当前位置:文档之家› 氢原子光谱实验

氢原子光谱实验

氢原子光谱实验
氢原子光谱实验

氢原子光谱实验

背景介绍:

原子的电子运动状态发生变化时发射或吸收的有特定频率的电磁频谱。原子光谱是一些线状光谱,发射谱是一些明亮的细线,吸收谱是一些暗线。原子的发射谱线与吸收谱线位置精确重合。不同原子的光谱各不相同,氢原子光谱最为简单,其他原子光谱较为复杂,最复杂的是铁原子光谱。用色散率和分辨率较大的摄谱仪拍摄的原子光谱还显示光谱线有精细结构和超精细结构,所有这些原子光谱的特征,反映了原子内部电子运动的规律性。

阐明原子光谱的基本理论是量子力学。原子按其内部运动状态的不同,可以处于不同的定态。每一定态具有一定的能量,它主要包括原子体系内部运动的动能、核与电子间的相互作用能以及电子间的相互作用能。能量最低的态叫做基态 ,能量高于基态的叫做激发态 ,它们构成原子的各能级。高能量激发态可以跃迁到较低能态而发射光子,反之,较低能态可以吸收光子跃迁到较高激发态,发射或吸收光子的各频率构成发射谱或吸收谱。量子力学理论可以计算出原子能级跃迁时发射或吸收的光谱线位置和光谱线的强度。

原子光谱提供了原子内部结构的丰富信息。事实上研究原子结构的原子物理学和量子力学就是在研究分析阐明原子光谱的过程中建立和发展起来的。原子是组成物质的基本单元。原子光谱的研究对于分子结构、固体结构也有重要意义。原子光谱的研究对激发器的诞生和发展起着重要作用,对原子光谱的深入研究将进一步促进激光技术的发展;反过来激光技术也为光谱学研究提供了极为有效的手段。原子光谱技术还广泛地用于化学、天体物理、等离子体物理等和一些应用技术学科之中。

原子或离子的运动状态发生变化时,发射或吸收的有特定频率的电磁波谱.原子光谱的覆盖范围很宽,从射频段一直延伸到X 射线频段,通常,原子光谱是指红外、可见、紫外区域的谱.

原子光谱中某一谱线的产生是与原子中电子在某一对特定能级之间的跃迁相联系的.因此,用原子光谱可以研究原子结构.由于原子是组成物质的基本单位,原子光谱对于研究分子结构、固体结构等也是很重要的.另一方面,由于原子光谱可以了解原子的运动状态,从而可以研究包含原子在内的若干物理过程.原子光谱技术广泛应用于化学、天体物理学、等离子物理学和一些应用技术科学中.

实验目的:

1、进一步熟悉光栅光谱仪的性能与使用方法;

2、测量氢原子的光谱,理解原子结构与原子跃迁过程。

实验原理:

氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄的氢气(压力为102Pa 左右),可以得到线状的氢原子光谱。在19世纪下半期,已了解到稀薄气体发光产生的光谱是不连续的。从1885年,瑞士中学教师巴耳末发现描述氢原子光谱规律性的巴耳末公式开始,由大量实验数据分析出原子发射的线光谱是由按照一定规律组成的若干线系构成的。例如,氢原子光谱谱线的波数可用下述的经验公式来描述:

4

22

0-=n n H λλ

其中H λ为氢原子谱线在真空中的波长。nm 57.3640=λ是一个经验常数。n 取整数。

如果用波数ν~表示,则上式变化为:)1

21(

1

~2

2N R H H

H

-==λν 其中R H 的为氢的里德伯常数。

根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得到:

)

/1()4(23

202

42M m ch z me R z +=πεπ 其中M 、m 、e 、c 、h 、0 z 分别是原子核质量、电子质量、电子电荷、光速、普朗克常数、真空介电常数和原子序数。

当原子核质量∞→M 是时,由上式可以得出相当于原子核不动时的里德伯常数(普适的里德伯常数)

3

202

42)4(2ch

z me R πεπ=∞ 所以也就有:)

/1(M m R R z +=

对于氢原子而言,有:

)

/1(H H M m R R +=

其中M H 是氢原子核的质量。

据此我们可以知道通过实验测量得到氢的巴尔末线系的前几条谱线的波长,借助上式可以求得氢的里德伯常数。里德伯常数∞R 是重要的基本物理常数之一,对它的精确测量在科学上具有重要的意义,目前它的推荐值为:

1)83(568549.10973731-=m R H

下表是氢的巴尔末线系的波长:

