当前位置:文档之家› 植物病原菌对杀菌剂抗药性探究

植物病原菌对杀菌剂抗药性探究

植物病原菌对杀菌剂抗药性探究
植物病原菌对杀菌剂抗药性探究

植物病原菌对杀菌剂的抗药性研究

摘要:植物病原菌杀菌剂是防治植物病害的重要手段,但近年来杀菌剂的抗药性问题呈现逐年增多的趋势,已引起相关领域的广泛关注。本文从抗药性病原菌的抗药性机制,抗性治理两个方面综述了植物病原菌杀菌剂的抗药性研究进展。

关键词:杀菌剂;抗药性;研究进展

植物病原菌对杀菌剂产生抗药性是植物病害化学防治中面临的主要问题之一,是指本来对农药敏感的野生型病原物, 由于遗传变异而对药剂出现敏感性下降的现象。群体中抗药性菌株的频率和抗药性程度达到某一水平导致药剂常规使用剂量下的防治效果下降或失败, 说明此时田间病原菌可能已出现抗药性[1]。联合国粮农组织(FAO)对杀菌剂抗药性推荐的定义是,遗传学为基础的灵敏度降低,特别是随着高效内吸选择性强的杀菌剂被开发和广泛应用,杀菌剂抗性越来越严重和普遍,成为制约化学防治措施发展的关键因素之一。

二十世纪六十年代早期,大部分杀菌剂的抗性风险都很低,如铜、硫制剂等。1966年Noble等人发现麦类核腔菌对有机汞制剂,引起柠檬腐烂的指状青霉对环烃类杀菌剂联苯产生了抗性,但是抗性问题还没有达到很严重的程度。直到具有特异性作用方式的高活性化合物被开发出来以后,植物病原菌对杀菌剂的抗性问题才变得日益突出。据统计,植物病原真菌四大真菌亚门中多达近百种真菌对杀菌剂有抗药性发生。本文总结了近年来对植物病原菌杀菌剂的研究进展,为杀菌剂的开发和抗性治理提供参考。

1 病原菌抗药性机制

1.1 病原菌抗药性的遗传机制

植物病原菌的抗药性可以由染色体基因或胞质遗传基因的突变产生。因此,可以将植物病原菌的抗药性分为核基因( nuclear gene) 控制的抗药性和胞质基因( cytoplasmicgene) 控制的抗药性。植物病原真菌对大多数杀菌剂的抗性属于前一种情况; 而存在于细胞质中的抗药基因, 目前已知的主要位于真菌的线粒体和细菌的质粒中, 真菌对少数药剂和细菌对大多数药剂的抗药基因属于这种情况。

对于核基因控制的抗药性, 又可以分为主效基因( major-gene) 抗药性和微效多基因( poly-gene) 抗药性[1]。

1.1.1 主效基因控制的抗药性

主效基因抗性可分为单个主效基因控制的抗性, 即单基因( single-gene) 抗性, 和多个主效基因控制的抗性, 即多基因( mult-i gene) 抗性。对于单基因抗性, 通常存在一种复等位基因抗性( multipleallelicresistance) 的情况, 即该基因座位上不同的碱基位点可以分别发生突变或同一碱基位点可以发生不同的突变, 并能使病菌表现出不同的抗性水平, 如灰葡萄孢霉( Botrytis cinerea)[2]、苹果黑星病菌( Venturiainaequalis)[3]等对苯并咪唑类药剂的抗性。在多基因抗性中, 其中的任何一个主效基因的突变都会使病菌产生抗性, 如在脉孢霉( Neurosporacrassa) 中有6个主效基因控制对二甲酰亚胺类杀菌剂的抗性, 其中任何一个基因发生突变都可表达抗性[4]。但当有2个或2个以上的主效基因同时发生突变时, 存在2种情况, 一是某一主效基因会对其它主效基因具有上位显性作用,即抗性水平与该主效基因单独突变时一致; 另一种情况是主效基因间会发生互作, 从而使得抗性水平不同于单一主效基因发生突变, 如在尖孢镰刀菌( Fusariumoxysporum) 中, 对苯菌灵的高水平抗性是由2个主效基因的互作引起的[5]。但无论在什么情况下, 只要是主效基因控制的抗药性, 田间病原群体或敏感性不同的菌株杂交后代对药剂的敏感性都呈明显的不连续性分布, 表现为质量性状,很容易识别出抗药群体。

1.1.2 微效多基因控制的抗药性

微效多基因抗性是指抗性由多个微效基因控制, 且这些基因间具积加效应, 即单个或少数基因的突变引起的抗性水平是微不足道的, 病菌对药剂高水平抗性的产生需要多个基因的突变。由于不同抗药菌株中所携带的抗药基因数目的差异, 使得田间病原群体或敏感性不同的菌株的杂交后代对药剂的敏感性呈连续性分布, 表现数量性状, 这也是区别于主效基因所控制的抗药性的基本特征。此类抗性病菌对药剂高水平抗性的敏感性下降,但很少表现完全失效,增加用药量或缩短用药周期可提高防效。使病原物表现数量遗传抗药性反应的杀菌剂有多果定、甾醇脱甲基抑制剂、放线菌酮、吗啉类和哌啶类及乙菌啶等。Polach根据田间群体对药剂的敏感性呈连续性分布以及遗传学的研究,认为Venturia inaequalis

对多果定的抗性是由微效多基因控制的[6]在Nectria haematococca var. cucurbitae 和Nectria haematococca var. pisi中,Demarkopoulou及De Falandre 分别研究其诱导的丁苯吗啉的抗药突变体都有 3 个与抗性有关的基因,而且具有积加效应,因此认为对该药剂的抗药性是微效多基因抗药性[7,8]。

1.1.3 胞质基因控制的抗药性

目前已知大多数细菌的抗药基因主要存在于质粒DNA分子中, 许多药剂如萎锈灵[9]尽管是干扰真菌的线粒体活性, 抗性却是由核基因控制的,过去仅发现酵母对三烷基锡( trialkyltin) 类药剂干扰病菌的氧化磷酸化) 的抗药性是由线粒体DNA分子控制的[10], 但近年来研究发现病原真菌对作用于菌体细胞色素bc1 复合物的QoIs类药剂的抗药性也是由线粒体基因控制的[11]。

1.2植物病原菌抗药性的生理生化机制

1.2.1 改变细胞膜细胞壁通透性

病原物细胞可以通过某些代谢变化来改变细胞壁细胞膜的通透性,从而阻碍足够量的药剂通过细胞膜或细胞壁而到达作用靶点,使其无法发挥其杀菌作用来产生自我保护。如多氧霉素类是抑制菌体几丁质合成酶的生物活性,破坏细胞壁的生成的一类杀菌物质。而抗药性菌体的细胞壁结构发生变化,使抗菌素难以进入菌体到达作用部位而产生抗药性。有些病原菌避免其自身中毒的方式是在杀菌剂大量进入体内后,迅速地将杀菌剂排出体外,阻止药剂积累而表现抗药性。

1.2.2 改变杀菌剂毒性

抗药菌株可通过某些变异影响生化代谢过程,在药剂到达作用位点之前就与细胞内其它生化成分结合而降低杀菌剂转毒能力,钝化乃至去除毒性,将有毒的农药转化成无毒化合物。祝明亮等研究认发现室内所得的稻梨孢菌(Pyricularia oryzae)高抗突变体对硫代磷酸醋类杀菌剂的抗药性的抗药机制是,裂解有机磷类药剂“s-c” 键以致使其失去生物活性[12].

