当前位置:文档之家› 振动-流体声场-声辐射 复习

振动-流体声场-声辐射 复习

振动-流体声场-声辐射 复习
振动-流体声场-声辐射 复习

FPGA声源定位

基于FPGA的实时声源定位 李俊杰,何友,宋杰时间:2009年08月05日字体:大中小 关键词:FPGA声源定位时延估计 摘要:提出了利用2个麦克风基于FPGA的声源定位的方法。具体通过基于相位变换改进的互相关方法成功在低信噪比(10dB)的噪声环境下完成声源定位。利用同样的算法和硬件结构,可以在1片FPGA芯片上实现5组并行的时域处理的系统,而且每个麦克风的功耗只有77mW~108mW。 关键词:声源定位;时延估计;FPGA 实时声源定位在许多方面得到了应用,例如声音的识别和电话会议,可以利用阵列麦克风来实现对多个声源信号的获取和并行处理[1-3]。由于处理多路语音信号需要多个处理器,使得其实现费用昂贵,即便是使用DSP,系统也会带来很大的功耗,因而限制了其在许多实际中的应用。例如Brown大学发展的大规模麦克阵列系统利用多个DSP处理器和缓冲器来实现声源的定位,每个麦克的功耗达到了400mW。这大大超过了一些便携式设备(PDA 和手机)的功耗,因此最好的解决办法是设计专用芯片。 本文将阐述声源定位系统在FPGA中的实现,为专用芯片提供一个可行性参考,具有很好的商业应用价值。以前采用DSP[4]或是DSP+FPGA[5]实现多路声源信号的定位,而本设计的整个定位系统除了前端的模拟部分外其余部分均在FPGA中实现。采取有效的算法后,整个硬件实现的功耗可以控制在77mW~108mW之间。 1声源定位的算法 现有许多算法[1-4]实现声源定位,包括基于信号子空间的方法(例如MUSIC算法)和空间似然方法[2,4]等,最为常用的方法是估计信号的对应的麦克对到达延时(TDOA)[3]估计方法。该方法的每一组麦克对将声源定位在3维空间的一个双曲面上,这样通过多个麦克对确定的双曲面的交点能有效地实现声源的定位。TDOA估计方法已进行了很多研究[3,6],最为普通的是广义互相关GCC(Generalized Cross Correlation)方法[6]。与其他的方法相比,基于GCC的方法计算量小、计算效率高。 假设2个麦克各自接收的信号分别为m1(t)和m2(t)(包括噪声、回响和声音的延时信号)。常用的估计延时的方法是互相关方法:

农业气象学复习

农业气象学 题型;名词解释. 判断. 选择简答论述 第一章大气 一、名词解释题: 1. 干洁大气:除去了水汽和各种悬浮的固体与液体微粒的纯净大气,称为干洁大气。 2. 下垫面:指与大气底部相接触的地球表面,或垫在空气层之下的界面。如地表面、海面及其它各种水面、植被表面等。 3. 气象要素:构成和反映大气状态的物理量和物理现象,称气象要素。主要包括气压、气温、湿度、风、云、能见度、降水、辐射、日照和各种天气现象等 补充:温室效应。 二、填空题: 1. 干洁大气中,按容积计算含量最多的四种气体是: (1)、(2)、氩和(3)。 2. 大气中臭氧主要吸收太阳辐射中的 (4)。 3. 大气中二氧化碳和水汽主要吸收 (5)辐射。 4. 近地气层空气中二氧化碳的浓度一般白天比晚上(6),夏天比冬天 (7) 。 5. (8) 是大气中唯一能在自然条件下发生三相变化的成分,是天气演变的重要角色。 6. 根据大气中 (9) 的铅直分布,可以把大气在铅直方向上分为五个层次。 7. 在对流层中,温度一般随高度升高而 (10) 。 8. 大气中对流层之上的一层称为 (11) 层,这一层上部气温随高度增高而(12) 。 9. 根据大气中极光出现的最大高度作为判断大气上界的标准,大气顶约高 (13) 千米。 答案: (1)氮 (2)氧 (3)二氧化碳 (4)紫外线 (5)长波 (6)低 (7)低 (8)水汽 (9)温度 (10)降低 (11)平流 (12)升高 (13)1200 三、判断题: (说明:正确的打“√”,错误的打“×”) 1. 臭氧主要集中在平流层及其以上的大气层中,它可以吸收太阳辐射中的紫外线。 2. 二氧化碳可以强烈吸收太阳辐射中的紫外线,使地面空气升温,产生“温室效应”。 3. 由于植物大量吸收二氧化碳用于光合作用,使地球上二氧化碳含量逐年减少。 4. 地球大气中水汽含量一般来说是低纬多于高纬,下层多于上层,夏季多于冬季。

