当前位置:文档之家› 数学数学勾股定理的专项培优练习题(附解析

数学数学勾股定理的专项培优练习题(附解析

一、选择题

1.图中不能证明勾股定理的是()

A.B.

C.

D.

2.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为

()

A.5cm B.10cm C.14cm D.20cm

3.在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,交AC于点D,若CD=1,则AB的长是()

A.2 B.23C.43D.4

4.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( )

A .2016

B .2017

C .2018

D .2019

5.如图,已知AB 是⊙O 的弦,AC 是⊙O 的直径,D 为⊙O 上一点,过D 作⊙O 的切线交BA 的延长线于P,且DP⊥BP 于P.若PD+PA=6,AB=6,则⊙O 的直径AC 的长为( )

A .5

B .8

C .10

D .12

6.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( ) A .222b a c =-

B .;

C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=

D .::5:12:13a b c = 7.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )

A .4

B .16

C .34

D .4或34

8.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )

A .3

B .5

C .4或5

D .3或51

9.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( ) A .6

B .8

C .10

D .12

10.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形

B .直角三角形

C .钝角三角形

D .等腰三角形

二、填空题

11.若ABC ?为直角三角形,90B ∠=?,6AB =,8BC =,点D 在斜边AC 上,且

2AC BD =,则AD 的长为__________.

12.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知2,则另一直角边AB 的长为__________.

13.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.

14.如图,30AOB ∠=?,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.

15.在等腰Rt ABC △中,90C ∠=?,2AC =,过点C 作直线l

AB ,F 是l 上的一

点,且AB AF =,则FC =__________.

16.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为

MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则2

2

MN BM

的值为______________.

17.四边形ABCD 中AB =8,BC =6,∠B =90°,AD =CD =52ABCD 的面积是_______.

18.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.

19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若

12315S S S ++=,则2S 的值是__________.

20.已知:如图,等腰Rt OAB ?的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ?,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ?,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ?,

44OA B ?,…,则66OA B ?的周长是______.

三、解答题

21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=?与线段AB 相交于点

,E DF 与射线AC 相交于点F .

()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;

()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于

点F .求证:1

2

BE CF AB +=

()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的

延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.

22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.

23.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、

BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.

(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=?,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转

90?);

(3)在(2)的问题中,15ACM ∠=?,1AM =,求BM 的长.

24.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动

2

3

秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.

设点E 的运动时间为t :(秒)

(1)OE =_________,OF =___________(用含t 的代数式表示)

(2)当1t =时,将OEF ?沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;

(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,

=+,当点M与点B不重合时,设

与x轴交于N点,设直线MN的解析式为y kx b

?的面积为S,求S与b之间的函数关系式.

MBN

25.如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,

(1)试说明△ABC是等腰三角形;

(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),

①若△DMN的边与BC平行,求t的值;

②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.

图1 图2 备用图

26.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…

(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;

(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.

27.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且

∠EAP=60°.

(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.

(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

28.(知识背景)

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数. (应用举例)

观察3,4,5;5,12,13;7,24,25;…

可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且 勾为3时,股14(91)2=

-,弦1

5(91)2

=+; 勾为5时,股112(251)2=-,弦1

13(251)2

=+; 请仿照上面两组样例,用发现的规律填空:

(1)如果勾为7,则股24= 弦25=

(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股

= ,弦= . (解决问题)

观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则

b = ,

c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.

(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.

29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.

(2)把图1中的正方形DEFG 绕点D 顺时针旋转45?,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.

(3)把图1中的正方形DEFG 绕点D 顺时针旋转90?,此时点E 、G 恰好分别落在线段

AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.

30.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .

(1)求证:∠ABE =∠CAD ;

(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;

ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.A 解析:A 【分析】

根据各个图象,利用面积的不同表示方法,列式证明结论222+=a b c ,找出不能证明的那个选项. 【详解】

解:A 选项不能证明勾股定理;

B 选项,通过大正方形面积的不同表示方法,可以列式()2

21

42

a b ab c +=?

+,可得222+=a b c ;

C 选项,通过梯形的面积的不同表示方法,可以列式()2

2112222

a b ab c +=?+,可得222+=a b c ;

D 选项,通过这个不规则图象的面积的不同表示方法,可以列式

22211

2222

c ab a b ab +?=++?,可得222+=a b c .

故选:A . 【点睛】

本题考查勾股定理的证明,解题的关键是掌握勾股定理的证明方法.