1.2.3 降低药剂的亲和性

病原菌可通过改变杀菌剂作用位点的结构,使杀菌剂与其作用位点的亲和能力降低,或改变其代谢途径,使杀菌剂无法在作用位点发挥作用,从而降低了杀菌剂的杀菌能力。

研究发现病原菌β-微管蛋白发生变化,导致苯并咪唑类杀菌剂与病原菌亲和性下降是病原菌产生抗药性的主要原因。Butters 在研究病菌对苯并咪唑类药剂的抗性分子机制的研究发现,田间抗药性菌株大都主要涉及198 和200 位置氨基酸的改变[13]。这些作用靶标构象的改变降低了药剂与靶标的亲和性,从而使得病原菌表现出抗药性。

2 杀菌剂抗药性的治理

植物病原菌抗药性的产生给农业生产和农药行业造成了难以估计的经济损失。药剂防治的失效使用药次数和用药剂量增加,最后不得不换用更昂贵的新型杀菌剂。而新药剂的发现、发展、登记注册和生产,因交互抗性和多种抗性而变得越来越难。因此,发展新农药的速度大大落后于抗药速度,若不采取措施,则我们用于对付有害生物的有效杀菌剂将越来越少。如何克服或延缓病原菌抗药的产生和发展,以延长杀菌剂的有效使用寿命,已经成为植物病原菌抗药问题中所面临的最主要难题。

2.1加强药剂的抗性风险监测风险评估,建立各病原菌和杀菌剂的抗性风险级别。随着分子生物学技术的突飞猛进,采用分子生物学方法进行抗药性检测可以快速,准确地检测到抗性频率很低( 小于1/10 000)突变群体从而弥补了传统检测方法的不足[14]。但分子检测方法的应用前提是需要了解病原菌对杀菌剂抗药性突变位点,所以要与传统检测方法相配合使用以达到最佳效果[15]。

通过建立各病原菌和杀菌剂的抗性风险级别来决定合理的用药方法。风险系数高的,连续使用次数应当减少并与风险系数低的杀菌剂轮换使用,从而有效地预防和延缓抗药性的出现。

2.2在确保传统的保护性杀菌剂有一定量的生产和应用的同时,根据植物与病菌之间的生理生化差异开发和生产不同类型的安全、高效专化性杀菌剂,储备较多的有效品种。如几丁质是真菌细胞壁的主要结构成分,而不存在于植物组织中。真菌与植物体内组装纺锤体的微管蛋白结构、蛋白质合成机制及RNA合成酶系等也不同。此外,真菌与植物体生物膜结构组分的差异,也已成为人们开发研究新杀菌剂的热点。随着杀菌剂毒理学等方面研究的深入,还可能发现病原菌与其它生物之间更多的生化差异用来开发新农药。

2.3开发具有负交互抗药性的杀菌剂是治理抗药性的有效途径。如对苯并咪唑类杀菌剂有负交互抗药性的苯-N-氨基甲酸酯类的乙霉威已在我国生产应用。通过研究具有交互抗性的杀菌剂构效关系,为创制作用机制新颖的杀菌剂提供指导。

2.4在了解杀菌剂的生物活性、作用机理和抗药性发生状况及其机理的基础上,创制不同作用机制的新杀菌剂或利用现有药剂混配,选用科学的混剂配方。例如三唑醇和十三吗啉都是抑制麦角甾醇生物合成,防治白粉病的特效药剂,但前者作用位点是碳十四位的去甲基反应,后者是阻止△8→△7异构反应,两者混用既可防止抗药性发生,又可增加防效。

3 展望

植物病原真菌杀菌剂抗药性研究要充分利用生物化学、遗传学、群体生物学等各学科的综合知识,进一步加强交叉学科的分析研究,来全面研究抗药性发生与流行、抗药性机制、抗性利用等等,最终为抗药性治理提供充分的依据。加强培育抗病品种预测预报等综合防治措施,对延缓抗药性的形成也是十分重要的。此外随着生物技术的发展对植物病原菌抗药性基因的利用已取得了初步的进展。我们要持续推动化学防治与生物防治的结合加速综合防治的发展。

参考文献

[1]周明国.植物病原物抗药性[A]. 周明国主编. 中国植物病害化学防治研究[C] .北京:中国农业科技出版社, 1998.50-61.

[2]Faretra F,Pollastro S. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana( Botrytis cinerea) [J] . Mycol. Res.,1991, 95: 943- 951.

[3]Shabi E, Katan T, Marton K. Inheritance of resistance tobenomyl inisolatesof Venturiainaequalis from Israel [ J] . Plant Pathology, 1983, 32: 207- 211.

[4]GrindleM, Temple W. Fungicide resistance of os mutantsof Neurosporacrassa [ J]. Neurospora Newsletter, 1982, 29: 16- 17.

[5]Molnar A, Hornok L, Miklos P. The high level of benomyl tolerance in Fusariumoxysporum is determinedby the synergistic interactionof two genes [J].Experimental Mycology, 1985, 9: 326-333.

[6]Polach F J. Genetic contro l of dodine toleranc e in Venturia inaequalis[J]. Phytopathology, 1973, 63:1189-1 190.

[7]Demarkopoulou M G, Ziogas B N, Georgopoulo s S G. Evidence for poly-gene control of fenpropimorph resistance in laboratory mutant s of Nectria haematococca var. cucurbitae[J]. ISPP Chemical Control Newsletter , 1989(12) : 34-35.

[8]De Falandr e A, Dabouss i M, Leroux P. Inheritance of resistance to fenpropimorp

h and terbinafine, two sterolbiosynthesi s inhibitors, in Nectria haematococca[J]. Phytopathology, 1991, 81: 1432-1438.

[9]GeorgopoulosSG, Chrysayi M, WhiteGA. Car-boxin resistance in the haploid, the heterozygous diploid and the plant parasite dicaryotic phase of Ustilago maydis[J]. Pestic. Biochem. Physiol., 1975, 5: 543- 549.

[10]Lancashire WE, Griffiths DE. Biocide resistance in yeast: isolationandgeneral properties of trialkyltinre-sistant mutants[ J]. Fed. Europ. Biochem. Soc. Let-ters, 1971, 17: 209- 214.

[11]Zheng D, K ller W. Characterizationof the mitochon-drial cytochrome b gene from Venturiainaequalis [J].Curr. Genet., 1997, 32: 361- 366.

[12]祝明亮,罗义勇.植物病原真菌对内吸性杀菌剂的抗药性研究进展[J]. 烟草农业科学,2006,2(4):324-329.

[13]Butters J A, Hollomon D W. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms [J]. Pesticide Science, 1999, 55:501-503

[14]Windass J D, Heaney S P, Renwick A,et al. Methods for detecting low frequencies of mutation s in mitochondrially encoded genes [P]. International Patent: 2000: 667-673.

[15]Brent K J, Hollomo n D W. Fungicide Resistance : The Assessment of Risk. Second revised edition [C].Fungicide Resistance Action Committee , 2007: 27.