“核辐射”阅读答案

“核辐射”阅读答案 阅读说明文,完成7~8题。(4分) 核辐射,或通常称之为放射性,存在于所有的物质之中,这是亿万年来存在的客观事实,是正常现象。核辐射是原子核从一种结构或一种能量状态转变为另一种结构或另一种能量状态过程中所释放出来的微观粒子流。核辐射可以使物质引起电离或激发,故称为电离辐射。 放射性核素是原子核不稳定的核素,由于中子与质子比例失衡,容易发生核内成分或能级的变化。当放射性核素衰变时,就会释放各种射线,如γ(伽玛)射线,β(贝达)射线等,当这些射线作用于人体生物细胞或基因,把射线能量转给被作用的组织细胞,引起组织细胞一系列生物改变,称为辐射生物效应,这种辐射生物效应程度与多种因素有关,其中最主要是辐射剂量大小。 评价辐射剂量的国际单位为Sv(Sievert,希沃特,也有翻译为西弗特),是一种辐射吸收剂量当量的单位。一般情况是接受辐射剂量越高,产生的辐射生物效应越大。公众人体全身一年可承受的辐射剂量为1mSv,即使当短时接触核辐射的辐射量近100 mSv时,一般对人体没有什么危害,但如果辐射剂量超过100 mSv,则有可能对人体造成损害,接受辐射剂量在100到500 mSv时,人们一般也不会有异常感觉,但检测可发现血液中白细胞数会减少。当辐射剂量达1000到2000 mSv时,才导致轻微的放射疾病症状,如疲劳、呕吐、食欲减退、暂时性脱发、红细胞减少等。只有较长时间超过允许剂量的辐射损伤,才会引发造血功能障碍、内脏出血、组织坏死、感染及恶性变等,此病常见于接受过量射线的工作人员、公众及核武器爆炸的罹难者。 由于生物组织细胞对辐射损伤有一定耐受能力,即使接受辐射剂量相同,不一定都会产生辐射损伤。产生的辐射生物效应程度与吸收剂量、辐射种类、射线能量、人们暴露于核辐射的时间以及核物质的半衰期等有关,微量的放射性辐射不会危及健康。 此次日本核电站泄漏后的放射性物质,主要是在铀元素的核裂变过程中会产生一些具有放射性的副产品,如铯-137和碘-131同位素。在核泄漏后的核污染中,由于放射性碘-131具有挥发性,容易进入大气层空气,飘散到其他地方,污染周围。放射性碘-131主要通过吸入污染的空气、食入污染的食品和水对人造成伤害,同时也可通过皮肤吸收,以及沉积的放射性碘产生的外辐射等对人群造成伤害。由于放射性碘-131半衰期不长(只有8天左右),在空气中飘移时慢慢衰变减少,同时由于大气的稀释,飘离日本后剂量已衰减到非常小,接近天然本底辐射。其次,碘-131释放的γ射线在空气中的射程约1-2米,β射线更短,约1-10毫米,大家如果不接触污染的放射性核素,就不会对自己造成伤害。 (根据相关材料整理) 7.下列对文章内容分析正确的一项是(2分)【▲】 A.本文是一篇科技说明文,说明对象是放射性核素。 B.辐射生物效应程度取决于辐射剂量的大小。 C.作者所举“日本核电站泄漏放射性物质”的事例,告诉了我们日本核泄露对我国的影响很小。 D.“公众人体全身一年可承受的辐射剂量为1mSv”,当人体受到的辐射剂量

基于MATLAB的声源定位系统

基于MATLAB的声源定位系统摘要 确定一个声源在空间中的位置是一项有广阔应用前景的有趣研究,将来可以广泛的应用于社会生产、生活的各个方面。 声源定位是通过测量物体发出的声音对物体定位,与使用声纳、雷达、无线通讯的定位方法不同,前者信源是普通的声音,是宽带信号,而后者信源是窄带信号。根据声音信号特点,人们提出了不同的声源定位算法,但由于信号质量、噪声和混响的存在,使得现有声源定位算法的定位精度较低。此外,已有的声源定位方法的运算量较大,难以实时处理。 关键词:传声器阵列;声源定位;Matlab

目录 第一章绪论 (1) 第二章声源定位系统的结构 (2) 第三章基于到达时间差的声源定位原理 (3) 第四章串口通信 (5) 第五章实验电路图设计 (8)

第六章总结 (16) 第七章参考文献 (17) 第一章绪论 1.1基于传声器阵列的定位方法简述 在无噪声、无混响的情况下,距离声源很近的高性能、高方向性的单传声器可以获得高质量的声源信号。但是,这要求声源和传声器之间的位置相对固定,如果声源位置改变,就必须人为地移动传声器。若声源在传声器的选择方向之外,则会引入大量的噪声,导致拾取信号的质量下降。而且,当传声器距离声源很远,或者存在一定程度的混响及干扰的情况下,也会使拾取信号的质量严重下降。为了解决单传声器系统的这些局限性,人们提出了用传声器阵列进行声音处理的方法。

传声器阵列是指由一定的几何结构排列而成的若干个传声器组成的阵列。相对于单个传声器而言具有更多优势,它能以电子瞄准的方式从所需要的声源方向提供高质量的声音信号,同时抑制其他的声音和环境噪声,具有很强的空间选择性,无须移动传声器就可对声源信号自动监测、定位和跟踪,如果算法设计精简得当,则系统可实现高速的实时跟踪定位。 传声器阵列的声音信号处理与传统的阵列信号处理主要有以下几种不同: (1)传统的阵列信号处理技术处理的信号一般为平稳或准平稳信号,相关函数可以通过时间相关来准确获得,而传声器阵列要处理的信号通常为短时平稳的声音信号,用时间平均来求得准确的相关函数比较困难。 (2)传统的阵列信号处理一般采用远场模型,而传声器阵列信号处理要根据不同的情况选择远场模型还是使用近场模型。近场模型和远场模型最主要的区别在于是否考虑传声器阵列各阵元因接收信号幅度衰减的不同所带来的影响,对于远场模型,信源到各阵元的距离差与整个传播距离相比非常小,可忽略不计,对于近场模型,信源到各阵元的距离差与整个传播距离相比较大,必须考虑各阵元接收信号的幅度差。 (3)在传统的阵列信号处理中,噪声一般为高斯噪声(包括白、色噪声),与信源无关,在传声器阵列信号处理中噪声既有高斯噪声,也有非高斯噪声,这些噪声可能和信源无关,也可能相关。 由于上述阵列信号处理间的区别,给传声器阵列信号处理带来了极大的挑战。声波在传播过程中要发生幅度衰减,其幅度衰减因子与传播距离成正比,信源到传声器阵列各阵元的距离是不同的,因此声波波前到达各阵元时,幅度也是不同的。 另外,当声音信号在传播时,由于反射、衍射等原因,使到达传声器的声音信号的路径除了直达路径外还存在着多条其它路径,从而产生接收信号的幅度衰减、音质变差等不