谱线

符号

H α H β H γ H δ H ε H ξ H ε H ζ H δ H κ

波长(nm ) 656.280 486.133 434.047 410.174 397.007 388.906 383.540 379.791 377.063 375.015

根据原子物理学知识,氢的光谱线系分为赖曼系、巴尔末系、帕邢系、布喇开系和普丰特系等等。如果从基态开始,氢原子能级我们分别标注为E 1、E 2、……E i 、……,那么E i (i>1)能级向E 1的跃迁构成赖曼系,E i (i>2)向E2的跃迁构成巴尔末系,依此类推。

相关的谱线系构成了氢原子的特征谱线,由于能级间能量的差异,谱线分布在从紫外到红外的宽广区域,具体通项和波段如下:

紫外部分: 赖曼系:

...4,3,2),1

11(1

22=-=n n R H λ 可见光部分: 巴尔末系:...5,4,3),1

21(122=-=n n R H λ

红外部分: 帕邢系:...6,5,4),1

31(122=-=n n R H λ

布喇开系:...7,6,5),1

41(122=-=n n R H λ

普丰特系:...8,7,6),1

51(122=-=n n R H λ

汉弗莱斯系:...9,8,7),1

61(122=-=n n

R H λ

所有这些都可以一般的表达为两个光谱项的差值:

)11(

)()(1

222n

m RZ n T m T -=-=λ

R 为里德伯常数,Z 为类氢离子的原子序数,m 、n 是整数,且n >m

总之,关于原子光谱规律可归结为:

(1)谱线的波数由两个谱项的差值来决定。

(2)如果前项保持定值,后项按整数参变量而变,则所给出的各谱线便是同一谱系中各谱线的波数。

(3)改变定项的数值,便给出不同的谱系。 现在,根据量子力学理论我们清楚地知道氢光谱之所以出现如此有规律的谱线,是原子的电子能级结构以及原子在各能级间跃迁的必然反应。

值得注意的是,计算H R 和∞R ,应该用氢谱线在真空中的波长,而实际的过程是在空气中发生的,所以要将空气中的波长转化为真空中的波长。也就是:λλλ?+=air vacuum ,巴尔末线系的前六条谱线的修正值表示如下:

氢谱线

H α

H β

H γ

H δ

H ε

H ξ

)(nm λ?

0.181 0.136 0.121 0.116 0.112 0.110

实验仪器:

本实验使用的光谱获得设备是天津市港东科技发展有限公司生产的WGD —8A 型组合式多功能光栅光谱仪。

该设备由光栅单色仪、接收单元、扫描系统、电子放大器、A/D 采集单元、计算机组成。该设备集光学、精密机械、电子学、计算机技术于一体。光学系统采用C-T 型。入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,顺时针旋转为狭缝宽度加大,反之减小,每旋转一周狭缝宽度变化0.5nm 。光源发出的光束进入入射狭缝S1,S1位于过反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G 上,衍射后的平行光束经物镜M3成像在S2上或S3上。

设备的基本特征参数如下: M2、M3 焦距500mm

光栅G 每毫米刻线2400条,闪耀波长250nm 波长范围200-660nm 相对孔径 D/F=1/7 杂散光 ≤10-3

分辨率 优于0.06 nm 光电倍增管接收

(1)波长范围 200-660nm (2)波长精度 ≤ ±0.2nm (3)波长重复性 ≤ 0.1nm CCD (电荷耦合器件) (1)接收单元 2048

(2)光谱响应区间 300-660nm (3)积分时间 88档 (4)重量 25kg

两块滤光片工作区间 白片 350-600nm 红片 600-660nm

关于本设备的详细使用方法已经在光栅光谱仪的使用实验中详细学习过,设备操作的细节问题请参看实验讲义相关内容。

本实验提供如下气体放电光源:氢灯、钠灯、汞灯、氮灯和镉灯。这些光源都广泛使用在化学化工、医药卫生、石油石化等领域,尤其是钠灯和功能,是常用的单色光源,为干涉仪、折射仪、分光光度计、单色仪、旋光仪和偏振计等光学仪器提供稳定的单色光。

钠灯点燃后能辐射出较强589.0nm 、589.6 nm 谱线,汞灯点燃后能发出较强的汞的特性光谱线,在可见区辐射光谱波长577.0nm 、579.0nm 、546.1nm 、404.7nm 谱线,氮灯的特征谱线是479.5和493.5nm 的特征谱线。

光路图:

实验内容:

1、测量得到不同工作电压条件下的三组氢光源和氮光源的光谱数据;