果蔬中常用植物生长调节剂分析方法研究进展

果蔬中常用植物生长调节剂分析方法研究进展 摘要:植物生长调节剂是一类具有植物激素活性的人工合成农药,可用于调节 果蔬的生长和贮藏。近年来,植物生长调节剂在果蔬生产中的使用越来越多,而 产生的安全事件不断增多。果蔬中植物生长调节剂的残留问题已经引起社会的广 泛关注,痕量植物生长调节剂残留的分析技术也在不断发展。文中概述了国内外 检测果蔬中植物生长调节剂残留的主要分析方法及其优缺点,包括气相色谱(GC)、高效液相色(HPLC)、质谱联用技术、酶联免疫吸附测定(ELISA)、 毛细管电泳(CE)及其他分析法,并对其发展趋势进行了展望。 关键词:水果蔬菜;植物生长调节剂;分析方法 一、果蔬中常用的调节剂 调节剂按其功能可分为五类:生长素类、细胞分裂类、赤霉素类、催熟剂类 以及生长抑制剂类。当前,在果蔬生产中使用比较多的有:赤霉素、氯吡脲、乙 烯利、矮壮素、多效唑等,它们大多属低毒类农药,也有少数微毒或者无毒,然 而某些调节剂或其水解产物具有潜在的致癌、致畸或者导致突变作用(例如:丁 酰肼的水解产物不对称二甲基肼具有致畸作用)也应得到应有的重视。 二、果蔬中常用调节剂的分析方法 2.1气相色谱(GC)分析法 目前GC 技术主要应用于乙烯利的检测,也可用于丁酰肼等调节剂的分析, 但需要进行衍生化反应,前面的处理过程较为繁琐。由于大部分的调节剂相对分 子质量较大、极性较强、不易气化或者受热易分解,所以,GC 技术在调节剂的残留分析中应用不多,虽然衍生化处理后可以采用GC 分析某些调节剂,但衍生化 过程通常都会耗时费力,不符合实际检测中简单、快速的要求,更不适用于大批 量样品的分析。而乙烯利等少数调节剂虽然其特殊性质采用GC 分析操作比较简便,但是灵敏度还有待进一步提高。 2.2高效液相色谱(HPLC)分析法 与GC 相比,HPLC 可用于检测果蔬中大多数调节剂的残留,正常情况下无需 衍生化反应,前面处理过程比较简单,可是,在分析基质比较复杂的样品时,其 选择性与灵敏度不及GC。Newsome 等采用高压离子交换液相色谱法分析了马来 酰肼及其β-D- 葡糖苷。样品采用甲醇提取,在马铃薯、大头菜、甜菜及胡萝卜中 的平均加标回收率为87%。而Kobayashi 等改用水提取,建立了测定农产品中马 来酰肼残留的HPLC法,方法的回收率为92.6%~104.9%,LOD 为0.5μg/g。虽然HPLC分析马来酰肼与美国官方分析化学师协会(AOAC)采用的蒸馏-分光光度法 相比更加快速、灵敏、准确,但样品中干扰杂质的分离相对困难。所以潘广文等 建立了马铃薯、洋葱、大蒜中马来酰肼的高效离子排斥色谱(HPIEC)法,该方法不但样品处理步骤简单,分析周期短并且不受杂质干扰。固相萃取(SPE)是HPLC 分析中最常用的前处理技术:Hu Jiye 等采用酸化乙腈提取、氨基柱净化、丙酮洗脱后以HPLC-UV(紫外检测器)分析了西瓜中氯吡脲的残留;而Kobayashi 等改用丙酮提取,Chem Elut柱和Oasis HLB 以及Bond Elut PSA 迷你柱双柱净化后,也用HPLC 分析了农产品中氯吡脲的残留;Zhang Hua等又以乙酸乙酯提取,ENVI-18 柱净化后采用反相高效液相色谱法(RP-HPLC)分析了果蔬中氯吡脲的残留。 虽然SPE 技术对微量以及痕量目标化合物的提取、分离能力较为强,但其操作比 较繁琐、耗时,并且成本较高,不适合大批量样品的快速筛查。所以,胡江涛等 以分散固相萃取-高效液相色谱(DSPE-HPLC)快速分析了猕猴桃中氯吡脲残的残

高中生物 植物激素调节相关实验探究

加强提升课(8)植物激素调节相关实验探究 突破一探究植物生长调节剂对扦插枝条生根的作用1.实验原理:适宜浓度的NAA溶液促进植物插条生根,浓度过高或过低都不利于插条生根。 2.实验流程 制作插条:把形态、大小一致的某种植物的插条分成10组,每组3枝 ↓ 配制梯度溶液:取生长素类似物按照不同的比例稀释成9份,第10份用蒸馏水作为空白对照 ↓ ↓ 实验培养:把每组处理过的枝条下端依浓度梯度从小到大分别放入盛清水的托盘中浸泡,放在适宜温度下培养,每天观察一次,记录生根情况 ↓ 记录结果:一段时间后观察插条的生根情况,并记录所得到的数据 ↓ 分析结果:由右图曲线可知,促进扦插枝条生根的最适浓度是A点对应的生长素类似物浓度,在A点两侧,存在促进生根效果相同的两个不同浓度 3.实验关键 (1)需进行预实验:预实验可以为进一步的实验摸索条件,也可以检验实验设计的科学性和可行性,以免由于设计不周、盲目开展实验而造成人力、物力和财力的浪费。 (2)设置对照组、重复组 ①设置对照组。清水空白对照;设置浓度不同的几个实验组之间进行相互对照,目的是探究生长素类似物促进扦插枝条生根的最适浓度。 ②设置重复组,即每组不能少于3个枝条。 (3)控制无关变量:无关变量在实验中的处理要采用等量性原则。如选用相同的花盆、

相同的植物材料,插条的生理状况、带有的芽数相同,插条处理的时间长短一致等。 (4)处理插条 ①生长素类似物处理插条可用浸泡法(溶液浓度较低)或沾蘸法(溶液浓度较高,处理时间较短)。 ②处理时插条上下不能颠倒,否则扦插枝条不能成活。 ③扦插时常去掉插条成熟叶片,原因是去掉成熟叶片能降低蒸腾作用,保持植物体内的水分平衡。 1.(2017·高考江苏卷)研究小组探究了萘乙酸(NAA)对某果树扦插枝条生根的影响,结果如图。下列相关叙述正确的是() A.自变量是NAA,因变量是平均生根数 B.不同浓度的NAA均提高了插条生根率 C.生产上应优选320 mg/L NAA处理插条 D.400 mg/L NAA具有增加生根数的效应 解析:选D。自变量是NAA浓度,因变量是平均生根数和生根率,A项错误;图中显示有些浓度的NAA能抑制插条生根率,如NAA浓度为400 mg/L时插条生根率小于对照组,B项错误;NAA浓度为200 mg/L左右时,生根率和平均生根数都较高,适合生产上应用,C项错误;400 mg/L NAA能够增加生根数,D项正确。 2.(2020·青岛模拟)独脚金内酯是近年发现的新型植物激素。为研究独脚金内酯在向光性反应中的作用,研究人员以正常生长状态下的水稻幼苗为材料,设置四组实验(如图1),A组不做处理,B组施加一定浓度的独脚金内酯类似物GR24,C组用生长素类似物NAA 处理,D组用GR24+NAA处理。四组均进行同样强度的单侧光照射,一段时间后测量茎的弯曲角度(如图2)。下列叙述错误的是()

广西南宁市2017届高考生物一模试卷解析版

2017年广西南宁市高考生物一模试卷 一、选择题 1.细胞自噬与溶酶体密切相关,溶酶体含有多种水解酶.下列相关叙述正确的是() A.溶酶体是具有双层膜结构的细胞器 B.被溶酶体降解后的产物都能被细胞再利于 C.细胞自噬有利于物质和能量能量的循环利用 D.细胞内的ATP能为细胞自噬直接提供能量 2.下列有关生物学实验的叙述,正确的是() A.用盐酸处理口腔上皮细胞有利于健那绿染液对线粒体染色 B.酒精在脂肪鉴定实验与观察根尖分生区细胞有丝分裂实验中的作用相同C.CO2能使溴麝香草酚蓝水溶液的颜色由蓝变绿再变黄 D.低温诱导染色体加倍实验中大部分细胞的染色体加倍 3.下列有关高等动物的神经调节和激素调节的叙述,错误的是()A.神经递质和激素分泌后均需要体液的运输 B.甲状腺激素的调节过程中存在分级调节和反馈调节 C.饮水不足可促使垂体合成并释放抗利尿激素 D.下丘脑可以作为神经中枢参与体温调节和水盐平衡调节 4.如图是用不同浓度的NAA溶液浸泡某植物的插条,观察其生根的实验,下列叙述正确的是() A.该实验可探究适于插条生根的最适NAA浓度 B.该实验不能选用保留相同数量芽的插条材料 C.该实验的自变量可以是插条的生根数量 D.该实验可以不做预实验和不设空白对照组 5.下列有关生态系统的功能和稳定性的描述,错误的是() A.生态系统的信息可来源于无机盐

B.生产者固定的碳元素主要以有机物的形式流向分解者和消费者 C.自然生态系统中生产者固定的能量必然大于消费者 D.某种生物的数量增多会提高生态系统的抵抗力稳定性 6.某二倍体植物染色体上控制花色的基因A2是由其等位基因A1突变产生的,且基因A1、A2均能合成特定的蛋白质来控制花色.下列叙述正确的是()A.基因突变是基因中碱基对的增添或缺失造成的 B.基因A1、A2合成蛋白质时共用一套遗传密码 C.A1、A2是同时存在于同一个配子中的 D.A1、A2不能同时存在于同一个体细胞中 二、非选择题 7.(10分)某实验小组用小麦幼苗作为实验材料,探究光照强度对光合作用速率的影响,将一定数量的小麦幼苗放在装有培养液的密闭容器中,容器内的温度不变,你白炽灯为光源,匀速缓慢移动光源,逐渐增大光源和容器之间的距离.测定空气中氧气浓度随时间的变化,实验结果如图.请回答下列问题: (1)小麦幼苗叶肉细胞中,产生氧气的细胞器是,利用氧气的细胞器是.(2)据图分析,曲线中从A点至B点,容器内氧气浓度不断增加的原因是.小麦幼苗在曲线点时积累的有机物达到最大值. (3)请你判断该小组的上述实验设计能否得出光照强度对光合作用速率影响的实验结论?答:(填“能”或“不能”).判断的理由是. 8.(10分)血糖平衡的调节是保持内环境稳态的重要条件,胰岛素和胰高血糖素是调节血糖平衡的主要激素.人体血糖调节失衡会引发多种疾病,如糖尿病等.图1表示进食后血糖浓度和上述的两种激素含量的变化,图2是两种糖尿病(Ⅰ型和Ⅱ型)的发病机理.请据图回答下列问题:

杀菌剂分类大全1

杀菌剂大全1 酰胺类杀菌剂 卵菌纲:高效甲霜灵、高效苯霜灵、噻酰菌胺、环丙酰菌胺、氟吡菌胺、吡噻菌胺(菌核病、灰霉病、白粉病)、双炔酰菌胺、苯酰菌胺、噻唑菌胺、氟啶酰菌胺、双炔酰菌胺 稻瘟病:氰菌胺、双氯氰菌胺、环酰菌胺(灰霉病) 土壤病害:磺菌胺、噻氟菌胺、 叶枯酞(抑制细菌)、环氟菌胺(白粉病)、硅噻菌胺(全蚀病)、萎锈灵(黑穗病、黄萎病、立枯病、防腐剂、具有生长刺激作用)、甲呋酰胺(黑穗病)、呋吡菌胺(纹枯病、菌核病、白绢病)、啶酰菌胺(白粉病、灰霉病、各种腐烂病、褐腐病和根腐病等)、甲磷菌胺、氟菌胺 通过抑制琥珀酸脱氢酶破坏病菌呼吸而致效 酰胺类化合物作为杀菌剂已有几十年的历史,大多数酰胺类杀菌剂的杀菌谱比较窄,近期又有许多新颖的化合物商品化,最明显的结构特点是杂环,特别值得提及的是吡噻菌胺(penthiopyrad)和啶酰菌胺(boscalid)具有较广的活性谱。 氟吗啉是沈阳化工研究院开发的丙烯酰胺类杀菌剂。是我国有史以来真正创制的农用杀菌剂、是首次获得中国和美国发明专利的农用杀菌剂。具有良好的内吸、保护和治疗活性。对卵菌亚纲病原菌引起的病害如霜霉病、疫病如黄瓜霜霉病、葡萄霜霉病、马铃薯晚疫病、番茄疫病、辣椒疫病、烟草疫病等有优异的活性。 噻氟菌胺是琥珀酸酯脱氢酶抑制剂,即在真菌三羧酸循环中抑制琥珀酸酯脱氢酶的合成。对丝核菌属、柄锈菌属、黑粉菌属、腥黑粉菌属、伏革菌属和核腔菌属等致病真菌有活性,对担子菌纲真菌引起的病害如立枯病等有特效。

氰菌胺和双氯氰菌胺分别是由日本农药公司和住友化学公司开发的酰胺类杀菌剂。主要用于防治稻瘟病。 环酰菌胺主要用于防治各种灰霉病以及相关的菌核病、黑斑病等。 硅噻菌胺是含硅的噻酚酰胺类杀菌剂。具体作用机理尚不清楚,可能是ATP 抑制剂。主要用于小麦全蚀病的防治。 呋吡菌胺(纹枯病、菌核病、白绢病)是日本住友化学公司开发的吡唑酰胺类杀菌剂,主要抑制真菌线粒体中琥珀酸的氧化作用,具有优异的预防和治疗效果。 噻唑菌胺(ethaboxam)是韩国LG农化公司研制开发的噻唑酰胺类杀菌剂,主要用于防治卵菌纲病害。 噻酰菌胺(tiadinil)是由日本农药公司开发的噻二唑酰胺类杀菌剂,主要用于防治稻瘟病。 啶酰菌胺(白粉病、灰霉病、各种腐烂病、褐腐病和根腐病等)0(boscalid)是由巴期夫公司开发的吡啶酰胺类杀菌剂,主要用于防治菌核病、锈病、马铃薯早疫病和灰霉病等。 吡噻菌胺(penthiopyrad)是由日本三井化学公司开发的吡唑酰胺类杀菌剂。主要用于防治白粉病和灰霉病等。 氟啶酰菌胺(fluopicolide)和双炔酰菌胺(mandipropami)分别由拜耳和先正达公司开发,具有优异的杀菌活性,均对霜霉病有特效。 二羧酰亚胺类杀菌剂 乙菌利(黑穗菌核白粉)、异菌脲(灰霉病)、腐霉利(菌核病、灰霉病、黑星病、褐腐病、大斑病)、乙烯菌核利(菌核菌、白粉、黑斑病、灰霉病)、克菌丹(地下地上方方面面保护)、灭菌丹(多种病害)、菌核利(菌核病、灰霉病)传统杀菌剂,通过抑制NADH细胞色素C还原酶破坏类酯类和膜的合成而致效甲氧基丙烯酸酯类杀菌剂 基本上所有真菌病害:嘧菌酯、氟嘧菌酯、醚菌酯、唑菌胺酯、烯肟菌酯、烯肟菌胺

植物病原真菌对内吸性杀菌剂的抗药性研究进展

作者:祝明亮罗义勇李梅云杨金奎张克勤来源:《烟草农业科学》 摘要:植物病原真菌的抗药性特别是对内吸性杀菌剂的抗药性是植物病害化学防治中的一个非常严重的问题,它给多种农作物和经济作物的病害防治带来了严重困难,给国家和农民造成了大量经济损失。研究植物病原真菌抗药菌的生物学特征以及它们的抗药机制对于改进化学农药使用策略,延缓抗药性的产生,推进植物病害的化学防治,具有十分重要的理论和实践意义。本文综述了近年来国内外植物病原真菌对内吸性杀菌剂抗药性研究在抗性菌和敏感菌的生物学特征、内吸性杀菌剂对植物病原真菌的作用机制、植物病原真菌对内吸性杀菌剂的抗药机制、抗性菌株的分子检测技术以及抗药性利用等方面的成果。 关键词:植物病原真菌;内吸性杀菌剂;抗药性;研究进展 植物病原真菌对杀菌剂的抗药性是指本来对药剂敏感的植物病原真菌,由于基因突变或其它原因出现了药物敏感性下降的现象。尽管早在1954年James等[1]就提出了这一现象,但是这一问题直到20世纪60年代末才引起人们真正重视。1969年,由于内吸性杀菌剂苯来特(Benomyl)在生产上大量地使用,首先在黄瓜白粉病菌(Sphaerotheca fuliginea)上产生了抗药性,随后又在其它几十种病原真菌上产生了抗药性,并且有越来越严重的趋势。到目前为止,用于防治植物病原真菌的杀菌剂种类已经很多,与抗药性问题关系密切的有有机硫杀菌剂、内吸性杀菌剂和抗菌素类杀菌剂,特别是内吸性杀菌剂的抗药性问题最为严重。由于杀菌剂抗药性问题的迅速出现和发展,给植物病害的防治带来了越来越大的困难,给农业造成了重大的经济损失,引起了世界各国政府和农民的普遍关注。为了有效防止或延缓杀菌剂抗药性的产生,许多国家和地区相继开展了对杀菌剂的抗药性研究。人们首先对敏感菌和抗药菌的生物学特征进行了大量的对比研究,试图在此研究的基础上发现抗性病原真菌的抗药机制,最终来指导农药的合理使用和病菌的有效防治。经过大量研究人员的辛苦努力,在植物病原真菌对杀菌剂抗药性问题的研究上,尤其是对内吸性杀菌剂的研究上,目前已取得了较大的进展。 1. 抗性菌和敏感菌的生物学特征对比 抗性菌生物学特征即抗性菌的越冬、越夏、生长、繁殖和对环境的适应力等方面的特征。许多情况下,抗性菌由于遗传变异等原因,在生物学特征上表现出与敏感菌有所不同,如在菌丝生长、产孢、与温度或渗透压的关系、致病力等方面的差异,这些差异