超声波仪器探头性能指标及其测试方法

超声波仪器、探头主要组合的性能测定 1、电噪声电平(%) 仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大,衰减器置“0”,深度粗调、深度微调置最大。读取时基线噪声平均值,用百分数表示。 2、灵敏度余量(dB) a)使用、Φ20直探头和CS-1-5或DB--PZ20—2型标准试块。 b)连接探头并将仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大。若此时仪器和探头的噪声电平(不含始脉冲处的多次声反射)高于满辐的10%,则调节衰减或增益,使噪音电平等于满辐度的10%记下此时衰减器的读数S0。 图1 直探头相对灵敏度(灵敏度余量)测量 c)将探头置于试块端面上探测200mm处的i2平底孔,如图17所示。移动探头使中Φ2平底孔反射波辐最高,并用衰减器将它调至满辐度的50%,记下此时衰减器的,则该探头及仪器的探伤灵敏度余量S为: S=S1--S0(dB) 3、垂直线性误差测量(%) (1)连接探头并在试块上探测任一反射波(一般声程大于50mm)作为参照 波,如图2所示。调节探伤仪灵敏度,使参照波的辐度恰为垂直刻 度的100%,且衰减器至少有30dB的余量。测试时允许使用探头压

块。 图2 垂直线性误差测量 (2)用衰减器降低参照波的辐度,并依次记下每衰减2dB时参照波辐度的读数, 直至衰减26dB以上。然后将反射波辐度实测值与表l中的理论值相 比较,取最大正偏差d(+)与最大负偏差d(-),则垂直线性误差△d 用式(1)计算: △d=|d(+)|+|d(-)| (1) (3)在工作频率范围内,改用不同频率的探头,重复(1)和(2)的测试。 dB) (1)连接探头并在试块上探测任一反射波(一般声程大于50mm)作为参照 波。 (2)调节衰减器降低参照波,并读取参照波辐度自垂直刻度的100%下降 至刚能辨认之最小值(一般约为3~5%)时衰减器的调节量,此调节 量则定为该探伤仪在给定频率下的动态范围。 (3)按(1)和(2)条方法,测试不同频率不同回波时的动态范围。 5、水平线性误差测量(%) (1)连接探头,并根据被测探伤议中扫描范围档级将探头置于适当厚度的 试块上,如DB――D1,DB—Pz20-2,CSK-1A试块等,如图3所示。 再调节探伤仪使之显示多次无干扰底波。 (2)在不具有“扫描延迟”功能的探伤仪中,在分别将底波调到相同辐度 的条件下,使第一次底波B1的前沿对准水平刻度“2”第五次底波 B5的前沿对准水平刻度“10”,然后依次将每次底波调到上述相同辐 度,分别读取第二、三四次底波前沿与水平刻度“4”、“6”、“8”的 偏差Ln,如图4所示,然后取其最大偏差Lmax按式(2)计算水平线 性误差ΔL: 式中:ΔL:水平线性误差,%; B:水平全刻度读数。 图3 水平线性误差测量 图4 水平线性误差测量 (3)在具有“扫描延迟”功能的探伤仪中,按(2)条的方法,将底波以前沿 对准水平刻度“0”,底波B6前沿对准水平刻度“l0”,然后读取第二 至第五次底波中之最大偏差值Lmax,再按式(3)计算水平线性误差△L

核辐射探测习题解答2

第七章作业答案 1.设测量样品的平均计数率是5计数/s,使用泊松分布公式确定在任1s 内得到计数小于或等于2个的概率。 解: 5152 5(,)!5(0;5)0.00670!5(0;5)0.03371! 5(0;5)0.08422! N N r r r r N P N N e N P e P e P e ----=?=?==?==?= 在1秒内小于或等于2的概率为: (0;5)(1;5)(2;5)0.00670.03370.08420.1246r r r P P P ++=++= 2.若某时间内的真计数值是100,求得到计数为104的概率。 解: 高斯概率密度函数为: 2 22220.012102()2(100104)4(;,)100,10 104 (104;100;10)0.0145 N N P N N e N N P e e σσσ?-----======== 5.本底计数率n b =15计数/min,测量样品计数率n 0=60计数/min,试求对给定的测 量时间t b +t s 来说净计数率精确度最高时的最优比值t b /t s ;若净计数率的误差为 5%,t b 和t s 的最小值是多少? 解: 2:2:1 s b s b t t t t ==== 若要使净计数率的误差为5% 1122222211222222()60(6015)17.778().(6015).(5%) ()15(6015)8.889().(6015).(5%)s s s s b s s b n b s b b s b n n n n t n n n n n t n n δδ+?+?===--+?+?= ==-- 6.为了探测α粒子,有两种探测器可以选择,一种的本底为7计数/min,效率为0.02;另一种的本底为3计数/min,效率为0.016,对于低水平测量工作,应选用

