当前位置:文档之家› 非线性方程组解法与最优化方法

非线性方程组解法与最优化方法

非线性方程组解法与最优化方法
非线性方程组解法与最优化方法

作者:王德人编出版日期:1979年06月第1版页数:272 SS号:10661640

内容提要:高等学校试用教材

仅17页

用外点法求解非线性约束最优化问题

题目:用外点法求解非线性约束最优化问题 学院信息管理学院 学生姓名余楠学号 81320442 专业数量经济学届别 2013 指导教师易伟明职称教授 二O一三年十二月

用外点法求解非线性约束最优化问题 摘要 约束最优化问题是一类重要的数学规划问题。本文主要研究了用外点罚函数法对约束非线性规划问题进行求解。对于一个约束非线性规划用罚函数求解的基本思路是通过目标函数加上惩罚项,将原约束非线性规划问题转化为求解一系列无约束的极值问题。本文最后利用c语言编程得到满足允许误差内的最优解。 本文主要对一个约束非线性规划问题的实例,首先利用上述迭代的方法,计算出各迭代点的无约束极值问题的最优解。然后应用c语言编程,得到精确地最优解,需迭代四次次才使得ε≤0.001,得到的最优解为* X=(333 .0)T。 .0, 666 关键词:外点罚函数法非线性规划约束最优化迭代最优解

一、背景描述 线性规划的目标函数和约束条件都是决策变量的线性函数,但如果目标函数或约束条件中含有决策变量的非线性函数,就称为非线性规划。非线性规划与线性规划一样,也是运筹学的一个极为重要的分支,它在经济、管理、计划、统计以及军事、系统控制等方面得到越来越广泛的应用。 非线性规划模型的建立与线性规划模型的建立类似,但是非线性规划问题的求解却是至今为止的一个研究难题。虽然开发了很多求解非线性规划的算法,但是目前还没有适用于求解所有非线性规划问题的一般算法,每个方法都有自己特定的适用范围。 罚函数法是应用最广泛的一种求解非线性规划问题的数值解法,它的基本思路是通过目标函数加上惩罚项,将原约束非线性规划问题转化为求解一系列无约束的极值问题。这种惩罚体现在求解过程中,对于企图违反约束的那些迭代点,给予很大的目标函数值,迫使这一系列无约束问题的极小值点无限的向可行集(域)逼近,或者一直保持在可行集(域)内移动,直到收敛于原来约束问题的极小值点。 外点法的经济学解释如下:若把目标函数看成“价格”,约束条件看成某种“规定”,采购人员在规定的范围内采购时价格最便宜,但若违反了规定,就要按规定加收罚款。采购人员付出的总代价应是价格和罚款的综合。采购人员的目标是使总代价最小,当罚款规定的很苛刻时,违反规定支付的罚款很高。这就迫使采购人员在规定的范围内采购。数学上表现为罚因子足够大时,无约束极值问题的最优解应满足约束条件,而成为约束问题的最优解。 二、基础知识 2.1 约束非线性优化问题的最优条件 该问题是一个约束非线性优化问题,利用外点罚函数法求解该问题,约束非线性优化问题的最优解所要满足的必要条件和充分条件是我们设计算法的依据,为此有以下几个定理。