2、将氢谱线空气中的波长修正为真空波长;

3、计算各谱线的里德伯常数RH,并得到平均值;

4、计算普适里德伯常数.R,并与推荐值比较,得到相对误差;

5、使用Origin软件对数据分析实验数据;

实验数据:

谱线 符号

H α H β

H γ

H δ

H ε

H ζ

H η

H θ H ? H κ

波长(nm ) 658.06 487.84

435.74 411.84

398.68

390.58

里德堡常数

1()

H R m -

10938242.984

10929499.926

10925282.970

10923496.684

10921872.945

10922849.437

计算得里德堡常数平均值为1

10926540.824H R m -=,与标准值的相对误差为

0.24%E =

思考题:

1) 谱线的波数是完全由两个谱项的差值来决定的;如果前项是保持定值,那么后项就

会按照整数参变量而变,给出的各项谱线便是同一谱系中各谱线的波数;改变定项的数值大小,就会得出不同的谱线。 2) 峰宽与在停留在该态的时间有关。4h

E t

π?=

就是峰宽,t 是停留在该态的平均寿命。 3) 会变大。

4) 不是。光电倍增管是属于弱光检测器件,不能接收强光的照射,如果接受强光,则

会引起雪崩效应而损坏光电效应管。

氢原子光谱_实验报告

氢原子光谱 摘 要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长,求出了里德伯常数。最后对本实验进行了讨论。 关键词:氢原子光谱,里德伯常数,巴尔末线系,光栅光谱仪 1. 引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 2. 氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 (1) 式中λH 为氢原子谱线在真空中的波长。 λ0=364.57nm是一经验常数。 n取3,4,5等整数。 若用波数表示,则上式变为 (2) 式中RH 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 (3) 式中M为原子核质量,m为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,ε0为真空 42 2 0-=n n H λλ??? ??-==22 1211~n R v H H H λ)/1()4(23202 42M m ch z me R z += πεπ

原子吸收光谱实验报告

一、基本原理 1.原子吸收光谱的产生 众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级。因此,一个原子核可以具有多种能级状态。能量最低的能级状态称为基态能级(E 0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。如果将一定外界能量如光能提供给该基态原子,当外界光能量E 恰好等于该基态原子中基态和某一较高能级之间的能级差△E 时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。核外电子从基态跃迁至第一激发态所吸收的谱线称为共振吸收线,简称共振线。电子从第一激发态返回基态时所发射的谱线称为第一共振发射线。由于基态与第一激发态之间的能级差最小,电子跃迁几率最大,故共振吸收线最易产生。对多数元素来讲,它是所有吸收线中最灵敏的,在原子吸收光谱分析中通常以共振线为吸收线。 2.原子吸收光谱分析原理 2.1谱线变宽及其原因 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中被待测元素的基态原子吸收后,测定发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合吸收定律: ()0k l I I e νν-= (1.1) 0log 0.434I K l A I ν ν=-=- (1.2) 其中:K v 为一定频率的光吸收系数,K v 不是常数,而是与谱线频率或波长有关,I v 为透射光强度,I 0为发射光强度。

原子吸收实验报告

原子吸收光谱法 原子吸收光谱法是基于含待测组分的原子蒸汽对自己光源辐射出来的待测元素的特征谱线(或光波)的吸收作用来进行定量分析的。由于原子吸收分光光度计中所用空心阴极灯的专属性很强,所以,原子吸收分光光度法的选择性高,干扰较少且易克服。而且在一定的实验条件下,原子蒸汽中的基态原子数比激发态原子数多的多,故测定的是大部分的基态原子,这就使得该法测定的灵敏度较高。由此可见,原子吸收分光光度法是特效性、准确性和灵敏度都很好的一种金属元素定量分析法。 一.实验目的 1.熟悉原子吸收光度计的基本构造及使用方法。 2.掌握原子吸收光谱仪中的石墨炉原子化法和火焰原子化法。 二.实验原理 原子光谱是由于其价电子在不同能级间发生跃迁而产生的。当原子受到外界能量的激发时,根据能量的不同,其价电子会跃迁到不同的能级上。电子从基态跃迁到能量最低的第一激发态时要吸收一定的能量,同时由于其不稳定,会在很短的时间内跃迁回基态,并以光波的形式辐射现同样的能量。根据△E=hυ可知,各种元素的原子结构及其外层电子排布的不同,则核外电子从基态受激发而跃迁到其第一激发态所需要的能量也不同,同样,再跃迁回基态时所发射的光波频率即元素的共振线也就不同,所以,这种共振线就是所谓的元素的特征谱线。加之从基态跃迁到第一激发态的直接跃迁最易发生,因此,对于大多数的元素来说,共振线就是元素的灵敏线。在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源辐射的共振线的吸收来进行的。 三火焰原子化器与石墨炉原子化器 原子化系统的作用是将待测试液中的元素转变成原子蒸汽。具体方法有火焰原子化法和无火焰原子化法两种,前者较为常用。