超声波仪器、探头性能指标及其测试方法

超声波仪器、探头主要组合的性能测定 主要性能测试项目及其性能指标 1、电噪声电平(%) 仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大,衰减器置“0”,深度粗调、深度微调置最大。读取时基线噪声平均值,用百分数表示。 2、灵敏度余量(dB) a)使用2.5MHz、Φ20直探头和CS-1-5或DB--PZ20—2型标准试块。 b)连接探头并将仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大。若此时仪器和探头的噪声电平(不含始脉冲处的多次声反射)高于满辐的10%,则调节衰减或增益,使噪音电平等于满辐度的10%记下此时衰减器的读数S0。 图1 直探头相对灵敏度(灵敏度余量)测量 c)将探头置于试块端面上探测200mm处的i2平底孔,如图17所示。移动探头使中Φ2平底孔反射波辐最高,并用衰减器将它调至满辐度的50%,记下此时衰减器的微S l,则该探头及仪器的探伤灵敏度余量S为:S=S1--S0(dB) 3、垂直线性误差测量(%) (1)连接探头并在试块上探测任一反射波(一般声程大于50mm)作为参照 波,如图2所示。调节探伤仪灵敏度,使参照波的辐度恰为垂直刻 度的100%,且衰减器至少有30dB的余量。测试时允许使用探头压 块。

图2 垂直线性误差测量 (2)用衰减器降低参照波的辐度,并依次记下每衰减2dB时参照波辐度的读数, 直至衰减26dB以上。然后将反射波辐度实测值与表l中的理论值相 比较,取最大正偏差d(+)与最大负偏差d(-),则垂直线性误差△d用 式(1)计算: △d=|d(+)|+|d(-)| (1) (3)在工作频率范围内,改用不同频率的探头,重复(1)和(2)的测试。 dB) (1)连接探头并在试块上探测任一反射波(一般声程大于50mm)作为参照 波。 (2)调节衰减器降低参照波,并读取参照波辐度自垂直刻度的100%下降 至刚能辨认之最小值(一般约为3~5%)时衰减器的调节量,此调节 量则定为该探伤仪在给定频率下的动态范围。 (3)按(1)和(2)条方法,测试不同频率不同回波时的动态范围。 5、水平线性误差测量(%) (1)连接探头,并根据被测探伤议中扫描范围档级将探头置于适当厚度的 试块上,如DB――D1,DB—Pz20-2,CSK-1A试块等,如图3所示。 再调节探伤仪使之显示多次无干扰底波。 (2)在不具有“扫描延迟”功能的探伤仪中,在分别将底波调到相同辐度 的条件下,使第一次底波B1的前沿对准水平刻度“2”第五次底波 B5的前沿对准水平刻度“10”,然后依次将每次底波调到上述相同 辐度,分别读取第二、三四次底波前沿与水平刻度“4”、“6”、“8” 的偏差Ln,如图4所示,然后取其最大偏差Lmax按式(2)计算水平 线性误差ΔL: 式中:ΔL:水平线性误差,%; B:水平全刻度读数。 图3 水平线性误差测量 图4 水平线性误差测量 (3)在具有“扫描延迟”功能的探伤仪中,按(2)条的方法,将底波以前沿 对准水平刻度“0”,底波B6前沿对准水平刻度“l0”,然后读取第二

核辐射物理与探测学课后习题

第一章 原子核的基本性质 1-1 当电子的速度为18105.2-?ms 时,它的动能和总能量各为多少? 1-2 将α粒子的速度加速至光速的0.95时,α粒子的质量为多少? 1-5 已知()()92,23847.309,92,23950.574MeV MeV ?=?= ()()92,23540.921,92,23642.446MeV MeV ?=?= 试计算239U ,236U 最后一个中子的结合能。 1-8 利用结合能半经验公式,计算U U 239236,最后一个中子的结合能,并与1-5式的结果进行比较。 第二章 原子核的放射性 2.1经多少半衰期以后,放射性核素的活度可以减少至原来的3%,1%,0.5%,0.01%? 2.7 人体内含%18的C 和%2.0%的K 。已知天然条件下C C 1214与的原子数之比为12102.1,C 14的573021=T 年;K 40的天然丰度为%0118.0,其半衰期a T 911026.1?=。求体重为Kg 75的人体内的总放射性活度。 2-8 已知Sr 90按下式衰变: Zr Y Sr h a 90 64,901.28,90??→????→?--ββ(稳定) 试计算纯Sr 90放置多常时间,其放射性活度刚好与Y 90的相等。 2-11 31000 cm 海水含有g 4.0K 和g 6108.1-?U 。假定后者与其子体达平衡,试计算31000 cm 海水的放射性活度。 第三章 原子核的衰变 3.1 实验测得 Ra 226 的α能谱精细结构由()%95785.41MeV T =α和()%5602.42 MeV T =α两种α粒子组成,试计算如下内容并作出Ra 226衰变网图(简图) (1)子体Rn 222核的反冲能; (2)Ra 226的衰变能; (3)激发态Rn 222发射的γ光子的能量。 3.2 比较下列核衰变过程的衰变能和库仑位垒高度: Th He U 2304234+→; Rn C U 22212234+→; Po O U 21816234+→。