常用植物生长调节剂及其应用

常用植物生长调节剂及其应用 山东丁世民刘玉娥 在植物栽培中,您可能使用过植物生长调节剂,但对每种调节剂的调节机理及具体用法,可能就了解不多了。这里介绍几种常用的植物生长调节剂及应用实例,或许对您有所帮助。 萘乙酸(α-萘乙酸、NAA、α-naphthaleneacetic acid) 属于广谱型植物生长调节剂,能促进细胞分裂与扩大,诱导形成不定根,提高坐果率,防止落果,改变雌、雄花比例,延长休眠,维持顶端优势等;对人畜低毒。常见剂型为70%钠盐原粉: 在园林花卉中的具体应用实例有: ①促进生根将侧柏插枝用200~400毫克/千克萘乙酸浸12小时;仙客来用1~10毫克/千克萘乙酸浸球茎6~12 小时。 ②减少落果菊花在短日照处理后6~9天,用50~100毫克/千克萘乙酸喷洒叶片,每30天1次;叶子花、香豌豆、兰花用50毫克/千克萘乙酸在蕾期喷洒离层部。 ③减少落果用10毫克/千克萘乙酸在花谢后7天喷洒文竹,10~15天后再喷1次。 赤霉素(赤霉酸、九二○、gibberellicacid) 广谱型植物生长调节剂,能促进植物生长发育,提高产量,改善品质;迅速打破种子、块茎、鳞茎等器官的休眠,促进发芽;减少蕾、花及果实的脱落,使2年生的植物在当年开花。常见剂型有:85%结晶粉、4%乳油。 在园林植物中的具体应用实例如表1、表2。 表1 赤霉素打破休眠、促进萌发应用实例 表2 赤霉素促进开花应用实例

丁酰联(二甲基琥珀酰阱、调节剂九九五、B9、daminozide) 属于生长抑制剂,可抑制内源激素赤霉素的生物合成、从而抑制新枝生长、缩短节间、增加叶片厚度及叶绿素含量,防止落花,促进坐果,诱导不定根形成,刺激根系生长,提高抗寒力。常用剂型有:85%、90%可溶性粉剂,4%乳油。 在园林植物中的具体应用实例为有: ①促进生根如麝香石竹、大丽花,可用5000毫克/千克丁酰肼处理插枝,快蘸5秒;一品红,可用2500毫克/千克丁酰肼处理插枝,快蘸15秒。 ②促进开花用5000毫克/千克丁酰肼对叶子花进行叶面喷洒,同时进行8小时短日照处理;用2500毫克/千克丁酰肼在杜鹃发新枝时进行叶面喷洒,同时进行8小时短日照处理。 ③延迟开花用1000毫克/千克丁酰肼在杜鹃开花前1~2个月喷洒蕾部。 ④延长花期用2500毫克/千克丁酰肼处理菊花,在短日照开始后3周叶面喷洒1次,5周后再喷1次。 ⑤矮化作用用2500毫克/千克丁酰肼处理菊花,在花芽分化期进行叶面喷洒;用2500~5000毫克/千克丁酰肼对矮牵牛进行叶面喷洒。 多效唑(高效唑、氯丁唑、PP333,PaclobutrMol) 为内源激素赤霉素的合成抑制剂,能抑制植物的纵向伸长,使分蘖或分枝增多,茎变粗,植株矮化紧凑。它主要通过根系吸收,叶吸收量少,作用较小,但能增产。经过多效唑处理的菊花、月季、天竺葵、一品红以及一些花灌木,株形明显受到调整,更具观赏价值。常见的剂型为15%可湿性粉剂。 在园林植物中的具体应用实例有: ①矮牵牛将15%多效唑可湿性粉剂稀释后进行土壤浇灌,每盆1~2毫.克(有效含量)。

【人教版】高三下册生物基础实验:实验6 探究植物生长调节剂对扦插枝条生根的作用

——生长素类似物的作用原理,生长素类似物对根的 处理,预实验的作用 前情提要: 关键词:预实验、浸泡法、沾蘸法 难度系数:★★★ 重要程度:★★★ 基础回顾: 考点一、实验原理 (1)生长素类似物对植物插条的生根情况有很大的影响。 (2)用生长素类似物在不同浓度、不同时间下处理插条,其影响程度不同。 (3)存在一个最适浓度,在此浓度下植物插条的生根数量最多,生长最快。 考点二、实验步骤 (1)制作插条:把形态、大小基本一致的枝条平均分成10组,每组3枝。 (2)分组处理:生长素类似物按不同比例稀释成9份,第10份用蒸馏水作为空白对照。把10组枝条基部分别浸入浸泡液中,处理1天。 处理方法: ①浸泡法:把插条的基部浸泡在配制好的溶液中,深约3 cm,处理几小时至一天。(要求溶液的浓度较低,并且最好是在遮阴和空气湿度较高的地方进行处理。) ②沾蘸法:把插条基部在浓度较高的药液中蘸一下(约5 s),深约1.5 cm 即可。 (3)实验培养:把每组处理过的枝条下端依浓度梯度从小到大分别放入盛清水的托盘中浸泡,放在适宜温度下培养,每天观察一次,记录生根情况。 (4)结果记录:小组分工,观察记录。 (5)分析结果,得出实验结论:按照小组分工观察记录的结果,及时整理数据,绘制成表格或图形。最后分析实验结果与实验预测是否一致,得出探究实验的结论。 技能方法:

1.实验中的变量 实验的自变量为不同浓度的生长素类似物,其他因素,如取材、处理时间、蒸馏水、温度等都是无关变量,实验的因变量是插条生根的情况 2.在正式实验前需要先做一个预实验: 为进一步的实验摸索条件,也可以检验实验设计的科学性和可行性,以免由于设计不周、盲目开展实验而造成人力、物力和财力的浪费。 3.蒸馏水的作用 (1)作为空白对照; (2)用来配制不同浓度的生长素类似物溶液; (3)处理过的插条下端需浸在蒸馏水中有利于生根。 4.选择插条时需带有一定的芽或叶的原因 凡是带芽或叶的插条,其扦插成活率都比不带芽或叶的插条生根成活率高,但二者并非越多越好。留叶过多,亦不利于生根,因叶片多,蒸腾作用失水多,插条易枯死。留芽过多,分泌较多的生长素,会影响实验的结果,导致结果不准确。 5.如果观察到插条不能生根,可能的原因分析 有可能枝条所带叶片较多,蒸腾作用过强,失水太多;有可能枝条幼芽、幼叶保留较多,本身合成一定浓度的生长素,浸泡后形态学下端处于高浓度的抑制状态;有可能没有分清形态学的上端与下端。 【易错警示】“探索生长素类似物促进插条生根的最适浓度”实验中的4个注意点 (1)本实验的自变量为生长素类似物溶液的浓度,因变量为不同浓度下的生根数量,两者之间会出现低浓度促进生长、高浓度抑制生长的关系,而其他因素如取材、处理时间、蒸馏水、温度等都是无关变量,实验中的处理都采用等量性原则。 (2)根据实验的要求选择合适的实验材料。为了保证实验设计的严谨性,还需要设置重复实验和一定的对照实验,预实验时需要设置清水的空白对照,在预实验的基础上再次实验时可不设置空白对照。另外,在配制溶液时,浓度梯度要小,组别要多。 (3)掌握正确的实验操作。例如沾蘸法是把插条的基部在浓度较高的溶液中蘸一下(约5 s),深约1.5 cm即可,千万不能将整个枝条泡入其中;浸泡法要求的溶液浓度较低,并且最好是在遮阴和空气湿度较高的地方进行。由于生长素类似物有一定的毒性,实验结束后应妥善处理废液。 (4)在确定了最适浓度的大致范围后,可在此范围内利用更小梯度的系列溶液以获得更精确的最适浓度范围。 【课堂巩固】 1.关于“探索生长素类似物促进插条生根的最适浓度’’实验的叙述,正确的是()A.生长素类似物的生理功能与IAA基本相同 B.浸泡法和沾蘸法使用的浓度基本相同 C.促进不同植物插条生根的最适浓度基本相同

植物生物学实验教案—优秀教案

植物生物学实验教案授课专业:生物科学、农学主讲:

实验1 光学显微镜及体视镜的构造和使用方法 一、实验目的 1、了解光学显微镜及体视镜的一般构造和性能; 2、学会正确地使用光学显微镜及体视镜,熟练地掌握对光,低高倍物镜的使用技术, 以及显微镜的维护; 3、学会临时装片的制作和徒手切片。 二、重点与难点 正确地使用光学显微镜及体视镜,熟练地掌握对光,低高倍物镜的使用技术。三、教学方法与手段 本次课主要采取讲授法和讨论法,在学生实验过程中辅以个别指导进行教学。 四、实验内容 1、光学显微镜的构造、使用方法及维护; 2、临时装片的制作及徒手切片的练习; 3、体视镜的一般结构及使用方法。 五、实验材料 洋葱(Allium cepa)根尖永久装片;洋葱(Allium cepa)鳞片叶;油菜(Brassica campestris)或水稻(Oryza sativa)花粉。 六、实验用品 普通光学显微镜、体视显微镜;镊子、载玻片、盖玻片、培养皿、纱布、吸水纸、擦镜纸、滴瓶、毛笔;碘液、水。 七、实验方法 (一)普通光学显微镜的构造、使用方法及维护 1、显微镜的构造 显微镜的基本结构可以分两部分,即光学部分与机械部分。 (1)光学部分 ①物镜、②目镜、③聚光器、④虹彩光圈、⑤反光镜、⑥镜筒 (2)机械部分 ①镜座、②镜柱、③镜臂、④载物台、⑤物镜转换器、⑥调焦螺旋 2、显微镜的使用方法 (1)正确安置显微镜、(2)对光、(3)低倍物镜的使用、(4)高倍物镜的使用(5)浸油物镜的使用、(6)显微镜的使用练习、(7)用毕复原 3、显微镜的放大倍数 4、光学显微镜的显微测微法 (1)显微测微计 ①镜台测微计、②目镜测微计 (2)测量方法

常见植物生长调节剂的复配方法

常见植物生长调节剂的复配方法 1、促进坐果剂:作用是提高单性结实率,提高水果单重,促进坐果、加快果实的膨大速度、增加果实的大小。其类型分别有赤霉素+细胞激动素、赤霉素+生长素+6-BA、赤霉素+萘氧乙酸+二苯脲、赤霉素+卡那霉素、赤霉素+芸苔素内酯、赤霉素+萘氧乙酸+微肥元素等。 2、生根剂:主要促进秧苗移栽之后的生根、缓苗,或者苗木的扦插等。其类型分别有生长素+土菌消、生长素+邻苯二酚、吲哚乙酸+萘乙酸、生长素+糖精、脱落酸+生长素、黄腐酸+吲哚丁酸等。 3、抑制性坐果剂、谷物增产剂:作用是控制旺长,提高坐果率。其类型分别有矮壮素+氯化胆碱、矮壮素+乙稀利、乙稀利+脱落酸、矮壮素+乙稀利+硫酸铜、矮壮素+嘧啶醇、矮壮素+赤霉素、脱落酸+赤霉素等。 4、打破休眠促长剂:作用是打破休眠促进发芽。其类型有赤霉素+硫脲、硝酸钾+硫脲、苄氨基嘌呤+萘乙酸+烟酸、赤霉素+KCl、赤霉素+Fospinol 等。 5、干燥脱叶剂:主要用于芝麻、棉花等,在机械采收前干燥、脱叶,其作用不仅是干燥脱叶的效果,还要有增加产量的效果。其类型有乙稀利+百草苦、噻唑隆+甲胺磷、噻唑隆+碳酸钾、乙稀利+过硫酸胺、噻唑隆+敌草隆、乙稀利+草多索+放线菌酮等。 6、催熟着色改善品质剂:有加快果实成熟、使色泽鲜艳、增加果实的甜度等作用。其类型有乙稀利+促烯佳、乙稀利+环糊精复合物、乙稀利+2,4,5-涕丙酸、敌草隆+柠檬酸、苄氨基嘌呤+春雷霉素等。

7、蔬果、摘果剂:在苹果、柑橘快成熟前应用,促使柑橘果梗基部的离层形成,从而导致果实与枝条的分离。其类型有:萘乙酰胺+乙稀利、二硝基邻甲酚+萘乙酰胺+乙稀利、萘乙酰胺+西维因、二硝基邻甲酚+萘乙酰胺+西维因、萘乙酸+西维因等。 8、促进花芽发育、开花及性比率:使果实作物由营养生长转化为生殖生长,促进开花。其类型有萘乙酸+苄氨基嘌呤、苄氨基嘌呤+赤霉素、赤霉素+硫带硫酸银、乙稀利+重铬酸钾等。 9、抑芽剂:在烟草上抑制腋芽的萌发,在贮藏期抑制马铃薯的发芽等作用。其类型有青鲜素+抑芽敏、氯苯胺灵+苯胺灵、蔗糖脂肪酸酯+青鲜素等。 10促长增产剂:提高植株对N、P、K的吸收,增加产量的作用。其类型有吲哚乙酸+萘乙酸、吲哚乙酸+萘乙酸+2,4-D+赤霉素、助壮素+细胞激动素+类生长素、双氧水+木醋酸等。 11、抗逆剂(抗旱、抗低温、抗病等):增加营养元素的吸收、促进幼苗的生长、增加干物质总量、提高抗寒性、抗旱性、抗病、抗虫能力。其类型有抗激动素+脱落酸、细胞激动素+生长素+赤霉素、乙稀利+赤霉素、水杨酸+基因活性剂等。

植物生物学复习题

0绪论复习题 1.什么是植物?在林奈的二界系统和魏泰克的五界系统中,植物包括的范围有何变化? 植物有明显的细胞壁和细胞核,其细胞壁由纤维素构成,具有光合作用的能力——就是说它 可以借助光能及动物体内所不具备的叶绿素,利用水、矿物质和二氧化碳生产食物。魏泰克的五界系统中不仅包括林奈的二界系统中的植物界和动物界,还增加了真菌界,原生生物界,原核生物界。 2.列举5个我国著名的植物研究机构,简述他们的主要研究领域。 ○1中国科学院植物研究所(系统与进化植物学领域、植物生态学(草原)、光合作用、植物分子生理与发育领域等);○2中国科学院昆明植物研究所(植物分类与生物地理、植物化学 与天然产物研发、野生种质资源保藏与利用、民族植物学与区域发展、资源植物研发与产业化);○3中国农业大学,主要研究领域:植物逆境机理、植物发育生物学、作物重要性状功 能基因组学、植物基因表达调控的分子机理;○4中国科学院上海生命科学研究院植物生理生 态研究所(功能基因组学,分子生理与生物化学,环境生物学和分子生态学等);○5中国科学院上海植物逆境生物学研究中心(植物逆境分子生物学研究)。 3.列举5个我国当代著名的植物学家,简述他们的主要研究领域。 张新时院士,植物生态学;洪德元院士,植物细胞分类学;王文采院士,植物分类学;匡廷 云院士,光合作用;周俊院士,植物化学;施教耐院士,植物呼吸代谢;陈晓亚院士,植物 次生代谢。 01细胞与组织-01细胞-复习题 一、选择 1.光镜下可看到的细胞器是。 A.微丝B.核糖体C.叶绿体D.内质网 2.光学显微镜下呈现出的细胞结构称。 A.显微结构B.亚显微结构C.超显微结构D.亚细胞结构 3.下列细胞结构中,具单层膜结构的有。 A.叶绿体B.线粒体C.溶酶体D.核膜E.液泡 4.下列细胞结构中,具双层膜结构的有, A.叶绿体B.线粒体C.溶酶体G.微管I.高尔基体J.内质网K.核膜 5.植物细胞初生壁的主要成分是。 A.纤维素、半纤维素和果胶B.木质、纤维素和半纤维素C.果胶D.角质和纤维素 6.初生纹孔场存在于。 A.次生壁B.初生壁C.胞间层D.角质层 7.糊粉粒贮藏的养分是。 A.淀粉B.脂肪C.蛋白质D.核酸 8.细胞进行呼吸作用的场所是。 A.线粒体B.叶绿体C.核糖体D.高尔基体 9.与细胞分泌功能有关的细胞器是。 A.线粒体B.高尔基体C.溶酶体D.白色体 10.细胞内有细胞活动的“控制中心”之称的是。 A.细胞器B.细胞核C.细胞质D.叶绿体