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

南京大学-氢原子光谱实验报告

氢原子光谱 一.实验目的 1.熟悉光栅光谱仪的性能和用法 2.用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数 二.实验原理 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 2 024 H n n λλ=- (1) 式中H λ为氢原子谱线在真空中的波长。0364.57nm λ=是一经验常数。n 取3,4,5等整数。 若用波数表示,则上式变为 221 112H H R n νλ?? = =- ??? (2) 式中H R 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 () () 242 2 3 0241/Z me Z R ch m M ππε= + (3) 式中M 为原子核质量,m 为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,0ε为真空介电常数,Z 为原子序数。 当M →∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)

() 242 2 3 024me Z R ch ππε∞= (4) 所以 () 1/Z R R m M ∞ = + (5) 对于氢,有 () 1/H H R R m M ∞ =+ (6) 这里H M 是氢原子核的质量。 由此可知,通过实验测得氢的巴尔末线系的前几条谱线j 的波长,借助(6)式可求得氢的里德伯常数。 里德伯常数R ∞是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,目前它的推荐值为()=10973731.56854983/R m ∞ 表1为氢的巴尔末线系的前四条波长表 表1 氢的巴尔末线系波长 值得注意的是,计算H R 和R ∞时,应该用氢谱线在真空中的波长,而实验是在空气中进行的,所以应将空气中的波长转换成真空中的波长。即1λλλ?真空空气=+,氢巴尔末线系前6条谱线的修正值如表2所示。 表2 真空—空气波长修正值

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

高中物理氢原子跃迁与氢原子光谱

氢原子跃迁与氢原子光谱 玻尔原子理论第三条假设的“跃迁’指出:原子从一个定态(设能量为En )跃迁到 )时.它輻射和吸收一定频率的光于.光子能量由这两个定态另一种定态(没能量为E K 能量差决定,即hυ=En-Ek 若原于原来处于能级较大的定态——激发态.这时原子处于不稳定的能量状态,一有机会让会释放能量.回到能量较小的激发态或基态(能级最小的定态).这一过程放出的能量以放出光于的形式实现的,这就是原于发光原因。可见原子发光与能级跃迁有必然联系。对于氢原子它们对应关系如上图所示,从图可知当电子从n=3、4、5、6这四个激发态跃迁到n=2的激发态时,可得到可见光区域的氢原子光增,其波长"入"用下列公式计算 hc/入=E (1/n2-1/n2) 1 其中n=3,4,5,6.相应波长依次为: h α=656.3nm,hβ=486.1nm,hδ=434.1nm,hγ=410.1nm. 它们属于可见光,颜色分别为红、蓝、紫、紫。组成谱线叫巴耳末线系;若从n>1的激发态 跃迁到基态,放出一系列光子组成谱线在紫外区,肉眼无法观测,叫赖曼线系.....。 当原子处于基态或能级较低的激发态向高能级跃迁,必须吸收能量。这能量来源有

两种途径。 其一、吸收光子能量、光子实质上是一种不连续的能量状态。光的发射与吸收都是一份一份的,每一份能量E=hυ叫光子能量.光子能量不能被分割的。因此原子所吸收的光子只有满足hυ=En-Ek时,才能被原子吸收,从En定态跃迁到Ek定态。若不满足hυ=En-Ek的光子均不被吸收,原子也就无法跃迁。 例如用能量为123eV的光子去照射一群处于基态的氢原子.下列关于氢原子跃迁的说法中正确的是() 1)原子能跃迁到n=2的轨道上;2)原子能跃迁到n=3的轨道; 4)原子能跃迁到n=4的轨道上;3)原子不能跃迁。 通过计算可知E 1-E 2 =10.2eV<I2.3ev;E 3 -E 1 =12.09ev<12.3eV,E 4 一E 1 =12.75eV >12.3eV,即任意两定态能级差均不等于12.3eV.此光子原子无法吸收。答案D)正确。 其二、吸收电子碰撞能量。夫兰克——赫兹实验指出:当电子速度达到一定数值时,与原子碰撞是非弹性的,电子把一份份能量传给原子,使原子从一个较低能级跃迁到较高能级,原子从电子处获得能量只能等于两定态能量差。电子与光子不同.其能量不是一份一份的只要人射电子能量大于或等于两定态能量差. 均可使原子发生能级跃迁。 例如,已知汞原子可能能级如下图所示,一个自由电子总能量为9.0电子伏与处 于基态的汞原子发生碰撞,已知碰撞过程中不计汞原子动能变化,则电子剩余能量为()(A)0.2eV;(B)1.4eV(C)2.3eV(D)5.5eV. 因为E 2-E 1 =4.9ev<9.0eV,E 3 -E 1 =7.7eV<9.0ev,E 4 -E 1 =8.8ev<9.0ev. 满足人射电子能量大于两定态能量差 .处于基态汞原子分别吸收电子部分能量跃迁到n= 2、3.4能级,而电子剩余能量分别为4.1ev,1.3ev,0.2ev,只选项(A)正确。 摘自《物理园地》