超声波探头知识--斜探头2

探头 一、压电效应与压电材料 某些单晶体和多晶体陶瓷材料在应力(压缩力和拉伸力)作用下产生异种电荷向正反两面集中而在晶体内产生电场,这种效应称为正压电效应。相反,当这些单晶体和多晶体陶瓷材料处于交变电场中时,产生压缩或拉伸的应力和应变,这种效应称为负压电效应,如图所示。 负压电效应产生超声波,正压电效应接收超声波并转换成电信号。 常用的压电单晶有石英又称二氧化硅(SiO2)、硫酸锂(LiS04H20)、碘酸锂LiIO3)、铌酸锂(LiNbO3)等,除石英外,其余几种人工培养的单晶制造工艺复杂、成本高。 常用的压电陶瓷有钛酸钡(BaTi03)、锆钛酸铅(PZT)、钛酸铅(PbTiO3)、偏铌酸铅(PbNb2O4)等。 二、探头的编号方法 三、探头的基本结构 压电超声探头的种类繁多,用途各异,但它们的基本结构有共同之处,如图所示。它们一般均由晶片、阻尼块、保护膜(对斜探头来说是有机玻璃透声楔)组成。此外,还必须有与仪器相连接的高频电缆插件、支架、外壳等。 四、直探头 (一)直探头的保护膜 1.压电陶瓷晶片通常均由保护膜来保护晶片不与工件直接接触以免磨损。常用保护膜有硬性和 软性两类。氧化铝(刚玉)、陶瓷片及某些金属都属于硬性保护膜,它们适用于工件表面光洁度较高、且平整的情况。用于粗糙表面时声能损耗达20~30dB。 2.软性保护膜有聚胺酯软性塑料等,用于表面光洁度不高或有一定曲率的表面时,可改善声耦 合,提高声能传递效率,且探伤结果的重复性较好,磨损后易于更换,它对声能的损耗达6~7dB。 3.保护膜材料应耐磨、衰减小、厚度适当。为有利于阻抗匹配,其声阻抗Zm应满足一定要求。 4.试验表明:所有固体保护膜对发射声波都会产生一定的畸变,使分辨率变差、灵敏度降低, 其中硬保护膜比软保护膜更为严重。因此,应根据实际使用需要选用探头及其保护膜。与陶瓷晶片相比,石英晶片不易磨损,故所有石英晶片探头都不加保护膜。 (二)直探头的吸收块 为提高晶片发射效率,其厚度均应保证晶片在共振状态下工作,但共振周期过长或晶片背面的振动干扰都会导致脉冲变宽、盲区增大。为此,在晶片背面充填吸收这类噪声能量的阻尼材料,使干扰声能迅速耗散,降低探头本身的杂乱的信号。目前,常用的阻尼材料为环氧树脂和钨粉。

气象学复习题-补充

第二章辐射 1、名词解释 辐射:物体以电磁波或粒子流形式向周围传递或交换能量的方式。 *任何温度在绝对零度以上的物体,都具有辐射的本领。 *辐射具有波粒二象性。其传播过程表现为波动性,与物质间相互作用表现为粒子性。辐射强度:单位时间内通过单位面积的辐射能量,即辐射通量密度。 太阳常数:日地平均距离上投射到垂直于太阳光线平面上的太阳辐射强度。 太阳高度角:太阳光线与地表水平面之间的最小夹角。 可照时数:不受任何遮蔽时每天从日出到日落的总时数。 实照时数:地面上用日照计实际测量的日照时数。 光照时间:可照时数与曙暮光时间之和。 曙暮光:太阳光线在地平线以下0°-6°时,光通过大气散射到地表产生的光照度。大气质量:太阳光通过大气路径的长度与大气铅直厚度之比。 地面有效辐射:地面辐射与被地面吸收的大气逆辐射之差。 地面净辐射:在单位时间内,单位面积地面所吸收的辐射与放出的辐射之差,也称为地面辐射差额。 生理辐射(PAR):能被植物吸收用于光合作用、色素合成、光周期现象和其他生理现象的太阳辐射波谱区。 光合有效辐射:在PAR区内量子能量使叶绿素粉紫呈激发状态,并将自身能量消耗在形成有机化合物上,这段波谱成光合有效辐射。波长在380-710nm之间。 2、定律理解 基尔霍夫定律:在一定温度下,任何物体对于某一波长的放射能力与物体对该波长的吸收率的比值,只是温度和波长的函数,而与物体的其他性质无关。 推论:1、不同性质的物体,放射能力较强的,吸收能力也较强,反之亦然。 2、对同一物体,如果在温度T时它放射某一波长的辐射,那么在同一温度下它也吸收这一波长的辐射。 斯蒂芬-波尔兹曼定律:黑体的总放射能力与它本身的绝对温度的四次方成正比。 推论:物体温度越高,放射能力越强。 维恩位移定律:绝对黑体的放射能力最大值对应的波长与其本身的绝对温度成反比。推论:物体的温度越高,放射能量最大值的波长越短。