2.D

解析:D 【解析】 【分析】

根据菱形的对角线互相垂直平分可得AC ⊥BD ,12OA AC =,1

2

OB BD =,再利用勾股定理列式求出AB ,然后根据菱形的四条边都相等列式计算即可得解.

【详解】

解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,11

622

OA AC =

=?=3cm , 11

8422

OB BD cm =

=?= 根据勾股定理得,2222345cm AB OA OB =+=+= ,所以,这个菱形的周长=4×5=20cm. 故选:D. 【点睛】

本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.

3.B

解析:B 【分析】

根据30°直角三角形的性质,求出∠ABC 的度数,然后根据角平分线的性质求出∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可. 【详解】 如图

∵∠C=90°,∠A=30°, ∴∠ABC=90°-30°=60°, ∵BD 平分∠ABC,

∴∠ABD=

12∠ABC=1

2

×60°=30°, ∵CD=1,∠CDB=30° ∴BD=2

根据勾股定理可得BC=2222=21=3BD CD -- ∵∠A=30° ∴AB=23 故选B.

【点睛】

此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.

4.D

解析:D

【解析】

【分析】由勾股定理求出各边,再观察结果的规律.

【详解】∵OP=1,OP1=2

OP2=3,OP3=4=2,

∴OP4=5,

…,

OP2018=2019.

故选D

【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.

5.C

解析:C

【解析】

分析:通过切线的性质表示出EC的长度,用相似三角形的性质表示出OE的长度,由已知条件表示出OC的长度即可通过勾股定理求出结果.

详解:如图:连接BC,并连接OD交BC于点E:

∵DP⊥BP,AC为直径;

∴∠DPB=∠PBC=90°.

∴PD∥BC,且PD为⊙O的切线.

∴∠PDE=90°=∠DEB,

∴四边形PDEB为矩形,

∴AB∥OE,且O为AC中点,AB=6.

∴PD=BE=EC.

∴OE=1

AB=3.

2

设PA=x,则OD=DE-OE=6+x-3=3+x=OC,EC=PD=6-x.

.在Rt△OEC中:

222OE EC OC +=,

即:()()2

2

2363x x +-=+,解得x=2. 所以AC=2OC=2×(3+x )=10.

点睛:本题考查了切线的性质,相似三角形的性质,勾股定理.

6.C

解析:C 【分析】

此题考查的是直角三角形的判定方法,大约有以下几种: ①勾股定理的逆定理,即三角形三边符合勾股定理;

②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数; 根据上面两种情况进行判断即可. 【详解】

解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;

B 、由

C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;

C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;

D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意; 故选:C . 【点睛】

此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.

7.D

解析:D 【解析】

试题解析:当3和5

当5. 故选D .

8.C

解析:C 【分析】

设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答. 【详解】

解:∵在△ABC 中,AC =AM =3,

设AB =x ,BC =9-x ,

由三角形两边之和大于第三边得:

3939x x

x x +-??

+-?

>>, 解得3<x <6,

①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,

②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6, ③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6, ∴x =5或x =4; 故选C . 【点睛】

本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.

9.D

解析:D 【分析】

此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解. 【详解】

当5和13

当13

12=; 故这个三角形的第三条边可以是12. 故选:D . 【点睛】

本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.

10.B

解析:B 【分析】

依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】

如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,

∴△ABC 是直角三角形,且∠ACB =90°, 故选B .

【点睛】

本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.

二、填空题

11.5 【分析】

在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长. 【详解】

解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=?,90BED ∠=?,

∵直角ABC 中,90B ∠=?,6AB =,8BC =, ∴22=10AC AB BC +=, 又∵2ABC

S

AB BC AC BE =?=?,2AC BD =

∴6810BE ?=,5BD =, ∴=4.8BE ,

∵90BEA ∠=?,90BED ∠=?

∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=, ∴5AD AE ED =+=. 故答案为:5. 【点睛】

本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在

求线段长时,可以考虑构造直角三角形. 12.12 【分析】

延长BA 至E ,使AE=BC ,并连接OE.证?BCO ?∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()

2

2

2210210220BO EO +=+=,可得AB=BE-AE.