线性和非线性最优化理论、方法、软件及应用

线性和非线性最优化理论、方法、软件及应用 最优化在航空航天、生命科学、水利科学、地球科学、工程技术等自然科学领域和经济金融等社会科学领域有着广泛和重要的应用, 它的研究和发展一直得到广泛的关注. 最优化的研究包含理论、方法和应用.最优化理论主要研究问题解的最优性条件、灵敏度分析、解的存在性和一般复杂性等.而最优化方法研究包括构造新算法、证明解的收敛性、算法的比较和复杂性等.最优化的应用研究则包括算法的实现、算法的程序、软件包及商业化、在实际问题的应用. 这里简介一下线性和非线性最优化理论、方法及应用研究的发展状况. 1. 线性最优化 线性最优化, 又称线性规划, 是运筹学中应用最广泛的一个分支.这是因为自然科学和社会科学中许多问题都可以近似地化成线性规划问题. 线性规划理论和算法的研究及发展共经历了三个高潮, 每个高潮都引起了社会的极大关注. 线性规划研究的第一高潮是著名的单纯形法的研究. 这一方法是Dantzig在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划达三十多年. 随着60年代发展起来的计算复杂性理论的研究, 单纯形法在七十年代末受到了挑战. 1979年前苏联数学家Khachiyan提出了第一个理论上优于单纯形法的所谓多项式时间算法--椭球法, 曾成为轰动一时的新闻, 并掀起了研究线性规划的第二个高潮. 但遗憾的是广泛的数值试验表明, 椭球算法的计算比单纯形方法差. 1984年Karmarkar提出了求解线性规划的另一个多项式时间算法. 这个算法从理论和数值上都优于椭球法,因而引起学术界的极大关注, 并由此掀起了研究线性规划的第三个高潮. 从那以后, 许多学者致力于改进和完善这一算法,得到了许多改进算法.这些算法运用不同的思想方法均获得通过可行区域内部的迭代点列,因此统称为解线性规划问题的内点算法. 目前内点算法正以不可抗拒的趋势将超越和替代单纯形法. 线性规划的软件, 特别是由单纯形法所形成的软件比较成熟和完善.这些软件不仅可以解一般线性规划问题, 而且可以解整数线性规划问题、进行灵敏度分析, 同时可以解具有稀疏结构的大规模问题.CPLEX是Bi xby基于单纯形法研制的解线性和整数规划的软件, CPLEX的网址是https://www.doczj.com/doc/6318350631.html,/. 此外,这个软件也可以用来解凸二次规划问题, 且特别适合解大规模问题. PROC LP是SAS软件公司研制的SAS商业软件中OR模块的一个程序. 这个程序是根据两阶段单纯形法研制的,可以用来解线性和整数规划问题并可进行灵敏度分析, 是一个比较完善的程序.用户可以根据需要选择不同的参数来满足不同的要求。关于内点法的软件也在研制之中.BPMP D是Cs.Mzos基于原始对偶内点法研制的解线性和整数规划的软件,其FTP地址是ftp://ftp.sztaki.hu/pub /oplab/SOFTWARE/BPMPD/ ,可以自由下载.此外,在互联网上能访问到的解线性和整数规划问题的软件还有:EQPS(线性,整数和非线性规划),FMP(线性和混合整数规划),HS/LPLO(线性规划),KORBX(线性规划),LAMPS(线性和整数规划),LPBLP(线性规划),MILP(混合整数规划),MINTO(混合整数规划),MPSIII(线性和混合整数规划),OML(线性和混合整数规划),OSL(线性,二次和混合整数规划),PROCLP(线性和整数规划),WB(线性和混合整数规划),WHIZARD(线性和混合整数规划),XPRESSMP(线性和混合整数规划)等.

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

Maab求解线性方程组非线性方程组

M a a b求解线性方程组非 线性方程组 The latest revision on November 22, 2020

求解线性方程组solve,linsolve例:A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1];%矩阵的行之间用分号隔开,元素之间用逗号或空格B=[3;1;1;0]X=zeros(4,1);%建立一个4元列向量 X=linsolve(A,B)diff(fun,var,n):对表达式fun中的变量var求n阶导数。 例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式diff(F); %matlab区分大小写pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式 非线性方程求解 fsolve(fun,x0,options) 其中fun为待解方程或方程组的文件名; x0位求解方程的初始向量或矩阵; option为设置命令参数 建立文件: function y=fun(x) y=[x(1)*sin(x(1))*cos(x(2)), ... x(2) - *cos(x(1))+*sin(x(2))]; >>clear;x0=[,];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function 为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。 Matlab求解线性方程组AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如:X=A\B表示求矩阵方程AX=B的解;X=B/A表示矩阵方程XA=B 的解。对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A 的列数,方程X=B/A同理。 如果矩阵A不是方阵,其维数是m×n,则有:m=n 恰定方程,求解精确解;m>n 超定方程,寻求最小二乘解;m

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

最优化课程的一本好教材 ——《非线性最优化理论与方法》书评

Advances in Education教育进展, 2019, 9(4), 450-453 Published Online July 2019 in Hans. https://www.doczj.com/doc/6318350631.html,/journal/ae https://https://www.doczj.com/doc/6318350631.html,/10.12677/ae.2019.94076 A Good Textbook for Optimization —Review of Theory and Algorithms on Nonlinear Programming Naiyang Deng School of Science, China Agricultural University, Beijing Received: Jun. 30th, 2019; accepted: Jul. 12th, 2019; published: Jul. 22nd, 2019 Abstract This paper provides a review for the textbook written by Professors Yiju Wang and Naihua Xiu, named Theory and Method of Nonlinear Optimization published by Science Publishing House in 2012 by pointing out some highlights and features of the book, and giving some suggestions for improvement. Keywords Book Review, Highlights and Features, Suggestions 最优化课程的一本好教材 ——《非线性最优化理论与方法》书评 邓乃扬 中国农业大学理学院,北京 收稿日期:2019年6月30日;录用日期:2019年7月12日;发布日期:2019年7月22日 摘要 本文对王宜举教授和修乃华教授2012年在科学出版社出版的《非线性最优化理论与方法》进行了评述,指出了该书的一些亮点和特色,同时也给出了进一步提升的建议。 关键词 书评,亮点与特色,建议