农业气象学试题

农业气象学试题 第一章大气 一、名词解释题: 1. 干洁大气:除去了水汽和各种悬浮的固体及液体微粒的纯净大气,称为干洁大气。 2. 下垫面:指及大气底部相接触的地球表面,或垫在空气层之下的界面。如地表面、海面及其它各种水面、植被表面等。 3. 气象要素:构成和反映大气状态的物理量和物理现象,称气象要素。主要包括气压、气温、湿度、风、云、能见度、降水、辐射、日照和各种天气现象等 二、填空题: 1. 干洁大气中,按容积计算含量最多的四种气体是: (氮) 、(氧) 、氩和(二氧化碳) 。 2. 大气中臭氧主要吸收太阳辐射中的紫外线) 。 3. 大气中二氧化碳和水汽主要吸收 (长波) 辐射。 4. 近地气层空气中二氧化碳的浓度一般白天比晚上 (低) ,夏天比冬天(低) 。 5. (水汽) 是大气中唯一能在自然条件下发生三相变化的成分,是天气演变的重要角色。 6. 根据大气中 (温度) 的铅直分布,可以把大气在铅直方向上分为五个层次。 7. 在对流层中,温度一般随高度升高而 (降低) 。 8. 大气中对流层之上的一层称为 (平流) 层,这一层上部气温

随高度增高而 (升高) 。 9. 根据大气中极光出现的最大高度作为判断大气上界的标准,大气顶约高 (1200) 千米。 三、判断题: 1. 臭氧主要集中在平流层及其以上的大气层中,它可以吸收太阳辐射中的紫外线。 2. 二氧化碳可以强烈吸收太阳辐射中的紫外线,使地面空气升温,产生“温室效应”。x 3. 由于植物大量吸收二氧化碳用于光合作用,使地球上二氧化碳含量逐年减少。x 4. 地球大气中水汽含量一般来说是低纬多于高纬,下层多于上层,夏季多于冬季。 5. 大气在铅直方向上按从下到上的顺序,分别为对流层、热成层、中间层、平流层和散逸层。x 6. 平流层中气温随高度上升而升高,没有强烈的对流运动。 7. 热成层中空气多被离解成离子,因此又称电离层。 四、问答题: 1. 为什么大气中二氧化碳浓度有日变化和年变化? 答:大气中的二氧化碳是植物进行光合作用的重要原料。植物在太阳辐射的作用下,以二氧化碳和水为原料,合成碳水化合物,因此全球的植物要消耗大量的二氧化碳;同时,由于生物的呼吸,有机物的分

核辐射测量数据处理习题及答案

核数据处理理论知识 核辐射测量数据特征:随机性(被测对象测量过程)局限性混合型空间性 数据分类:测量型计数型级序型状态型名义型 精度:精密度正确度准确度 统计误差:核辐射测量中,待测物理量本身就是一个随机变量。准确值为无限次测量的平均值, 实际测量为有限次,把样本的平均值作为真平均值,因此存在误差。 变量分类:(原始组合变换)变量 误差来源:(设备方法人员环境被测对象)误差 误差分类:系统误差随机误差统计误差粗大误差 放射性测量统计误差的规律答:各次测量值围绕平均值涨落二项分布泊松分布高斯分布 精度的计算,提高测量精度的方法?答:采用灵敏度高的探测器增加放射源强度增加测量次数延长测量时间减少测量时本底计数 放射性测量中的统计误差与一般测量的误差的异同点?答:不同点:测量对象是随机的,核衰变本身具有统计性,放射性测量数据间相差可能很大。测量过程中存在各种随机因素影响。相同点:测量都存在误差。 样本的集中性统计量?答:算术平均值几何平均值中位数众数(最大频数) 样本的离散性统计量?答:极差方差变异系数或然系数算术平均误差 单变量的线性变换方法?答: 1.标准化变换 2.极差变换 3.均匀化变换 4.均方差变换 单变量的正态化变换方法?答:标准化变化角度变换平方根变换对数变换 数据网格化变换的目的?答: 1.把不规则的网点变为规则网点 2.网格加密 数据网格变换的方法?答: 1.插值法(拉格朗日插值三次样条插值距离导数法方位法) 2.曲面拟合法(趋势面拟合法趋势面和残差叠加法加权最小二乘拟合法) 边界扩充的方法有哪些?答:拉格朗日外推法余弦尖灭法偶开拓法直接扩充法补零法 核数据检验目的: 1.帮助检查测量系统的工作和测量条件是否正常和稳定,判断测量除统计误差外是否存在其它的随机误差或系统误差 2.确定测量数据之间的差异是统计涨落引起的,还是测量对象或条件确实发生了变化引起的 变量选择的数学方法:几何作图法(点聚图数轴)相关法(简单相关系数逐步回归分析秩相关 系数)秩和检验法 谱数据处理—问答题谱的两大特点?答: 1.放射性核素与辐射的能量间存在一一对应关系 2.放射性核素含量和辐射强度成正比 谱光滑的意义是什么?方法有哪些?答:意义 1.由于核衰变及测量的统计性,当计数较小时, 计数的统计涨落比较大,计数最多的一道不一定是高斯分布的期望,真正峰被湮没在统计涨落中2.为了在统计涨落的影响下,能可靠的识别峰的存在,并准确确定峰的位置和能量,从而完成定 性分析,就需要谱光滑 3.由于散射的影响,峰边界受统计涨落较大,需要谱光滑方法算术滑动平均法重心法多项式最小二乘法其他(傅里叶变换法) 寻峰的方法有哪些?答:简单比较法导数法对称零面积变换法二阶插值多项式计算峰位法 重心法拟合二次多项式计算峰位法 峰面积计算的意义和方法?答: 1)峰面积的计算是定量分析的基础。2)知道了特征峰的净峰面积,就可以计算目标元素的含量线性本底法(科沃尔沃森 Sterlinski )峰面积法单峰曲面拟合法 谱的定性分析、定量分析的内容?答:定性:确定产生放射性的核素或元素定量:峰边界的确定峰面积计算重锋分析含量计算 核辐射测量特点:核辐射是核衰变的产物核辐射的能量具有特征性核素的含量与特征辐射的