【详解】

如图,延长BA 至E ,使AE=BC ,并连接OE. 因为三角形COA 是等腰直角三角形 所以CO=AO,∠AOC=∠BOC+∠AOB=90° 因为∠ABC=90°,∠AOC=90°, 所以∠BAO+∠BCO=180°, 又∠BAO+∠OAE=180° 所以∠BCO=∠OAE 所以?BCO ?∠EAO 所以BO=EO, ∠BOC=∠EOA 所以,∠BOE=∠EOA+∠AOB=90° 所以三角形BOE 是等腰直角三角形 所以(

)(

)

2

2

22102

102

20BO EO +=+=

所以AB=BE-AE=20-8=12 故答案为:12 【点睛】

考核知识点:全等三角形,勾股定理.构造全等三角形是关键. 13.72965【分析】

分三种情形讨论:(1)如图1中,以点C 所在顶点为直角时;(2)如图2中,以点D 所在顶点为直角时;(3)如图3中,以点A 所在顶点为直角时. 【详解】

(1)如图1中,以点C 所在顶点为直角时. ∵AC =CD =4,BC =3,∴BD =CD +BC =7;

(2)如图2中,以点D 所在顶点为直角时,作DE ⊥BC 与E ,连接BD .

在Rt△BDE中DE=2,BE=5,∴BD2229

=+=;

DE BE

(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,

在Rt△BDE中,DE=4.BE=7,∴BD2265

=+=.

DE BE

故答案为:7或29或65.

【点睛】

本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.

14.10

【分析】

首先作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值,易得△ONN′为等边三角形,△OMM′为等边三角形,∠N′OM′=90°,继而可以求得答案.

【详解】

作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.

根据轴对称的定义可

知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=6,ON′=ON=8,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°.在Rt△M′ON′中,M′N22

+.

''

OM ON

故答案为10.

【点睛】

本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.

15.31+或31- 【解析】 如图,l

AB ,2AC =,作AD l ⊥于点D ,

∴1AD =, ∵222AF AB ==?=,且F 有2个,

∴2212213DF DF ==

-=,

∵1DC AD ==,

∴1113

CF CD DF =+=+, 2231CF DF CD =-=-.

点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力. 16.12 【解析】

如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有: MA=MC ,NA=NC ,∠AMN=∠CMN.

因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN. 所以∠AMN=∠ANM,所以AM=AN. 所以AM=AN=CM=CN.

因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3. 设DN=x ,则CG=x ,AM=AN=CM=CN=3x , 由勾股定理可得NG=()

2

2322x x x -=,

所以MN 2

=()

()2

2

2

22312x

x x x +-=,BM 2

=()()

2

2

2322x x

x -=.

所以22

2

212MN x BM x ==12. 枚本题应填12.

点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 17.49 【解析】

连接AC ,在Rt △ABC 中,∵AB =8,BC =6,∠B =90°,∴AC =

22AB BC + =10.

在△ADC 中,∵AD =CD =52,∴AD 2+CD 2=(52)2+(52)2=100. ∵AC 2=102=100,∴AD 2+CD 2=AC 2,∴∠ADC =90°,∴S 四边形

ABCD =S △ABC +S △ACD =

12AB ?BC +12AD ?DC =12×8×6+1

2

×52×52=24+25=49.

点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 18.5 【解析】

试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.

解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,

∵△ABC 是等腰直角三角形, ∴AB =CB ,∠ABC =90°,AD =DC , ∴∠BAC =∠C =45°, ∵∠ADF =∠CDB , ∴△ADF ≌△CDB , ∴AF =BC ,∠FAD =∠C =45°, ∵AE =3,BE =1, ∴AB =BC =4, ∴AF =4,

∵∠BAF =∠BAC +∠FAD =45°+45°=90°, ∴由勾股定理得:EF 22AF AE +2243+,

∵AC 是BF 的垂直平分线, ∴BP =PF ,

∴PB +PE =PF +PE =EF =5, 故答案为5.

点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解. 19.5 【分析】

根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可. 【详解】

解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,

12310S S S ++=, ∴得出1

8S y x ,24S y

x ,3S x =,

1

2

3

31215S S S x y

,故31215x y

15

4=53x y

, 所以245S x

y

故答案为:5.

【点睛】

此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用

12315S S S ++=求出是解决问题的关键.

20.

28

+ 【分析】

依次求出在Rt △OAB 中,OA 1=2;在Rt △OA 1B 1中,OA 2=2OA 1=(2)2

;依此

类推:在Rt △OA 5B 5中,OA 6=(2

)6

,由此可求出△OA 6B 6的周长. 【详解】

∵等腰Rt OAB ?的直角边OA 的长为1,

∴在Rt △OA 1B 1中OA 1=2OA =2,

在22Rt OA B ?中OA 2OA 1)2, …

故在Rt △OA 6B 6中OA 6=

2OA 5=(2

)6

= OB 6

66A B OB 6

故△OA 6B 6+2×)6+2×18

故答案为:28

+ 【点睛】

本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.

