当前位置:文档之家› 最新12v汽车电瓶充电器电路图汇总

最新12v汽车电瓶充电器电路图汇总

最新12v汽车电瓶充电器电路图汇总
最新12v汽车电瓶充电器电路图汇总

12v汽车电瓶充电器

电路图

12v汽车电瓶充电器电路图

由于密封铅酸蓄电池的诸多优点,因此获得了广泛应用.然而密封铅酸蓄电池的充电技术似乎不被看重,因充电方式不合理而造成电池过早报废的情况普遍存在.有鉴于此,笔者设计制作了一款二阶段恒流限压式铅酸电池充电器。

电瓶充电器原理如下图:

充电过程分析:

1.维护充电:

当电池电压较低时(可设定,本电路预设在9V以下),充电器工作在小电流维护充电状态下,工作原理为U1C⑨脚(同相端)电位低于⑧脚(反相端),U1C输出低电位,T4截止。U1D 11 脚电位约0.18V.此时充电电流约250mA(恒流电路由R14,U1D,T1B周边外围电路构成,恒流原理读者请自行分析).

2. 快速充电:

随着维护充电继续,电池电压逐渐升高,当电池电压超过9V时,充电器转入大电流快充模式下,U1C⑨脚(同相端)电位高于⑧脚(反相端),U1C 输出高电位,T4导通,U1D 11 脚电位约为0.48V,充电器恒定输出约1A电流给电池充电。

3. 限压浮充:

当电池接近充足电时,充电器自动转入限压浮充状态下(限压浮充电压设定为13.8V,如为6V蓄电池,则浮充电压应设定为6.9V),此时的充电电

流会由快速充电状态下逐渐下降,至电池完全充足电后,充电电流仅为10~30mA,用以补充电池因自放电而损失的电量。

4. 保护及充电指示电路:

本电路设有反极性保护电路,由D4,U1C,U1D,T1及外围元件构成,当电池反接时,充电器限制输出电流不致发生事故。充电指示由U1A,D7及外围元件构成,充电时,D7点亮,充电器进入浮充状态后,D7熄灭,表示充电结束。

5. 本电路略为修改电路参数即可任意调整充电电流,浮充电压以满足不同规格电池的需要。

6. 物料清单如下

注:CF=碳膜电阻;MF=金属膜电阻;M.O.F=金属氧化膜电阻

*表示可根据需要调整的元件.

7.实测充电器的充电曲线如下图。

电动车充电器电路图及维修方法

电动车充电器电路图及维修方法 充电器常见的故障有三大类:高压故障;低压故障;高压、低压均有故障。 1、高压故障的主要现象就是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿,R25开路。U1的7脚对地短路。R5开路,U1无启动电压,更换以上元件即可修复。 2、若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。应重点检测Q1与T1的引脚就是否有虚焊。若连续击穿Q1,且Q1不发烫,一般就是D2,C4失效,若就是Q1击穿且发烫,一般就是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1的开关损耗与发热量大增,导致Q1过热烧毁。高压故障的其她现象有指示灯闪烁,输出电压偏低且不稳定,一般就是T1的引脚有虚焊,或者D 3、R12开路,TL3842及其外围电路无工作电源。 3、另有一种罕见的高压故障就是输出电压偏高到120V以上,一般就是U2失效,R13开路所致或U3击穿使U1的2脚电压拉低,6脚送出超宽脉冲。此时不能长时间通电,否则将严重烧毁低压电路。低压故障大部分就是充电器与电池正负极接反,导致R27烧断、LM358击穿。其现象就是红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复。

4、另外W2因抖动,输出电压漂移,若输出电压偏高,电池会过充,严重失水,发烫,最终导致热失控,充爆电池。若输出电压偏低,会导致电池欠充。高低压电路均有故障时,通电前应首先全面检测所有的二极管、三极管、光耦合器4N3 5、场效应管、电解电容、集成电路、R25、R5、R12、R27,尤其就是D4(16A60V,快恢复二极管),C10(63V,470UF)。避免盲目通电使故障范围进一步扩大。有一部分充电器输出端具有防反接、防短路等特殊功能。其实就就是输出端多加一个继电器,在反接,短路的情况下继电器不工作,充电器无电压输出。还有一部分充电器也具有防反接、防短路的功能,其原理与前面介绍的不同,其低压电路的启动电压由被充电池提供,且接有一个二极管(防反接)。待电源正常启动后,就由充电器提供低压工作电源。 第二种充电器的控制芯片一般就是以TL494为核心,推动2只13007高压三极管。配合LM324(4运算放大器),实现三阶段充电。 5、220V交流电经D1-D4整流,C5滤波得到300V左右直流电。此电压给C4充电,经TF1高压绕组,TF2主绕组,V2等形成启动电流。TF2反馈绕组产生感应电压,使V1,V2轮流导通。因此在TF1低压供电绕组产生电压,经D9、D10整流、C8滤波,给TL494、LM324、V3、V4等供电。此时输出电压较低。TL494启动后其