基于STM32的声源定位装置

目录 1 前言 (1) 2 总体方案设计 (3) 2.1 方案比较 (3) 2.1.1 声源信号产生方案 (3) 2.1.2 声源的选择 (3) 2.1.3 坐标解算方案 (4) 2.2 方案选择 (4) 3 单元模块设计 (6) 3.1 各单元模块功能介绍及电路设计 (6) 3.1.1 555构成的多谐振荡器电路 (6) 3.1.2 电源电路设计 (7) 3.1.3 自动增益控制电路设计 (7) 3.1.4 有源二低通滤波电路 (8) 3.1.5 有源二阶高通滤波电路 (9) 3.1.6 STM32F103最小系统电路 (10) 3.1.7 液晶显示电路 (11) 3.1.8 电平转换电路 (12) 3.2 电路参数的计算及元器件的选择 (13) 3.2.1 电源电路参数的计算 (13) 3.2.2 555定时器外围元件参数的计算 (14) 3.2.3 音源坐标位置的计算 (15) 3.2.3 元器件的选择 (17) 3.3特殊器件的介绍 (19) 3.3.1 STM32F103单片机介绍 (19) 3.3.2 ILI9320液晶简介 (21) 3.3.3 VCA810简介 (24) 4软件设计 (26) 4.1软件设计开发环境介绍 (26) 4.1.1编程软件开发环境介绍 (26) 4.1.2绘图软件开发环境介绍 (27) 4.2软件设计流程图 (28) 4.2.1主程序流程图 (28) 4.2.1液晶初始化流程图 (29)

4.2.2 ADC初始化流程图 (30) 5系统调试 (32) 6系统功能、指标参数 (33) 6.1系统实现的功能 (33) 6.2系统指标参数测试 (33) 6.2.1带通滤波器的频率响应 (33) 6.2.2 555定时器构成的多谐振荡器测试 (35) 6.2.3 STM32 ADC电压采集测试 (35) 6.2.4 VCA810电路测试 (36) 6.3系统功能及指标参数分析 (38) 7结论 (39) 8总结与体会 (40) 9 谢辞 (42) 10参考文献 (43) 附录 (44) 附录一:部分原理图 (44) 附录二:部分PCB图 (45) 附录三:核心代码 (46) 附录四:实物图 (51) 附录五:外文资料翻译 (52)

中国和欧洲超声波探伤仪器标准的比较

中国和欧洲超声波探伤仪器标准的比较 随着我国经济改革开放形势的不断深入发展,我国的无损检测技术事业也正在与世界越来越广泛地接轨,就无损检测技术中的超声检测而言,目前国内许多大型企业以及中外合资或外资企业在购买、使用超声探伤设备时,都开始要求按照欧洲标准(EN12668)对超声波探伤仪器的性能及质量进行控制,另一方面,中国自主创新制造的超声波探伤设备也在开始向国外出口,同样涉及了与国际应用标准接轨的问题。本文欲就笔者的理解,探讨我国目前应用的有关超声波探伤仪器性能评定标准与欧洲标准的比较,希望对我国超声波探伤设备尽早与国际标准紧密接轨的问题有所促进。 欧洲标准(E N 1 2668 )包括有三个部分: EN12668-1 无损检测-超声检验设备的特性与认证-第1 部分:仪器EN12668- 2 无损检测-超声检验设备的特性与认证-第2 部分:探头EN12668- 3 无损检 测-超声检验设备的特性与认证-第3部分:综合设备 其最大的特点是将仪器、探头的性能分别评定,然后再将仪器和探头组合后 的系统性能进行评定,因此有其评定方法、使用的评定装置、试块等特色,并且还涉及对相应性能的指标要求。 我国目前应用的相关标准主要有: JJG 746-2004 《中华人民共和国国家计量检定规程-超声探伤仪》 JB/T 10061-1999 《A 型脉冲反射式超声探伤仪通用技术条件》 JB/T 10062-1999 《超声探伤用探头性能测试方法》 JB/T 9214-1999《A 型脉冲反射式超声探伤系统工作性能测试方法》(非等效采用JIS Z2344-93 《金属材料脉冲反射式超声探伤检验方法》) GB/T 18852-2002 无损检测超声检验测量接触探头声束特性的参考试块和方法(等同翻译ISO 12715:1999 《无损检测超声检验测量接触探头声束特性的参考试块和方法》) GB/T 18694-2002《无损检测超声检验探头性能及其声场的表征》(等同采用ISO 10375:1997E ) 在实际执行中,目前比较突出的是我国各地的计量部门以行政手段把超声波探伤仪器纳入每年对企业计量控制中的强制检定项目,执行JJG 746-2004 《中华人民共和国国家计量检定规程-超声探伤仪》,因此,在超声仪器方面,本文主要以JJG 746-2004 来与EN12668 进行比较,在超声探头方面则主要以JB/T