三、解答题

21.(1)BE =1;(2)见解析;(3)(2y x = 【分析】

(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;

(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;

(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =

勾股定理培优练习修订版

勾股定理培优练习集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

勾股定理 【知识点】1、勾股定理__________________________________________________________________ 2、勾股定理逆定理_____________________________________________________________________ 【基础练习】 1.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为() A.30° B.45° C.60° D.90° 2.下列四组线段中,能组成直角三角形的是() A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.如图,已知∠AOB=60°,点P在边OA上,OP=20,点M,N在边OB上,PM=PN.若MN=6,则OM=() A.4 B.5 C.6 D.7 第1题第3题第5题第6题 4.在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是() A.3个B.4个C.5个D.6个 5.(2015?石家庄模拟)图1是我国古代着名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是() A.51 B.49 C.76 D.无法确定 6.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米 B.10米 C.12米 D.14米 7.下列命题中,是假命题的是( ). A.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形 B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形 C.在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形 D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形 8.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米. 第8题第9题第10题 9.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF= . 10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度. 【例题讲解】 例1、)阅读以下解题过程: 已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状. 错解:∵a2c2﹣b2c2=a4﹣b4…(1), ∴c2(a2﹣b2)=(a2﹣b2)(a2+b2)…(2), ∴c2=a2+b2 (3) 问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号. (2)错误的原因是. (3)本题正确的结论是. 例2.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时. (1)求对学校A的噪声影响最大时卡车P与学校A的距离; (2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间. 例3、我们学习了勾股定理后,都知道“勾三、股四、弦五”.

2018年人教版八年级数学下《勾股定理》期末专题培优复习含答案

2018年八年级数学下册勾股定理期末专题培优复习 一、选择题: 1、下列各组数中,以a,b,c为三边的三角形不是直角三角形的是() A.a=1.5,b=2,c=3 B.a=7,b=24,c=25 C.a=6,b=8,c=10 D.a=3,b=4,c=5 2、下列命题中是假命题的是( ) A.△ABC中,若∠B=∠C﹣∠A,则△ABC是直角三角形 B.△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形 C.△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形 D.△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形 3、如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式( ) A.a<c<b B.a<b<c C.c<a<b D.c<b<a 4、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是( ) A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形 5、如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为() A.4 B.8 C.2 D.4 6、若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是() A.20 B.30 C.40 D.60 7、如图所示,在数轴上点A所表示的数为a,则a的值为()

A.﹣1﹣ B.1﹣ C.﹣ D.﹣1+ 8、如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是() A.6 B. C.2π D.12 9、在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为() A.6 B.7 C.8 D.9 10、如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是() A.52 B.42 C.76 D.72 11、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为( ) A.(11-2)米 B.(11-2)米 C.(11-2)米 D.(11-4)米 12、如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )

人教版八年级下册第17章《勾股定理》培优提高试题(附答案)

人教版八年级下册第17章《勾股定理》培优提高试题 一.选择题(共8小题) 1.下列条件中,不能判断△ABC为直角三角形的是() A.a=1.5 b=2 c=2.5B.a:b:c=5:12:13 C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5 2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是() A.18cm2 B.36cm2C.72cm2D.108cm2 3.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为() A.30厘米B.40厘米C.50厘米D.以上都不对4.在△ABC中,∠A=30°,AB=4,BC=,则∠B为() A.30°B.90°C.30°或60°D.30°或90°5.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A1,则梯子底部B滑开的距离BB1是() A.4米B.大于4米C.小于4米D.无法计算 6.为比较与的大小,小亮进行了如下分析后作一个直角三角形,使其两直

角边的长分别为与,则由勾股定理可求得其斜边长为 .根据“三角形三边关系”,可得.小亮的这一做法体现的数学思想是() A.分类讨论思想B.方程思想 C.类此思想D.数形结合思想 7.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是() A.9B.36C.27D.34 8.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是() A.12B.15C.20D.30 二.填空题(共6小题) 9.直角三角形的斜边长是5,一直角边长是3,则此直角三角形另一直角边是.10.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形. 11.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的. 12.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,使扩充的部分是以AC为直角边的直角三角形,则CD的长为.