几种蓄电池自动充电器电路

8.蓄电池自动充电器(1) 本文介绍的充电器可方便地问时为两组6v、2Ab~4从的曹电池充电,具有自动停充及指示功能。 电路如图4—8所示。FU是短路保护管,LEDl为供电指示,调节RP1可改变ICl的输出电压,RP2的中心端为电压比较器IC2的正相输入端提供一参考电压,R3为充电电流取样电阻,VD可防止电池放电,LED2是充电状态指示,C1、C2用来防止脉冲干扰。 自动停充的控制原理是:充电电流随充电的进行逐渐减小,在R3上的压降也减小。若它小于RP2上的设定值,IC2的②脚电平与③脚电平的关系由高于变为低于,⑥脚输出由高电平跳变至低电平,VD反偏,充电电流下降为零,此时,由于R3上已无压降.改IC2的⑥脚保持低电平,LED2发光指不电池已充足电待用。 元器件可参照图4—8选取。IC1上应加装散热器,IC2并不一定要使用LM741,其他型号的单运放或多运放的—个单元也可以。 调试过程如下:先不装IC2,不接蓄电池,调节RPl.使ICl的输出电压为8.5V。断开供电,装上IC2,接上充足电的两蓄电池组。恢复供电,调节RP2使LED2由不发光到开始发光,固定RPl和RP2即可。 9.茸电池自动充电器(Ⅱ) 本文介绍的简易充电器可对24V以下的蓄电池进行自动充电.最大充电电流可达2.5A,并具有恒流充电及充满目停功能。 囱4—9为自动充电器电原理图。220V市电经变压器T降压获得次级电压U2,经VDl~VD4桥式整流输出直流脉动电压,由正极A点经过继电器常闭触点Kl—2、R 4、电流表PA、VTl,通过蓄电池GB、VT2至负极B点对GB进行充电。调节RPl的大小,即调节VT1、VT2的基极电位,从而调节VT2的Icb,即充电电流大小。由于蓄电池端电压能反映其充电情况.故以标称电压为12V的蓄电池为例,当电池电压上升到(12/2)×2.5=15V时,VT3饱和导通.K1得电吸合,常闭触点K1—2断开,切断充电回路,充电器停止充电。调节RP2,可设定蓄电池充满自停的上限值。

电动车 48V 充电器原理图与维修(高清版)

电动车48V 充电器原理图与维修 电动车充电器实际上就是一个开关电源加上一个检测电路,目前很多电动车的48V 充电器都是采用KA3842 和比较器LM358 来完成充电工作理图如图1 所示 工作原理 220V 交流电经LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时,集成电路开始工作),6 脚输出PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过VT1 的S 极-D 极-R7-接地端.此时开关变压器T1 的8-9绕产生感应电压,经VD6,R2 为IC1 的7 脚提供稳定的工作电压,4 脚外接振荡阻R10 和振荡电容C7 决定IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器4N35)配合用来稳定充电压,调整RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级6-5 绕组输出的电压经快速恢复二极管VD60 整流,C18 滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V 工作电源,VD12 为IC3 提供基准压,经R25,R26,R27 分压后送到IC3 的2 脚和 5 脚。 正常充电时,R33 上端有0.18-0.2V 的电压,此电压经R10 加到IC3 的 3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时7 脚输出低电平,双色发光二极管LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于2 脚,1 脚输出低电平,双色发光二极管LED2 中的红色发光二极管熄灭,三极管VT2 截止,风扇停止运转,同时IC3 的7 脚输出高电平,此高电平一路经过电阻R35 点亮双色发光二极管LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2 到达IC2 的 1 脚,使输出电压降低,充电器进入200MA-300MA 的涓流充电阶段(浮充),改变RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障

通用电动自行车充电器电路分析及维修图文教程(3842芯片).