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

氢原子光谱教案

普通高中课程标准实验教科书—物理(选修3-5) 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.3 氢原子光谱 ★新课标要求 (一)知识与技能 1.了解光谱的定义和分类。 2.了解氢原子光谱的实验规律,知道巴耳末系。 3.了解经典原子理论的困难。 (二)过程与方法 通过本节的学习,感受科学发展与进步的坎坷。 (三)情感、态度与价值观 培养我们探究科学、认识科学的能力,提高自主学习的意识。 ★教学重点 氢原子光谱的实验规律 ★教学难点 经典理论的困难 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时

★教学过程 (一)引入新课 讲述: 粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。 (二)进行新课 1.光谱(结合课件展示) 早在17世纪,牛顿就发现了日光通过三棱镜后的色散现 象,并把实验中得到的彩色光带叫做光谱。 (如图所示) 讲述: 光谱是电磁辐射(不论是在可见光区域还是在不可见光区 域)的波长成分和强度分布的记录。有时只是波长成分的记录。 (1)发射光谱 物体发光直接产生的光谱叫做发射光谱。 发射光谱可分为两类:连续光谱和线光谱。 引导学生阅读教材,回答什么是连续光谱和线光谱? 学生回答:连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。只含有一些不连续的亮线的光谱叫做线光谱。线光谱中的亮线叫谱线,各条谱线对应不同波长的光。 教师讲述:炽热的固体、液体和高压气体的发射光谱是连续光谱。例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。如图所示。 稀薄气体或金属的蒸气的发射光谱是线光谱。线光谱是由游离状态的原子发射的,所以也叫原子的光谱。实践证明,原子不同,发射的线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此线光谱的谱线也叫原子的特征谱线。如图所示。 (2)吸收光谱 教师:高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。因此吸收光谱中的暗谱线,也是原子的特征谱线。太阳的光

实验2 氢原子光谱的观察与测定

实验2 氢原子光谱的观察与测定 每一种原子都有其特定的线状光谱线。氢原子的光谱线最为简单,且具有明显的规律。测定氢原子可见光谱线的波长对认识原子的分离能级、以及由于能级间的跃迁而产生的光辐射的规律起着重要作用。本实验用读谱仪测量氢原子可见谱线的波长,并通过巴耳末公式推算出氢原子的里德伯常数。 【实验目的】 (1)观察氢原子的可见光谱。 (2)了解读谱仪的结构,掌握读谱仪的调节与使用方法。 (3)通过测量氢原子可见光谱线的波长,验证巴耳末公式的正确性。 (4)准确测定氢原子的里德伯常数。 (5)理解曲线拟合法的意义。 【仪器用具】 WPL —2型读谱仪,氢谱光源,氦氖谱光源,会聚透镜。 【仪器介绍】 整个实验的装置简图如图1所示。 读谱仪是由棱镜摄谱仪改进设计而成。它是利用棱镜分光在物镜上观察光谱的光学仪器。其结构大致可以分为三部分:平行光管系统、色散系统、接收系统。 (1)平行光管系统 平行光管系统包括入射狭缝和入射物镜。入射物镜的作用是使入射狭缝发出的光线变成平行光,所以入射狭缝应放在入射物镜的焦平面上。 (2)色散系统 色散系统实际上就是一个恒偏向棱镜,如图2所示。 它的作用是将光束分解,使不同波长的单色光束沿不同 的方向射出。符合最小偏向角条件的单色光,其入射光束和出射光束的夹角为900。 (3)接收系统 接收系统由出射物镜及放在该物镜焦平面上的目镜组成。不同方向的单色光束经出射物镜聚焦,在其焦平面上得到连续或不连续的依照波长次序排列的入射狭缝的单色像,即光谱。调节光谱的位置时,可以使用水平方向左右移动的手轮、丝杠、滑块、导轨和支架,还包括读出目镜位置用的标尺和100分度的手轮刻度。 手轮转一圈平移mm 1,每分度mm 01.0,要求估读到 1.0分度。目境内的叉丝用来对准被测谱线的中心。 【实验原理】 图 1 图2