八年级下勾股定理培优试题集锦(含解析)

初二数学勾股定理提高练习与常考难题和培优题压轴题 二. 填空题(共5小题) 11. 已知Rt A ABC 中,/ C=90 °a+b=14cm , c=10cm ,则Rt A ABC的面积等于_. 12. 观察下列勾股数 第一组:3=2 X1+1 ,4=2 X1 X(1+1 ) ,5=2 X1 X(1+1 ) +1 第二组:5=2 X2+1 , 12=2 X2 X(2+1 ) , 13=2 X2 X(2+1 ) +1 第三组:7=2 X3+1 , 24=2 X3 X(3+1 ) , 25=2 X3 X(3+1 ) +1 第四组:9=2 X4+1 , 40=2 X4 X(4+1 ) , 4仁2 X4 X(4+1 ) +1 ??观察以上各组勾股数组成特点,第7组勾股数是 _ (只填数,不填等式) 13. 观察下列一组数: 列举:3、4、5,猜想:32=4+5 ; 列举:5、12、13,猜想:52=12+13 ; 列举:7、24、25,猜想:72=24+25 ; 列举:13、b、c,猜想:132=b+c ; 请你分析上述数据的规律,结合相关知识求得b= ______ , c= ___ . 三. 解答题(共27小题) 14. a, b, c 为三角形ABC 的三边,且满足a2+b2+c2+338=10a+24b+26c ,试判别这个三角形的形状

15. 如图:四边形ABCD中,AB=CB=匚,CD=匸,DA=1 ,且AB丄CB于B. 试求:(1)ZBAD的度数; (2)四边形ABCD的面积. 16. 如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4, 5, .r的三角形,请你帮助小华作出来 17 .如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东 60方向走了100二km到达B点,然后再沿北偏西30方向走了100km到达目 的地C点,求出A、C两点之间的距离. 18. 如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心 以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

勾股定理培优试题

勾股定理培优试题 1.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是. 2.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E. (1)当m=3时,点B的坐标为_________,点E的坐标为_________; (2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由. 3.如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD 的长和宽分别为a,b,AC的长为c. (1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗? 4.如图,一圆柱高8 cm,底面半径为6/cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()cm. A.6 B.8 C.10 D.12 5.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或25 6.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图4所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().(A)49(B)25(C)13(D)1 7.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于. 8.将一根长24cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是() A.5≤h≤12 B.5≤h≤24C.11≤h≤12D.12≤h≤24 9.如图,将一根长为15cm的筷子置于底面直径为5cm的装满水的圆柱形水杯中,已知水深为12cm,设筷子露出水面的长为hcm,则h的取值范围是.

勾股定理经典例题(含答案)

勾股定理经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32

=16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

(完整版)初中数学培优教材勾股定理专题(附答案-全面、精选)

初中数学勾股定理培优教材 一、探索勾股定理 【知识点1】勾股定理 定理内容:在RT△中, 勾股定理的应用:在RT△中,知两边求第三边,关键 在于确定斜边或直角 典型题型 1、对勾股定理的理解 (1)已知直角三角形的两条直角边长分别为a, b,斜边 长c,则下列关于a,b,c的关系不成立的是() A、c2- a2=b2 B、c2- b2=a2 C、a2- c2=b2 D、a2+b2= c2 (2)在直角三角形中,∠A=90°,则下列各式中不成 立的是() A、BC2- AB2=AC2 B、BC2- AC2=AB2 C、AB2+AC2= BC2 D、AC2+BC2= AB2 2、应用勾股定理求边长 (3)已知在直角三角形ABC中,AB=10 cm, BC=8 cm, 求AC的长. (4)在直角△中,若两直角边长为a、b,且满足,则 该直角三角形的斜边长为. 3、利用勾股定理求面积 (5)已知以直角△的三边为直径作半圆,其中两个半圆 的面积为25π,16π,求另一个半圆的面积。 (6)如图(1),图中的数字代表正方形的面积,则正 方形A的面积为。 (7)如图(2),三角形中未知边x与y的长度分别是 x=,y=。 (8)在Rt△ABC中,∠C=90°,若AC=6,BC=8, 则AB的长为() A、6 B、8 C、10 D、12 (9)在直线l上依次摆放着七个正方形(如图4所示)。 已知斜放置的三个正方形的面积分别是1、2、3,正放 置的四个正方形的面积依次是S S 12 、、 S S S S S S 341234 、,则+++=_____________。 【知识点2】勾股定理的验证 推导勾股定理的关键在于找面积相等,由面积之间 的等量关系并结合图形利用代数式恒等变形进行推导。 (等积法) 拼图法推导一般步骤:拼出图形---找出图形面积的 表达式---恒等变形—推出勾股定理。 (10)用四个相同的直角三角形(直角边为a、b,斜边 为c)按图拼法。 问题:你能用两种方法表示下 图的面积吗?对比两种不同的表 示方法,你发现了什么? (11)用两个完全相同的直角三角形(直角边为a、b, 斜边为c)按下图拼法, 论证勾股定理: 2 2 2c b a= + 3、运用勾股定理进行 计算(重难点) (12)如图,一根旗杆在离地面9米处折断倒下,旗杆顶 部落在离旗杆底部12米 处,旗杆折断前有多高?