《当心生活中的核辐射》阅读附答案

当心生活中的核辐射 ①提起核辐射,你首先想到的是原子弹、氢弹的爆炸,或者核电站泄漏……而这些不是离我们远着吗?有什么可担心的?如果你真这样想,那就大错特错了。 ②核辐射普遍存在于日常生活中,可以说衣食住行、生老病死都在与它打交道。举个简单例子,你咳嗽了,医生会给你开一张胸部透视单,看看是支气管还是肺部发炎了——你不是就将胸膛袒露在了X射线前了吗?(A)如果是做CT检查,你“吃”进的X射线会更多。这些可都属于核辐射哦。 ③不过你会说,那是生病了啊,(B)如果身体健康总不会与核辐射“亲密接触”了吧,那也未必。如今大小城市都在大兴土木,新型楼盘不断问世,你如果买了一套新房,新房到手必先装修,而种种装修材料(如瓷砖、复合地板、大理石等)就含有程度不等的放射性物质,经过释放而漂浮于室内空气中,并随呼吸潜入肺部,播下致病的隐患。特别是通风不良时,可造成居室内放射性污染加重。 ④即使你不买房子,可总得喝水呀,而水也并非“至清”之物,照样存在着遭受核污染的风险。就说矿泉水吧,其中不少水源在流经途中就受到过天然或人为的放射性污染。 ⑤再说燃煤,常含有少量的放射性物质。研究分析表明,许多煤炭烟气中含有铀、钍、镭、钋等,可随空气及烘烤食物潜入人体。尽管含量不多,但长期集腋成裘式的积累,仍可对健康构成威胁。 ⑥至于形形色色的饰品,如夜明珠、化石、奇石、骨艺品等,自古以来就受到人们的喜爱,一些人甚至收藏成癖。可你知道吗?这些被视为宝贝的东西大多可以产生核辐射,有些产生的核辐射还很强,如用重晶石、萤石以及含磷物质等加工而成的夜明珠就是代表。另外,有关专家还检测到放射性偏高的鹅卵石。若摆放于居室内,美则美矣,却将你的健康置于险境之中了。举个例子,前不久,某市环境监测机构为一市民作室内检测,发现室内放射性超过安全标准近1倍,可墙面、地板等装饰材料的放射性并未超标。查来查去,“真凶”最终浮出水面,原来是一块作装饰用的羊头骨艺术品。房屋主人大吃一惊:想不到艺术品背后隐藏着如此险恶的祸患。究其奥妙,可能是动物吃进了某些含铀、镭的东西,致使这些放射性物质沉积于骨骼所致。 ⑦你喜欢旅游吗?特别是每年的“五一”与“十一”两个黄金周,乘飞机观赏大好河山也是人生一大快事。然而,在高空,人们接受的宇宙射线剂量也会增加。 ⑧由此可见,核辐射就在我们身边。而长期遭受辐射,会使人体产生诸多不适,严重的可造成人体器官和系统的损伤。诸如白血病、再生障碍性贫血、肿瘤、眼底病变、生殖系统疾病、早衰等就会在不知不觉中缠上你。 ⑨,只要我们采取科学的应对措施,就能将其危害削减到最低限度,而不至于影响健康。因为人体对辐射量有一个可以接受的范围,只要不超过这个范围就是安全的。 ⑩建议你从生活细处做起,堵塞核辐射的种种污染途径。例如,房屋装修追求环保;遭受放射性污染的水不要直接饮用;住房地址要远离污染严重的地方;谨慎对待收藏品;不要频繁去高原和极地旅游,尽量减少宇宙射线的辐射等等。 小题1:从哪些地方可以看出“核辐射”就在我们身边?从文章中提取三个例子。(6分) 小题2:请在画线的(A)、(B)两处任选一句,请指出句中加点词的具体含义,并说说它在表达上的好处。(4分) 小题3:请在第⑨段横线处填写一句话,使上下文衔接自然。(3分) 小题4:第⑥段中主要采用了什么说明方法?并分析其作用。(5分) 小题5:下面列举了一些生活方面的污染材料,请你结合本文最后一段内容,提出避免的

机器人的声源定位——基于NAO机器人

Abstract One of the main purposes of having a humanoid robot is to have it interact with people. This is undoubtedly a tough task that implies a fair amount of features. Being able to understand what is being said and to answer accordingly is certainly critical but in many situations, these tasks will require that the robot is first in the appropriate position to make the most out of its sensors and to let the considered person know that the robot is actually listening/talking to him by orienting the head in the relevant direction. The “Sound Localization” feature addresses this issue by identifying the direction of any “loud enough” sound heard by NAO.Related work Sound source localization has long been investigated and a large number of approaches have been proposed. These methods are based on the same basic principles but perform differently and require varying CPU loads. To produce robust and useful outputs while meeting the CPU and memory requirements of our robot, the NAO’s sound source localization feature is based on an approach known as “Time Difference of Arrival”. Principles The sound wave emitted by a source close to NAO is received at slightly different times on each of its four microphones. For example, if someone talks to the robot on his left side, the corresponding signal will first hit the left microphones, few milli-seconds later the front and the rear ones and finally the signal will be sensed on the right microphone (FIGURE 1). These differences, known as ITD standing for “interaural time differences”, can then be mathematically related to the current location of the emitting source. By solving this equation every time a noise is heard the robot is eventually able to retrieve the direction of the emitting source (azimutal and elevation angles) from ITDs measured on the 4 microphones. FIGURE 1Schematic view of the dependency between the position of the sound source (a human in this example) and the different distances that the sound wave need to travel to reach the four NAO’s micro-phones. These different distances induce times differences of arrival that are measured and used to compute the current position of the source. KEY FEATURE SOUND SOURCE LOCALIZATION

相关主题
文本预览
相关文档 最新文档