实验31 原子发射光谱观测分析(实验报告)

实验31(A )原子发射光谱观测分析 【实验目的】 1. 学会使用光学多通道分析器的方法 2. 通过对钠原子光谱的研究了解碱金属原子光谱的一般规律 3. 加深对碱金属原子中外层电子与原子核相互作用以及自旋与轨道运动相互作用的了解 【实验仪器】 光学多通道分析器、光学平台、汞灯、钠灯、计算机 【原理概述】 钠属碱金属原子类,碱金属原子和氢原子一样,都只有一个价电子。但在碱金属原子中除了一个价电子外,还有内封闭壳层的电子,这些内封壳层电子与原子核构成原子实。价电子是在原子核和内部电子共同组成的力场中运动。原子实作用于价电子的电场与点电荷的电场有显著的不同。特别是当价电子轨道贯穿原子实时(称贯穿轨道),这种差别就更为突出。因此,碱金属原子光谱线公式为: ()()2 22*12*2 11~l l n R n R n n R μμν--'-'=???? ??-=' 其中ν ~为光谱线的波数;R 为里德堡常数。 n '与n 分别为始态和终态的主量子数 *2n 与*1n 分别为始态和终态的有效量子数 l '与l 分别为该量子数决定之能级的轨道量子数 l ''μ与l μ分别为始态和终态的量子缺(也称量子改正数,量子亏损) 根据就的波尔理论,在电子轨道愈接近原子中心的地方,μ的数值愈大。当轨道是贯穿轨道实,μ得数值还要大些。因为这时作用在电子上的原子核的有效电荷Z eff 有很大程度的改变。在非常靠近原子核的地方,全部核电荷作用在电子上。而距离很远的,原子核被周围电子屏蔽,以致有效核电荷1→eff Z 。因此s 项的μ值最大,而对p 项来说就小一些,对于d 来说还更小,由此类推。因而量子缺μ的大小直接反映原子实作用于价电子的电场与点电荷近似偏离的大小 对于钠原子光谱分如下四个线系 主线系:s np 3~→=ν 锐线系:p ns 3~→=ν 漫线系:p nd 3~→=ν 基线系:d nf 3~→=ν

钠原子氢原子光谱

实验二十 钠原子光谱 引言 研究元素的原子光谱,可以了解原子的内部结构,认识原子内部电子的运动,并导致电子自旋的发现。钠原子是一个多电子原子,原子序数为11,既有稳定的满内壳层,又有自由电子,既存在着原子核和电子的相互作用,又存在着电子之间的相互作用,还有电子自旋运动与轨道运动的相互作用,其光谱结构比较简单,即可用吸收光谱,也可用发射光谱进行研究,在激光光谱日益发展的今天,钠光谱仍是深入研究的对象之一。 一、实验目的 1、WGD-8型组合光栅光谱仪拍摄钠原子光谱的实验方法; 2、测定钠光谱线的波长,通过里德伯关系计算钠原子能级和量子亏损,并绘出能级图。 二、实验原理 在原子物理中,氢原子光谱的规律告诉我们:当原子在主量子数为2n 与1n 的上下两能级间跃迁时,它们的谱线波数可以用两光谱项之差表示: 22 21~n R n R ?=ν, (1) 式中R 为里德伯常量(109 677.581?cm ).当21=n ,2n =3,4,5,…,则为巴尔末线系。 对于只有一个价电子的碱金属原子(Li ,Na ,K ,…),其价电子是在核和内层电子所组成的原子实的库仑场中运动,和氢原子有点类似。但是,由于原子实的存在,价电子处在不同量子态时,或者按轨道模型的描述,处于不同的轨道时,它和原子实的相互作用是不同的。因为价电子处于不同轨道时,它们的轨道在原子实中贯穿的程度不同,所受到的作用不同。还有,价电子处于不同轨道时,引起原子实极化的程度也不同。这二者都要影响原子的能量。即使电子所处轨道的主量子数n 相同而轨道量子数l 不同,原子的能量也是不同的,因此原子的能量与价电子所处轨道的量子数n 、l 都有关,轨道贯穿和原子实极化都使原子的能量减少,量子数l 越小,轨道进入原子实部分越多,原子实的极化也越显著,因而原子的能量减少得越多。与主量子数n