数学勾股定理的专项培优易错试卷练习题含答案

数学勾股定理的专项培优易错试卷练习题含答案 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( ) A . 245 B . 365 C .12 D .15 3.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于 ,,D E 连接BD ,则CD 的长为( ) A .1 B . 54 C . 74 D . 254 4.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木

块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ) A .cm B . cm C . cm D .9cm 5.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45?,若AD =4,CD =2,则BD 的长为 ( ) A .6 B .27 C .5 D .25 6.如图,在数轴上点A 所表示的数为a ,则a 的值为( ) A .15-- B .15- C .5- D .15-+ 7.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 的中点 B .BC 的中点 C .AC 的中点 D .C ∠的平分线与AB 的交点 8.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( ) A .12cm B .14cm C .20cm D .24cm 9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形 B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形 C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形 D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°

勾股定理经典例题(含答案)29050

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长 是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长, 进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中, . ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD

勾股定理培优专项练习

勾股定理练习(根据对称求最小值) 基本模型:已知点A、B为直线m 同侧的两个点,请在直线m上找一点M,使得AM+BM 有最小值。 1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N, 使得EN+BN有最小值,并求出最小值。 2、.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N, 使得EN+BN有最小值,并求出最小值。 3、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到 直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=() A. 6 B.8 C.10 D.12 4、已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5. (1)在AB上找一点E,使EC=ED,并求出EA的长; (2)在AB上找一点F,使FC+FD最小,并求出这个最小值

5、如图,在梯形ABCD 中,∠C=45°,∠BAD=∠B=90°,AD=3 ,CD=2 2, M为BC上一动点,则△AMD 周长的最小值为. 6、如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB 边上一点,则EM+BM的最小值为. 7、如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、R分别是OA、OB上的动点, 求△PQR周长的最小值. 8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.2 B.2 6C.3 D.6 9、在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________cm 10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.

八年级初二数学 数学勾股定理的专项培优练习题(及解析

八年级初二数学 数学勾股定理的专项培优练习题(及解析 一、选择题 1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( ) ①∠ACD=2∠FAB ②27ACD S ?= ③272CF =- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④ 2.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( ) A .3 B .11 C .23 D .4 3.如图所示,在中, , , .分别以 , , 为直径作 半圆(以 为直径的半圆恰好经过点,则图中阴影部分的面积是( ) A .4 B .5 C .7 D .6 4.如图,菱形ABCD 的对角线AC ,BD 的长分别为6cm ,8cm ,则这个菱形的周长为 ( ) A .5cm B .10cm C .14cm D .20cm 5.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,

DE=3,BC=1,CD=13,则CE的长是() A.14B.17C.15D.13 6.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则 DN+MN的最小值是() A.8 B.9 C.10 D.12 7.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直 .试在直线a上找一点M,在直线b上找一点N,满足 线b的距离为3,AB230 MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=() A.6 B.8 C.10 D.12 8.下列四组数中不能构成直角三角形的一组是() A.1,26B.3,5,4 C.5,12,13 D.3,213 9.下列结论中,矩形具有而菱形不一定具有的性质是() A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直10.下列说法不能得到直角三角形的() A.三个角度之比为 1:2:3 的三角形B.三个边长之比为 3:4:5 的三角形C.三个边长之比为 8:16:17 的三角形D.三个角度之比为 1:1:2 的三角形 二、填空题 11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.