非线性方程组数值解法

非线性方程组数值解法 n个变量n个方程(n >1)的方程组表示为 (1) 式中?i(x1,x2,…,x n)是定义在n维欧氏空间R n的开域D上的实函数。若?i中至少有一个非 线性函数,则称(1)为非线性方程组。在R n中记?= 则(1)简写为?(尣)=0。若存在尣*∈D,使?(尣*)=0,则称尣*为非线性方程组的解。方程组(1)可能有一个解或多个解,也可能有无穷多解或无解。对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用迭代法求近似解。根据不同思想构造收敛于解尣*的迭代序列{尣k}(k=0,1,…),即可得到求解非线性方程组的各种迭代法,其中最著名的是牛顿法。 牛顿法及其变形牛顿法基本思想是将非线性问题逐步线性化而形成如下迭代程序: (2) 式中

是?(尣k)的雅可比矩阵,尣0是方程(1)的解尣*的初始近似。 这个程序至少具有2阶收敛速度。由尣k算到尣k+的步骤为:①由尣k算出?(尣k)及 ;②用直接法求线性方程组的解Δ尣k;③求 。 由此看到迭代一次需计算n个分量函数值和n2个分量偏导数值,并求解一次n阶线性方程组。 为了评价非线性方程组不同迭代法的优劣,通常用效率作为衡量标准,其中P 为迭代法的收敛阶,W为每迭代步计算函数值?i及偏导数值的总个数(每迭代步中求一次逆的工作量相同,均不算在W内)。效率e越大表示此迭代法花费代价越小,根据效率定 义,牛顿法(2)的效率为。 牛顿法有很多变形,如当奇异或严重病态时,可引进阻尼因子λk,得到阻尼牛顿法,即

五种最优化方法

五种最优化方法 1.最优化方法概述 最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法: 3)是一种函数逼近法。 原理和步骤 3.最速下降法(梯度法) 最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 最速下降法算法原理和步骤 4?模式搜索法(步长加速法) 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的 是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。

模式搜索法步骤 5.评价函数法 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min (f_1(x),f_2(x),…,f_k(x)) .g(x)<=o 传统的多目标优化方法本质是将多目标优化中的各分目标函数, 经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权 求合法介绍。 线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼。种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 遗传算法基本流程 的就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤

非线性方程组的求解

非线性方程组的求解 摘要:非线性方程组求解是数学教学中,数值分析课程的一个重要组成部分,作为一门学科,其研究对象是非线性方程组。求解非线性方程组主要有两种方法:一种是传统的数学方法,如牛顿法、梯度法、共轭方向法、混沌法、BFGS 法、单纯形法等。传统数值方法的优点是计算精度高,缺点是对初始迭代值具有敏感性,同时传统数值方法还会遇到计算函数的导数和矩阵求逆的问题,对于某些导数不存在或是导数难求的方程,传统数值方法具有一定局限性。另一种方法是进化算法,如遗传算法、粒子群算法、人工鱼群算法、差分进化算法等。进化算法的优点是对函数本身没有要求,不需求导,计算速度快,但是精度不高。 关键字:非线性方程组、牛顿法、BFGS 法、记忆梯度法、Memetic 算法 1: 三种牛顿法:Newton 法、简化Newton 法、修改的Newton 法【1-3】 求解非线性方程组的Newton 法是一个最基本而且十分重要的方法, 目前使用的很多有效的迭代法都是以Newton 法为基础, 或由它派生而来。 n 个变量n 个方程的非线性方程组, 其一般形式如下: ???????===0),...,(... 0),...,(0),...,(21212211n n n n x x x f x x x f x x x f (1) 式(1)中,),...,(21n i x x x f ( i=1, ?, n) 是定义在n 维Euclid 空间Rn 中开域 D 上 的实值函数。若用向量记号,令: ????????????=n x x x ...X 21,????????????=??????????????====)(...)()(0),...,(...0),..,(0)...,()(2121212,211X f X f X f x x x f x x x f x x x f X F n n n n n

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

线性方程组的直接解法

第2章线性方程组的直接解法 2.1实验目的 理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。 2.2概念与结论 1. n阶线性方程组 如果未知量的个数为 n ,而且关于这些未知量x1,x2, …,x n的幂次都是一次的(线性的)那末, n 个方程 a11x1+a12x2+ … +a1n x n=b1 ┆┆┆ (1) a n1x1+a n2x2+ … +a nn x n= b n 构成一个含n个未知量的线性方程组,称为n阶线性方程组。其中,系数a11,…,a1n,a21, …,a2n, …,a n1, …,a nn 和b1, …,b n都是给定的常数。 方程组(1)也常用矩阵的形式表示,写为 Ax=b 其中,A是由系数按次序排列构成的一个n阶矩阵,称为方程组的系数矩阵,x和b都是n维向量,b称为方程组的右端向量。 2. n阶线性方程组的解 使方程组(1)中每一个方程都成立的一组数x1*,x2*, …,x n*称为式(1)的解,把它记为向量的形式,称为解向量. 3.一些特殊的线性方程组 1) 上三角方程组 2) 三对角方程组 ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - n n nn n n n n n n n n b b b x x x a a a a a a a a a a a a 2 1 2 1 1 1 1 2 1 2 23 22 1 1 1 13 12 11