常用植物生长调节剂

常用植物生长调节剂 一、植物生长促进剂 分子式:C10H9O2N 分子量:175.19 性质:纯品无色.见光氧化成玫瑰红,活性降低。在酸性介质中不稳定,PH低于2时很快失活,不溶于水, 易溶于热水,乙醇,乙醚和丙酮等有机溶剂。它的钠盐和钾盐易溶于水,较稳定。 用途:植物组织培养 2、吲哚丁酸,IBA 分子式:C12H13NO3 分子量:203.2 性质:白色或微黄色。不溶于水,溶于乙醇、丙酮等有机溶剂。 用途:诱导插枝生根。作用特别强,诱导的不定根多而细长。 3、萘乙酸,NAA相似的有萘丁酸、萘丙酸 分子式:C12H10O2 分子量:186.2 性质:无色无味结晶,性质稳定,遇湿气易潮解,见光易变色。不溶于水,易溶于乙醇,丙酮等有机溶剂。钠盐溶于水。 用途:促进植物代谢,如开花、生根、早熟和增产等,用途广泛。 4、萘氧乙酸,NOA 分子式:C12H10O3 分子量:202 性质:纯品白色结晶。难溶于冷水,微溶于热水,易溶于乙醇、乙醚、醋酸等。用途:与NAA相似。 5 、2,4-二氯苯氧乙酸,2,4-D,2,4-滴 分子式:C8H6O3C12 分子量:221 性质:白色或浅棕色结晶,不吸湿,常温下性质稳定。难溶于水,溶于乙醇,乙醚,丙酮等。它的胺盐和钠盐溶于水。 用途:植物组织培养,防止落花落果,诱导无籽,果实保鲜,高浓度可杀死多种阔叶杂草。 6、防落素,PCPA 4-CPA,促生灵,番茄灵,对氯苯氧乙酸 分子式:C6H7O3C1 分子量:186.6 性质:纯品为白色结晶,性质稳定。微溶于水,易溶于醇、酯等有机溶剂。 用途:促进植物生长;防止落花落果,诱导无籽果实;提早成熟;增加产量;改善品质等。常用于番茄保果。 7、增产灵,4-碘苯氧乙酸。相似的有4-溴苯氧乙酸,又称增产素 分子式:C8H7O3I 分子量:278 性质:针状或磷片状结晶,性质稳定。微溶于水或乙醇,遇碱生成盐。 用途:促进植物生长;防止落花落果,提早成熟和增加产量等。 & 甲萘威,西维因,N-甲基-1-萘基氨基甲酸酯 分子式:C12H11O2N 分子量:201.2 性质:纯品为白色结晶,工业品灰色或粉红色。微溶于水,易溶于乙醇、甲醇、丙酮等有机溶剂。遇碱(P H大于10 )迅速分解失效。 用途:干扰生长素运输,使生长较弱的幼果得不到充足养分而脱落,用于苹果的疏果剂。同时它也是一种高效低毒沙虫剂。 9 、2,4,5-T,2, 4,5-三氯苯氧乙酸 分子式:C8H5O3C13 分子量:255.5

实验探究

专题检测(七) (时间:45分钟满分:100分) 一、选择题(本题共12小题,每小题5分,共60分) 1.(2011·江苏卷,21改编)下列有关实验及显色结果的叙述,正确的有() A.水浴加热条件下,蔗糖与斐林试剂发生作用生成砖红色沉淀 B.沸水浴条件下,脱氧核苷酸与二苯胺发生作用呈现蓝色 C.常温条件下,蛋白质与双缩脲试剂发生作用呈现紫色 D.常温条件下,核糖核酸与甲基绿作用呈现绿色 2.(2011·福建卷,1)下列对有关实验的叙述,正确的是() A.在观察洋葱细胞有丝分裂实验中,将经解离、漂洗、染色的根尖置于载玻片上,轻轻盖上盖玻片后即可镜检 B.对酵母菌计数时,用吸管吸取培养液滴满血球计数板的计数室及其四周边缘,轻轻盖上盖玻片后即可镜检 C.在叶绿体色素提取实验中,研磨绿叶时应加一些有机溶剂,如无水乙醇等 D.检测试管中的梨汁是否有葡萄糖,可加入适量斐林试剂后,摇匀并观察颜色变化3.(2012·福建卷,3)下列关于低温诱导染色体加倍实验的叙述,正确的是() A.原理:低温抑制染色体着丝点分裂,使子染色体不能分别移向两极 B.解离:盐酸酒精混合液和卡诺氏液都可以使洋葱根尖解离 C.染色:改良苯酚品红溶液和醋酸洋红溶液都可以使染色体着色 D.观察:显微镜下可以看到大多数细胞的染色体数目发生改变 4.(2011·天津卷,2)将紫色洋葱鳞片叶表皮浸润在0.3 g/mL的蔗糖溶液 中,1分钟后进行显微观察,结果见右图。下列叙述错误的是() A.图中L是细胞壁,M是液泡,N是细胞质 B.将视野中的细胞浸润在清水中,原生质体会逐渐复原 C.实验说明细胞膜与细胞壁在物质透过性上存在显著差异 D.洋葱根尖分生区细胞不宜作为该实验的实验材料 5.下列是有关生物实验的四幅图。其中说法错误的是() A.图①由甲转换乙时,视野中所观察到的细胞数目减少 B.图②两个胚芽鞘在单侧光照射下将弯向同一方向 C.图③发生质壁分离的条件是细胞液浓度要大于外界溶液浓度 D.图④是在缺镁培养液中,长期培养的番茄叶片叶绿体中色素的层析结果 6.下表是某同学为验证酶的专一性而设计的实验方案,a~d代表试管,①~⑥代表实验步骤。对该实验方案的有关评价,错误的是()

(整理)常用杀菌剂的种类

常用杀菌剂的种类、性质及作用 奥美塞克——750g/十三吗啉 1、“奥美塞克”杀灭枝干腐烂病、干腐病、轮纹病特效。是目前防治枝干病害最为特效的产品。 2、“奥美塞克”具有内吸、保护、治疗、铲除四大高能作用。既安全,又不易产生抗性。对白粉病、霉心病、赤星病、褐斑病及烂根病也具有显著防效。 (一)农用抗生素 1、多抗霉素 【中文通用名称】多抗霉素 【英文通用名称】polylxin 【商品名称】宝丽安、多氧霉素、科生霉素、多氧清等。 【化学名称】肽嘧啶核苷类抗生素 【制剂类型】10%、3%、2%、1.5%多抗霉素可湿性粉剂,0.3%多抗霉素水剂 【理化性质】该类抗生素含有A至N 14种同系物的混合物。我国生产的多抗霉素主要成分是多抗霉素A和多抗霉素B,是多抗霉素金色产色链霉菌(Streptomyces aureo chromogenes)所产生的代谢物,含量为84%(相当于84×10单位/g),系无色针状结晶,熔点(m.p.)180℃。日本产的多抗霉素称为多氧霉素,是可可链霉素阿苏变种(Streptomyces cacaoi var.asoensis)产生的代谢产物,主要成分为多抗霉素B,占22%~25%(相当于22×10~25×10单位/g),系无定形结晶,分解温度(m.p.)为160℃。多抗霉素易溶于水,多抗霉素对人、畜低毒,在动物体内无蓄积,易排出体外。对鱼、水生生物及蜜蜂低毒。是环保型绿色农药。 【作用】多抗霉素是广谱性、具有内吸传导作用的抗生素类杀菌剂。对链格孢菌、葡萄孢菌、灰霉菌等真菌病害有较好防治效果。当药剂喷到病菌体上后,病原菌细胞壁壳多糖的生物合成受到干扰,使以壳多糖为基质构成细胞壁的真菌,芽管和菌丝体局部膨大、破裂,细胞内容物溢出,导致病原菌细胞不能正常生长发育而死亡。同时,该药剂还具有抑制病菌产生孢子及病斑扩大等作用。 多抗霉素在北方落叶果树上,主要是用来防治苹果斑点落叶病、霉心病、梨黑斑病、草莓的灰霉病等。尤其对霉心病的防治,苹果落花60%~80%时,喷布多抗霉素,防治霉心病效果显著,而且不影响坐果。 2、嘧啶核苷类抗菌素 【中文通用名称】嘧啶核苷类抗菌素 【英文通用名称】TF-120 【商品名称】农抗120、抗霉菌素120、120农用抗菌素 【化学名称】嘧啶核苷类抗菌素