勾股定理培优题

. 勾股定理 一、知识要点 1、勾股定理 勾股定理在西方又被称为毕达哥拉斯定理,它有着悠久的历史,蕴含着丰富的文化价值,勾股定理是数学史上的一个伟大的定理,在现实生活中有着广泛的应用,被人誉为“千古第一定理” . 222,它的变形式为ca=+b勾股定理反映了直角三角形(三边分别为a、b、c,其中c为斜边)的三边关系,即222222. =--ab=ba或cc勾股定理是平面几何中最重要的几何定理之一,在几何图形的计算和论证方面,有着重要的应用,它沟通了形与数,将几何论证转化为代数计算,是一种重要的数学方法. 2、勾股定理的逆定理 222,则这个三角形是以c为斜边的直角三角形=满足、cac+b. 如果三角形的三边长a、b勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这种方法与前面学过的一些判定方法不同,它是通过代数运算“算”出来的,实际上利用计算证明几何问题在几何里也是很重要的,这是里体现了数学中的重要思想——数形结合思想,突破了利用角与角之间的转化计算直角的方法,建立了通过求边与边的关系来判断直角的新方法,它将数形之间的联系体现得淋漓尽致.因此也有人称勾股定理的逆定理为“数形结合的第一定理”. 二、基本知识过关测试 1.如果直角三角形的两边为3,4,则第三边a的值是 . 2.如图,图形A是以直角三角形直角边a为直径的半圆,阴影S= . A3.如图,有一个圆柱的高等于12cm,底面半径3cm,一只蚂蚁要从下底面上B点处爬至上底与B点相对的A点处,所需爬行的最短路程是 . 23,∠BCD=30°AB,=5,CD,则=AC= . ABC4.如图.在△中,CD⊥AB于D532的线段5. 作长为. ,,22222-1,2a(a>;⑤a+1,a1);⑥5;③,135.6在下列各组数中①,12,;②724,2534,,,5;④3a4a,a2222(m>n>0)可作直角三角形三边长的有组mn-mn,2,m+n. 7.如图,四边形ABCD中,AB=1,BC=2,CD=2,AD=3,AB⊥BC,则四边形ABCD的面积 是 . 1 / 12 . AC A B13A aABD B D12C 题图4题图第7第2题图第3题图第1. ,试判断△AEF=中点,E为BC上一点,且EC的形状BCDC8.如图,在正方形ABCD中,F为 4DAFCBE 创新.提高.三、综合、B重合,折痕与ABAC=3,折叠该纸片,使点A与点=】(1)在三角形纸片ABC中,∠C90°,∠A=30°,1【例DE的长是多少?D和点E(如图),折痕AC 分别相交于点BDAEC

数学数学勾股定理的专项培优练习题(及解析

数学数学勾股定理的专项培优练习题(及解析 一、选择题 1.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( ) A .47 B .62 C .79 D .98 2.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 3.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( ) A .13 cm B .4cm C .4cm D .52 cm 4.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10 B .a 41,b =4,c =5 C .a 3b =2,c 5D .a =3,b =4,c =6 5.三个正方形的面积如图,正方形A 的面积为( )

A .6 B .36 C .64 D .8 6.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( ) A .3 B .5 C .4.2 D .4 7.如图,分别以直角ABC ?三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1 S =( ) A .9 B .5 C .53 D .45 8.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于 PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( ) A 5 B 51 C 51 D .51- 9.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为( )

专题勾股定理培优版综合

专题 勾股定理在动态几何中的应用 .勾股定理与对称变换 (一)动点证明题 2.如图,E 为正方形ABCD 勺边AB 上一点,AE=3,BE=1, P 为AC 上的动点,则 PB F PE 的最小值是 3.如图,四边形ABCD 是正方形,△ ABE 是等边三角形,M 为对角线 将BM 绕点B 逆时针旋转60°得到BN 连接EN AM CM. B C (2)参考小明的思路,探究并解答问题:如图②,在△ ABC 中, D 是BC 边上的一点,若/ BAD= / C=2Z DAC=30 , DC=2 求 BD 和 AB 的长. 图① 二.勾股定理与旋转 5?阅读下面材料: 1.如图,在△ ABC 中, AB=AC 若P 为边BC 上的中点,连结 AP,求证:BPX CP=A W-AP ; (1) (2) 若P 是BC 边上任意一点,上面的结论还成立吗若成立请证明,若不成立请说明 (3) 若P 是BC 边延长线上一点,线段 AB AP 、BP CP 之间有什么样的关系请 证明你的结论. (二)最值问题 (1) 求证:△ AMBs ^ ENB (2) ①当M 点在何处时,AW CM 的值最小; ②当 M 点在何处时,AW BWCM 的值最小,并说明理由; (3) 当AW BW CM 的最小值为.3 1时,求正方形的边长. 4.问题:如图①,在△ ABC 中,D 是BC 边上的一点,若/ BA[=Z C=2Z DA(=450,DC=2?求BD 的长?小明同学的解题 思路是:禾U 用轴对称,把△ ADC 进行翻折,再经过推理、计 算使问题得到解决. (1)请你回答:图中BD 的长为_; 图② A B B 任意一 P I k B A N D E M C E C E B C M B M

