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是( )A.1 B.-1C.1或-1 D.0,1或-18.设,,若则的取值范围是()AB C D.9.已知集合A={x|1<x-1≤4},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.10.用适当的符号填空:(1);(2);(3).11.已知集合A={-1,3,2m-1},集合B={3,m2},若B A,则实数m=________.12.设A是非空集合,对于k∈A,如果,那么称集合A为“和谐集”,在集合的所有非空子集中,是和谐集的集合的个数为13.已知A={x|x<3},B={x|x<a}.(1)若B⊆A,求a的取值范围;(2)若A⊆B,求a的取值范围.14.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N M,求实数a的值.15.已知全集,集合R,;若时,存在集合M使得,求出这样的集合M;1.【解析】由,得,则,选B.【答案】B【答案】D3.【解析】当a N+时,元素x=a2+1,表示正整数的平方加1对应的整数,而当b N+时,元素x=b2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N中元素是自然数的平方加1对应的整数,即M中元素都在N中,但N中至少有一个元素x=1不在M中,即M N,故选B. 【答案】B4.【解析】由已知,A={1,-1},所以选项A,B,D都错误,因为∅是任何非空集合的真子集,所以C正确.【答案】C5.【解析】,所以,真子集的个数为15个【答案】C6.【解析】a=3时,6-a=3;a=1时,6-a=5;a=2时,6-a=4;a=4时,6-a=2;a=5时,6-a=1,∴非空集合M可能是:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5}共7个..故选B【答案】B【答案】510.【解析】(1);(2);(3) .【答案】(1);(2);(3) .11.【解析】,即,当时,,满足【答案】112.【解析】由和谐集的定义知,该集合中可以含有元素-1,1,和3,和2,所以共有和谐集的集合的个数为15个【答案】1513.【解析】(1)因为B⊆A,B是A的子集,由图(1)得a≤3.(1)(2)因为A⊆B,A是B的子集,由图 (2)得a≥3.(2)【答案】(1)a≤3(2)a≥314.【解析】由得或,因此若a=2时,则,此时若a=-3时,则,此时若,则,此时N不是M的子集。
§2 集合的基本关系(第二课时) 【学习目标】1.了解集合包含与相等,理解子集,真子集的概念。
能够判断集合的关系,能解决以子集为条件求参数范围问题。
2.由集合之间的基本关系,体会事物之间的普遍联系。
3.激情投入,高效学习,踊跃展示,大胆质疑,体验自主学习的快乐和成功的愉悦。
【学习要求】1.课前认真复习整理本节课本和导学案的内容,然后根据自身能力完成学案所设计的问题,并在不明白的问题前用红笔做出标记。
2.限时完成,规范书写,课上小组合作探讨,答疑解惑,并对每个问题做出点评,反思。
【学习重点】1.梳理本节知识点。
2.本届典型题目复习 【学习难点】集合基本关系的基本应用。
预习案 一﹑知识梳理 1﹑一般地,对于两个集合A 与B ,如果集合A 中的_________元素都是集合B 中的元素,即若∈a A ,则B a ∈,我们就说A __________B ,记作A ____B (A ____B )。
如果集合A 中存在着不是集合B 的元素,那么集合A ________集合B ,或者说集合B _______A ,分别记作A ___B (B ____A )。
注意:在子集的定义中,不能理解为子集A 是由集合B 中的“部分元素”构成的集合。
如,若A =φ,则A 中不含有任何元素;若B A =,则A 中含有B 中的所有元素。
2﹑任何一个集合都是他本身的________。
子集具有传递性,对于集合,,,C B A 若A ⊆B ,B ⊆C ,则A _____C 。
空集是任何集合的_________。
集合A 与集合B 相等,记作_______。
3﹑对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的_______,记作_________(或_________)。
我们规定,空集是任何_________的真子集。
真子集也具有传递性:若A ⊂≠B ,B ⊂≠C ,则有___________。