仪器分析实验报告原子吸收铜

华南师范大学实验报告 课程名称:仪器分析实验实验项目:原子吸收光谱法测定水 中的铜含量 原子吸收光谱法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定 量分析的方法。为了能够测定吸收值,试样需要转变成一种在适合的介质中存在的自由原子。化学火焰是产生基态气态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中。产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用的空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响方法的准确性。干扰一般分为四种:物理干扰、化学干扰、电离干扰和光谱干扰。物

理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确测定。干扰可以通过选择适当的实验条件和对试样的预处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 由于试样中基本成分往往不能准确知道,或是十分复杂,不能使用标准曲线法,但可采用另一种定量方法——标准加入法,其测定过程和原理如下。 取笑体积的试液两份,分别置于相同溶剂的两只容量瓶中。其中一只加入一定量待测元素的标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则: Ax=kfx Ao=k(fo十fx) 式中,fx,为待测液的浓度;f。为加入标准溶液后溶液浓度的增量;测量的吸光度,将以上两式整理得:Ao分别为两次在实际测定中,采取作图法(图6—6)的结果更为准确。一般吸取四份等体积试液置于四只等容积的容量瓶中,从第二只容量瓶开始,分别按比例递增加人待测元素的标准溶液,然后用溶剂瓶稀释至刻度,摇匀,分别测定溶液fx,cx十fo,fx十2co,cx十3fo的吸光度为Ax,A1,Az,A:,然后以吸光度A对待侧元素标准溶液的加入量作图,得图6—6所示的直线,其纵轴上截距Ax为只含试样fx 的吸光度,延长直线与横坐标轴相交于cX,即为所需要测定的试样中该元素的浓度。

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

原子吸收光度法实验报告

原子吸收光谱分析实验 一、目的要求 1.了解原子吸收光谱仪的基本构造、原理及方法; 2.了解利用原子吸收光谱仪进行测试实验条件的选择; 3.掌握原子吸收光谱分析样品的预处理方法; 4.学会应用原子吸收光谱分析定量测量样品中的常/微量元素含量。 二、实验原理 1、原子吸收光谱分析的原理 当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的基态原子浓度成正比。 当实验条件一定时,蒸气相中的原子浓度与试样中该元素的含量(浓度)成正比。因此,入射辐射减弱的程度与该元素的含量(浓度)成正比。 朗伯—比尔吸收定律:cL 1lg lg 0K T I I A === 式中:A —吸光度 I —透射原子蒸气吸收层的透射辐射强度 I 0—入射辐射强度 L —原子吸收层的厚度 K —吸收系数 c —样品溶液中被测元素的浓度 原子吸收光谱分析法就是根据物质产生的原子蒸气对特定波长光的吸收作用来进行定量分析的。 2、原子吸收光谱仪的结构及其原理

原子吸收光谱分析法所使用的仪器称为原子吸收光谱仪或原子吸收分光光度计,一般由四部分构成,即光源、原子化系统、分光系统和检测显示系统组成。 图4-1 原子吸收光谱仪结构示意图 (1)光源 光源的作用是辐射待测元素的特征谱线,以供测量之用。要测出待测元素的特征谱线和峰值吸收,就需要光源辐射出的特征谱线宽度必须很窄,目前空心阴极灯是最能满足要求的理想的锐线光源。 (2)原子化系统 样品的原子化作为原子吸收光谱测试的主要环节,在很大的程度上影响待测样品中元素的灵敏度、干扰、准确度等。目前原子化技术有火焰原子化和非火焰原子化两类。常用的原子化器有混合型火焰原子化器、电热石墨炉原子化器、阴极溅射原子化器和石英炉原子化器等。 (3)分光系统 分光系统的作用是把待测元素的共振线(实际上是分析线)与其他谱线分离出来,只让待测元素的共振线能通过。该系统主要由色散元件(常用的是光栅),入射和出射狭缝,反射镜等组元素组成,其中色散原件(光栅、棱镜)是分光系统中的关键部件。 (4)检测显示系统 检测显示系统主要由检测器,放大镜和对数变换器及显示装置组成。检测器