植物生长调节剂复配大全

植物生长调节剂复配 大全

植物生长调节剂复配大全 植物生长调节剂可促进作物生长、提高作物的座果率等,同时还能与多种农药品种进行复配, 常用的植物生长调节剂的复配可分为:植物生长调节剂之间混复配、植物生长调节剂与杀菌剂复配、植物生长调节剂与肥料复配等,下面让我们一起来了解下吧。 一、植物生长调节剂之间复配 以前大家认为植物生长调节剂具有专用性,不能复配使用,而现代植物生理学研究证明:不同的植物生长调节剂复配使用后,将产生意想不到的好效果。生长促进剂与生长抑制剂复配使用后发现,对一些植物可抑制营养生长而促进生殖生长,在植物控制旺长、抗倒伏的同时,使果实膨大,提高产量改善品质。 1、复硝酚钠萘乙酸钠 它是一种省工、低成本、高效、优质的新型复合植物生长调节剂。复硝酚钠作为一种综合调节作物生长平衡的调节剂,可全面促进作物生长,而与萘乙酸钠复配,一方面强化萘乙酸钠的生根作用,另一方面又增强复硝酚钠生根速效性,二者共同促进,使生根效果更快,吸收营养更强劲,更全面,加速促进作物伸张健壮,不倒伏,节间粗壮,分枝、分蘖增多,抗病,抗倒伏。 2、DA-6 乙烯利(或复硝酚钠乙烯利) 它是一种复合型玉米专用的矮化、健壮、防倒型调节剂。单用乙烯利,表现为有矮化作用,且叶片增宽、叶色深绿、叶片向上、次生根增多,但易出现叶片早衰现象。 3、复硝酚钠赤霉素 复硝酚钠与赤霉素同作为速效性调节剂,均能在施用后短时间内发生作用,使作物显示出很好生长效果,而复硝酚钠与赤霉素复配使用,据中牟县枣树科学研究所应用中威春雨1号(正宗复硝酚钠)研究表明,在加合二者效果的同时,复硝酚钠的持效性特点,能补赤霉素的这一缺陷,同时通过综合调控生长平衡,避免赤霉素使用过量造成对植株体的伤害,从而使枣树显着增产,品质也明显提高。 4、萘乙酸钠吲哚丁酸盐 它是世界上应用最为广泛的复合生根剂,在果树、林木、蔬菜、花卉及一些观赏植物上推广应用广泛。该混剂可经由根、叶、发芽的种子吸收,刺激根部内鞘部位细胞分裂生长,使侧根生长快而多,提高植株吸收养分和水分能力,达到植株整体生长健壮。 由于该剂在促进植物扦插生根中往往出现增效或加合作用,从而使一些难以生根的植物也能插枝生根。

高三生物复习实验专题18探究植物生长调节剂对扦插枝条生根的作用

高三生物复习实验专题18 探究植物生长调节剂对扦插枝条生 根的作用 一、实验目的: 1. 了解植物生长调节剂的作用 2.进一步培养进行实验设计的能力 二、实验原理: 1、植物插条经植物生长调节剂处理后,对植物插条的生根情况有很大的影响,而且用不同浓度、不同时间处理其影响程度亦不同。其影响存在一个最适浓度,在此浓度下植物插条的生根数量最多,生长最快。 思考题1:什么是植物生长调节剂? _______________________________________________________________________________ 2、处理插条方法: (1)浸泡法:把插条的基部浸泡在配制好的溶液中,深约3cm,处理几小时至一天。 (要求的溶液浓度较低,并且最好是在遮阴和空气湿度较高的地方进行处理) (2)沾蘸法:把插条基部在浓度较高的药液中蘸一下(约5s),深约1.5cm即可。 三、探究活动:提出问题→作出假设→设计实验→(包括选择实验材料、选择实验器具、确定实验步骤、设计实验记录表格)→实施实验→分析与结论→表达与交流。 参考案例如下: (一)提出问题: 不同浓度的生长素类似物,如2,4—D或NAA,促进扦插条生根的最适浓度是多少呢?思考题2:什么是生长素类似物? _______________________________________________________________________________ (二)作出假设: 适宜浓度的2,4—D或NAA可以使杨或月季插条基部的薄壁细胞恢复分裂能力,产生愈伤组织,长出大量不定根。 (三)预测实验结果: 经过一段时间后(约3~5 d),用适宜浓度的2,4—D或NAA处理过的插条基部和树皮皮孔处(插条下1/3处)出现白色根原体,此后逐渐长出大量不定根;而用较低浓度、较高浓度或清水处理的枝条长出极少量的不定根或不生根。 (四)方法步骤: 1.选择生长素类似物:2,4—D或a-萘乙酸(NAA)等。 2.配制生长素类似物的浓度梯度:用容量瓶分别配成0.2、0.4、 0.6、0.8、1、2、3、4、5 mg/mL的生长素类似物溶液,分别放入小磨口瓶,及时贴上相应标签。 3.制作插条:以1年生苗木为最好(1年或2年生枝条形成层细胞分裂能力强、发育快、易成活),枝条的形态学上端为平面,下端要削成斜面,并将插条随机分成等量10组并编号为1~10组。 4.处理插条:用配制的上述不同浓度的生长素类似物分别浸泡1~9组插条,用蒸馏水浸泡第10组插条。处理一天。 5.培养插条:将处理过的插条下端浸在清水中,注意保持温度(25~30℃)。 6.观察记录:观察记录各小组实验材料的生根情况,如生根条数,最长与最短根的长

普通生物学实验讲义

普通生物学实验(动物、植物) 实验一(1)普通光学显微镜及其使用 一、实验目的 了解普通光学显微镜的构造及其原理,并熟练掌握其操作方法。 二、实验用品 普通复式光学显微镜、载玻片、盖玻片、滤纸、擦镜纸。 三、实验原理和方法 普通光学显微镜从构造上可分光学、机械和电子三大系统。 1、显微镜的光学系统 光学系统通常由物镜、目镜、聚光器和光阑组成。 1)、物镜(objective) 显微镜的质量主要取决于物镜。物镜种类繁多,性能相差悬殊。物镜的放大倍数用数字表示,如4、10、20、40和100等。 a.干燥系(drysystem)物镜 镜检时,物镜与盖片间,不添加任何液体。如4×、10×、20×和40×物镜都属干燥系,使用时不加用任何浸液,只以空气为介质,其折射率为1,所以干燥系物镜的数值孔径小,分辨率亦低。 b.浸没系(immersionsystem)物镜 物镜在使用时,前透镜与盖片之间浸满液体。依充添的浸液的不同,主要可分为油浸系(oil immersion)和水浸系(water immersion)等类别。最常用的浸没液为香柏油(cederoil),其折射率为1.515,与玻片的折射率相近,且不易干涸。使用水浸物镜时加用水,其折射率1.33。 油浸物镜外壳上刻有:“oil”、“oel”、“imm”和“HI”等字样,水浸物镜刻有“W”或“Water”字样;油、水浸两用物镜则刻上“oil+w”字样;甘油浸没物镜刻有“Glyc”或“Glyz”等字样。 2)、目镜(eyepiece,ocular) 目镜作为影像和肉眼间的放大镜,将物镜映来的影像做第二次放大。同时,目镜作为物镜的补偿,把物镜残留下的像差给予进一步校正,以提高造像质量。目镜作为投影器,把放大的影像投射在摄影暗箱的焦平面上。 目镜通常由两片(组)正透镜组成,上面的透镜叫接目或眼透镜(eye—lens),它决定倍数和成像的优劣;下面的透镜叫会聚透镜(collectivelens)或场镜(fieldpiece),它使视野边缘的成像光线向内折射,进入眼透镜中,使物体的影像均匀明亮。上下透镜的中点,或场镜下面设有用金属制造的光阑叫做视野光阑或场光阑(field stop)。场镜或物镜在这个光阑面造像,在光阑上可装入各种目镜测微计、十字线玻片和指针等。由眼透镜射出的成像光线基本上为平行光束,并在目镜之上约10mm处交叉,此交叉点称作出射光瞳。 3)聚光器(condensers)

相关主题
文本预览
相关文档 最新文档