勾股定理经典培优题

勾股定理的应用经典培优题 类型之一 利用勾股定理解决平面图形问题 图1-ZT -1 1.如图1-ZT -1,在△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点,若AD =6,DE =5,则CD 的长等于________. 2.在Rt △ABC 中,∠A =90°,BC =4,有一个内角为60°,P 是直线AB 上不同于A ,B 的一点,且∠ACP =30°,求PB 的长. 类型之二 利用勾股定理解决立体图形问题 3.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图1-ZT -2所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是________尺. 图1-ZT -2 图1-ZT -3 4.如图1-ZT -3,将一根长为20 cm 的筷子置于底面直径为5 cm ,高为12 cm 的圆柱形水杯中,则筷子露在杯子外面的长度为________cm. 类型之三 利用勾股定理解决折叠问题 5.如图1-ZT -4(1)是一个直角三角形纸片,∠A =30°,BC =4 cm ,将其折叠,使点C 落在斜边上的点C ′处,折痕为BD ,如图(2),再将(2)沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图(3),则折痕DE 的长为( ) 图1-ZT -4 A.83 cm B .2 3 cm C .2 2 cm D .3 cm

图1-ZT-5 6.如图1-ZT-5,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为________. 类型之四利用勾股定理解决实际问题 7.如图1-ZT-6,A市气象站测得台风中心在A市正东方向300千米的B处,以10 7千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的区域. (1)A市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A市受这次台风的影响,那么受台风影响的时间有多长? 图1-ZT-6

中考数学二轮复习数学勾股定理的专项培优练习题(及解析

中考数学二轮复习数学勾股定理的专项培优练习题(及解析 一、选择题 1.图中不能证明勾股定理的是() A.B. C. D. 2.如图,等腰直角△ABC中,∠C=90°,点F是AB边的中点,点D、E分别在AC、BC边上运动,且∠DFE=90°,连接DE、DF、EF,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC的面积是四边形CDFE面积的2倍;③CD+CE=2FA; ④AD2+BE2=DE2.其中错误结论的个数有() A.1个B.2个C.3个D.4个 3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为() A.3 B.4 C.5 D.6

4.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为 () A.10 B.410C.13D.213 5.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD的长为() A.3 B.11C.23D.4 6.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为() A.49B.25C.12D.10 7.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,则△ABC边AB上的高为()A.8 B.9.6 C.10 D.12 8.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是() A.3 4 B. 3 5 C. 4 5 D. 12 5 9.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为() A.4 B.3 C.2 D.1 10.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()

中考数学一轮复习数学勾股定理的专项培优练习题(及解析

一、选择题 1.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为 ( ) A .6 B .7 C .8 D .9 2.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( ) A .1个 B .2个 C .3个 D .4个 3.已知长方体的长2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B′点,那么沿哪条路最近,最短的路程是( ) A .29cm B .5cm C .37cm D .4.5cm 4.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2 ()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C = 1∶2∶3 ;⑤111 ,,345 a b c ===;⑥10,a = 24,b = 26c = A .2个 B .3个 C .4个 D .5个 5.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( ) A .5 B .8 C .13 D .4.8 6.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( )

中考数学二轮复习数学勾股定理的专项培优易错试卷练习题及解析

一、选择题 1.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm . A .25 B .20 C .24 D .105 2.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( ) A . 254 cm B . 152 cm C .7cm D . 132 cm 3.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) A .0 B .1 C 3 D 2 4.在ΔABC 中,211 a b c =+,则∠A( ) A .一定是锐角 B .一定是直角 C .一定是钝角 D .非上述答案 5.已知,,a b c 是ABC ?的三边,且满足2 2 2 ()()0a b a b c ---=,则ABC ?是( )

A.直角三角形B.等边三角形 C.等腰直角三角形D.等腰三角形或直角三角形 6.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75?的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为() A.北偏西15?B.南偏西75° C.南偏东15?或北偏西15?D.南偏西15?或北偏东15? 7.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是() A.1 B.2021 C.2020 D.2019 8.已知直角三角形纸片ABC的两直角边长分别为6,8,现将ABC按如图所示的方式折叠,使点A与点B重合,则BE的长是() A.7 2 B. 7 4 C. 25 4 D. 15 4 9.由下列条件不能判定△ABC为直角三角形的是() A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2 C.a=2,b=3,c=4 D.(b+c)(b-c)=a2 10.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为() A.3.5 B.3C13D.36 2

相关主题
文本预览
相关文档 最新文档