(火焰)原子吸收光谱法实验报告之欧阳家百创编

原子吸收光谱实验报告 欧阳家百(2021.03.07) 一、实验目的 1. 学习原子吸收光谱分析法的基本原理; 2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法; 3. 掌握以标准曲线法测定自来水中钙、镁含量的方法。 二、实验原理 1. 原子吸收光谱分析基本原理 原子吸收光谱法(AAS)是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。 火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g,可用于常见的30多种元素的分析,应用最为广泛。2. 标准曲线法基本原理 在一定浓度范围内,被测元素的浓度(c)、入射光强(I0)和透射光强(I)符合Lambert-Beer定律:I=I0×(10-abc)(式中a为被测组分对某一波长光的吸收系数,b为光经过的火焰的长度)。根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为

纵坐标,绘制标准曲线。试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。 三、仪器与试剂 1. 仪器、设备: TAS-990型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。 2. 试剂 碳酸镁、无水碳酸钙、1mol L-1盐酸溶液、蒸馏水 3. 标准溶液配制 (1)钙标准贮备液(1000g mL-1)准确称取已在110℃下烘干2h的无水碳酸钙0.6250g于100mL烧杯中,用少量蒸馏水润湿,盖上表面皿,滴加1mol L-1盐酸溶液,至完全溶解,将溶液于250mL容量瓶中定容,摇匀备用。 4.光谱仪----特点:(1)采用锐线光源,(2)单色器在火焰与检测器之间,(3)原子化系统 5.空心阴极灯----光源 (1)能发射待测元素的共振线;(2)能发射锐线;(3)辐射光强度大,稳定性好 (2)钙标准使用液(50g mL-1)准确吸取5mL上述钙标准贮备液于100mL容量瓶中定容,摇匀备用。 (3)镁标准贮备液(1000g mL-1)准确称取已在110℃下烘干2h的无水碳酸钙0.8750g于100mL烧杯中,盖上表面皿,滴加5mL 1mol L-1盐酸溶液使之溶解,将溶液于250mL容量瓶中定容,摇匀

物理:新人教版选修3-5 18.3氢原子光谱(教案)

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.3 氢原子光谱 ★新课标要求 (一)知识与技能 1.了解光谱的定义和分类。 2.了解氢原子光谱的实验规律,知道巴耳末系。 3.了解经典原子理论的困难。 (二)过程与方法 通过本节的学习,感受科学发展与进步的坎坷。 (三)情感、态度与价值观 培养我们探究科学、认识科学的能力,提高自主学习的意识。 ★教学重点 氢原子光谱的实验规律 ★教学难点 经典理论的困难 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 讲述: 粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。 (二)进行新课 1.光谱(结合课件展示) 早在17世纪,牛顿就发现了日光通过三棱镜后的色散现 象,并把实验中得到的彩色光带叫做光谱。 (如图所示) 讲述: 光谱是电磁辐射(不论是在可见光区域还是在不可见光区 域)的波长成分和强度分布的记录。有时只是波长成分的记录。 (1)发射光谱 物体发光直接产生的光谱叫做发射光谱。 发射光谱可分为两类:连续光谱和明线光谱。 引导学生阅读教材,回答什么是连续光谱和明线光谱? 学生回答:连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫谱线,各条谱线对应不同波长的光。 教师讲述:炽热的固体、液体和高压气体的发射光谱是连续光谱。例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。如图所示。 稀薄气体或金属的蒸气的发射光谱是明线光谱。明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。如图所示。

氢原子光谱实验报告

氢原子光谱和里德伯常量测定

摘要: 本文详细地介绍了氢原子光谱和里德伯常量实验的实验要求、实验原理、仪器介绍、实验内容和数据处理,并从钠黄双线无法区分的现象触发定量地分析了此现象的原因和由此产生的误差,结合光谱不够锐亮和望远镜转动带来的误差提出了创新的实验方案。从理论上论证了实验方案的可行性,总结了基础物理实验的经验感想。 关键字:氢原子光谱里德伯常量钠黄双线 Abstract: This paper introduced the hydrogen atoms spectrum and Rydberg constant experiment from experimental requirements, experimental principle, instruments required, content and Data processing. Considering that the wavelength difference of Na-light double yellow line is indistinguishable from human eyes, we analyze the cause of this phenomenon and the resulting errors quantitatively and propose an innovate experiment method combined with inadequate sharpness and lightness of the spectrum as well as the errors brought during the turning of telescope. We verify the feasibility of this method In theory and summarizes the experience and understanding of basic physics experiment. Key words: hydrogen atoms spectrum, Rydberg constant, Na-light double yellow line

相关主题
文本预览
相关文档 最新文档