4.矩阵的Doolittle 分解 5.Doolittle 分解的紧凑格式 6.矩阵的Crout 分解 ????????? ? ??=?????????? ???????????? ? ?--n n n n n n d d d x x x b a c b c b a c b a c b 21 2111333 22211???? ?? ? ? ???????? ??=??????? ??nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a 222 11211 2 1 21 2 1 2222111211111 ???? ?? ? ? ???????? ??=??????? ??11 1 21122 1 2221 11 2 1 2222111211 n n nn n n nn n n n n u u u l l l l l l a a a a a a a a a ????? ?? ? ??nn n n n n n n u l l l u u l l u u u l u u u u 3 2 1 333323122322211131211

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

五种最优化方法

五种最优化方法 1. 最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2 原理和步骤

3. 最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2 最速下降法算法原理和步骤

4. 模式搜索法(步长加速法) 4.1 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有

MATLAB非线性优化fmincon

M A T L A B非线性优化 f m i n c o n Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

active-setandsqpalgorithms不接受用户提供的海塞矩阵,对拉格朗日的海塞矩阵提供一个拟牛顿的近似值; 目标函数估值次数与迭代次数? 优化成功或失败 一、求解失败 1、在到达迭代次数阈值或目标函数估值次数阈值时,求解器没有最小化目标到要求的精度,此时求解器停止。接下来,可以尝试以下方法: (1)设置‘Display’为‘iter’,查看每步的迭代信息,这些信息包括:目标函数(Fvalorf(x)orResnorm)是否是下降的;检查约束越界(Maxconstraint)是否是递减趋向于0;查看一阶优化是否是递减趋向于0;查看置信域半径(Trust-regionradius)是否下降趋向于一个小的值。若其中至少一种情况为是,就表示结果是不断改善的。如果结果是不断改善的,可以采取下边的措施:设置MaxIter、MaxFunEvals比默认值大的值,默认值可以在优化工具箱或求解器的函数参考页的优化表中查看;从最后计算出的点开始重新求解。如果结果没有改善,尝试以下其他的方法。 (2)放松精度 如果TolX或TolFun太小,当求解器达到一个最小值时可能也不会识别到,这就会导致无限次徒劳的迭代。DiffMaxChange和DiffMinChange选项能影响求解器的改善,它们控制求导估计中有限差分的步长。 (3)从不同的初始点重新开始求解 (4)检查目标函数和约束函数的定义 举个例子,可以检查目标函数和非线性约束函数在某些特定点处返回正确的值。不可行的点不一定导致函数的错误。

第六章非线性方程组的迭代解法

第六章非线性方程组的迭代解法6.4 非线性方程组的数值解法 6.4.1 非线性方程组的不动点迭代法 6.4.2 非线性方程组的Newton法 6.4.3非线性方程组的Newton法

第六章非线性方程组的迭代解法 T n x f x f x f x F )) (),(),(()(21L =设含有n 个未知数的n 个方程的非线性方程组为 (6,4,1)其中为n 维列向量, 0)(=x F T n x x x x ),,(21L =6.4.1 非线性方程组的不动点迭代法 ),,2,1)((n i x f i L =中至少有一个是x 的非线性函数, 并假设自变量和函数值都是实数。多元非线性方程组 (6.4.1)与一元非线性方程f(x)=0具有相同的形式,可以与一元非线性方程并行地讨论它的迭代解法。例如不动点迭代法和Newton 型迭代法。但是,这里某些定理的证明较为复杂,我们将略去其证明。

第六章非线性方程组的迭代解法 T n x x x x x )) (,),(),(()(21???L =Φ=(6.4.2) 并构造不动点迭代法 L ,1,0),()()1(=Φ=+k x x k k (6.4.3) 把方程组(6.4.1)改写成下面便于迭代的等价形式: 的解。是方程组 从而的不动点,是迭代函数即满足连续函数.则的是自变量 是连续的,即且收敛, 若由此生成的序列对于给定的初始点)1.4.6()(),(,,,)(,),(),()(,*****2121)0(x x x x x x x x x x x x x x n n φφ???φ=L K {}k x *)(lim x x k k =∞ →

相关主题
文本预览
相关文档 最新文档