通用电动自行车充电器电路分析及其维修(3842芯片) 作者:MAX232 QQ:44473047 时间:2012年7月30日 一、电路分析 首先AC220电压经由保险丝,NTC和EMI滤波整流滤波变换的300V左右的直流电压,经启动电阻提供给3842(7脚)初始工作电压,驱动MOS管开关动作,开关变压器在MOS管的开关作用下,会不断的储存->释放,而使输出绕组感应到的电能经过整流滤波输出的直流电压,通过采样到431或运放控制光耦把信号反馈至3842的1脚或2脚,控制3842的输出(6脚)的占空比,以达到稳定的输出电压值。 (1)3842稳定工作的条件: 1. 起始的工作电压,由启动电阻从300V降压得到; 2. 8脚有输出稳定的5v基准电压,内部振荡电路才会工作。 3. 6脚输出驱动MOS管打开后,3脚检测到的电流反馈电压 没有超过1V。 4. 原边供电是否在下一个周期工作开始前提供到3842的7 脚,否则由启动电阻提供过来的电能已经不能维持3842工 作了。 (2)输出电压保持稳定的条件: 1. 副边绕组是否感应到电能。 2. 副边整理和滤波器件是不是都完好。

3. 采样电阻以及431,是否完好。 4. 光耦是否完好工作。 5. 3842是否接收到光耦的信号,确定信号没有在进入3842芯片前被阻断或过滤了。 充电器高压部分故障的修理流程 1、元件检测: 高压直流二极管(4007,5399,5408)或者全桥。 高压大电容,简称“一大电容”,450v68uf。 3842的7脚供电电容,简称“高压小电容”。35v100uf

场效应管(mos管,比如6N60,7N80,10N90,K1358,,,,,,,,) 低压部分的主整流管1660,uf5408,FR307,,,,,,,,,,,,,,,,,,, 低压部分的主滤波电容,(63v470uf)简称“二大电容”。 低压部分的辅助电源滤波电容,(63v470uf) 输出电流取样电阻(3w0.1欧姆) 光耦(pc817,4n35,,)用ws-3可以快速准确检测。没有ws-3就 用二极管档测量光耦低压侧的参数,应该是一个发光二极管的参数。光耦高压侧的参数基本上查不到,但也不能短路 2、拆掉损坏的零件,(3842,7n80,以及3w0.5欧姆,10欧姆,1k,等等,具体位置请看原理图红色标注)焊上保险管。(或者串联 220v40w灯泡)。 3、安装“基础”零件 更换高压整流二极管,一律用5399代替。4只全部换新。高 压部分电流取样电阻R1(用3w1欧姆或者3w0.5欧姆),驱动电阻 R2 (1/4W,10欧姆),R3(1/4W 1k),下拉电阻R4(1/4W 10k),下偏电 阻R5(1/4W 1k)。若原装各电阻与本图有出入的,一律以本图为准(以不变应万变) 4、接通保护电,(串联灯泡,后文字相同处理)

500W铅酸蓄电池充电器电路设计

随着各种电动汽车的发展,动力电池充电器的需求将越来越多。充电器质量的优劣关系到电池性能的发挥及寿命、充电器本身的智能化关系到用户的使用方便及电力系统电力计费等管理问题。不同电池,特点不同,充电策略也不相同。如将一种电池的冲电器做好了,就容易将技术向其他电池类型拓展。 EMI滤波电路: C1和L1组成第一级EMI滤波;C2、C3、C4与L2组成第二级滤波;L1,L2为共模电感 整流及功率因数校正电路 流经二级管电流ID=3.55A;二极管反向电压V=373V;考虑实际工作情况故选BR601(35A/1000V); 功率因数校正:BOOST型拓扑结构具有输出电阻低,硬件电路及控制简单,技术成熟,故选用BOOST结构; 芯片选择:TI公司的UCC28019可控制功率输出为100W-2KW,功率因数可提高到0.95,符合设计要求,故此次设计选用该款芯片;

DC-DC主拓扑结构 方案选择: 在开关管承受峰值电流和电压的情况下,全桥输出功率为半桥的两倍,并切在功率大于500W时,全桥相对于半桥更合适,故本次设计采用全桥拓扑。经过整流滤波后电压最大值为373V,最大初级电流为3.5A 考虑实际工作情况选择FQA24N50,整流二极管要承受的最大反相电压为100V,电流为10A,考虑实际工作情况,我们选用MUR3060(600V/30A) 全桥电路图:

整流滤波输出电路: 驱动电路:

PWM信号通过光耦隔离,经过反相器进入半桥驱动芯片IR2110 ,如图所示的Q1、Q2半桥驱动电路,Q3、Q4驱动电路与此电路相同。 辅助电源供电模块 电源PWM控制 本设计采用的电源核心控制部分的芯片为美国通用公司芯片SG3525.控制电路如图:

电动车充电器图解原理与维修

电动车充电器原理和维修-两种充电器 常用电动车充电器根据电路结构可大致分为两种。第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见(图表1) 220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V 左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6 脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。 通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。此电压一路经R18,强迫Q2导通,D6(红灯)点亮,第二路注入LM358的6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。当电池电压上升到44.2V左右时,充电器进入恒压充电阶段,输出电压维持在44.2V左

电动车快速充电器电路图

电动车快速充电器电路图 笔者经反复试验,制作了一款可靠的电动自行车充电器,电路如附图所示。 电动车快速充电器电路 一、电路特点: 1.输出电压设定好后(例如36V),若被充电瓶极板脱落断开,造成某组电池不通,或出现短路,则电瓶端电压即降低或为零,这时充电器将无输出电流。 2.若被充电瓶电压偏离设定电压,如设定电压为36V,误接24V、12V、6V电瓶等,充电器也无输出电流,若设定为24V误接为36V电瓶,由于充电器输出电压低于电瓶电压,因而也不能向电瓶充电。 3.充电器两输出端若短路时,由于充电器中可控硅SCR的触发电路不能工作,因而可控硅不导通,输出电流为零。 4.若使用时误将电瓶正负极接反,则可控硅触发电路反向截止,无触发信号,可控硅不导通,输出电流为零。 5.采用脉冲充电,有利于延长电瓶寿命。由于低压交流电经全波整流后是脉动直流,只有当其波峰电压大于电瓶电压时,可控硅才会导通,而当脉动直流电压处于波谷区时,可控硅反偏截止,停止向电瓶充电,因而流过电瓶的是脉动直流电。 6.快速充电,充满自停。由于刚开始充电时电瓶两端电压较低,因而充电电流较大。当电瓶即将充足时(36V电瓶端电压可达44V),由于充电电压越来越接近脉动直流输出电压的

波峰值,则充电电流也会越来越小,自动变为涓流充电。当电瓶两端电压被充到整流输出的波峰最大值时,充电过程停止。经试验,三节电动车蓄电池36V(12V/12Ah三节串联),用该充电器只需几个小时即可充满。 7.电路简单、易于制作,几乎不用维护及维修。 二、电路原理: AC220V市电经变压器T1降压,经D1-D4全波整流后,供给充电电路工作。当输出端按正确极性接入设定的被充电瓶后,若整流输出脉动电压的每个半波峰值超过电瓶的输出电压,则可控硅SCR经Q的集电极电流触发导通,电流经可控硅给电瓶充电。脉动电压接近电瓶电压时,可控硅关断,停止充电。调节R4,可调节晶体管Q的导通电压,一般可将 R4由大到小调整到Q导通能触发可控硅(导通)即可。图中发光管D5用作电源指示,而D6用作充电指示。 三、元件选择: 电源变压器可用BK200型控制变压器,输出电压用36V挡,亦可用4090型200V环形变压器,选次级电压为22Vx2或20V×2挡串联使用。笔者使用的4090型环变,其次级电压为24Vx2、12Vx2、0-6-23V三组,若将其24Vx2挡串联(48V),则输出电压太高,充电电流过大(给36V电动车蓄电池充电时,串上电流表测量平均充电电流约为1.5-1.8A,此为平均值,这时的峰值电流可达5-7A以上),为降低变压器输出电压,将其余的12V×2和O-6V两组线圈顺向串接于初级线圈中,使次级输出电压降低为空载40V,满载(平均充电电流为1.2A时)为36V,可满足使用。由于4090型环形变压器市售价格仅为23元左右.可以降低制作成本。爱好者也可自行绕制变压器。 另外,电路中整流全桥D1-D4可选用8-10A方形全桥,中间有一圆形安装孔,可安装在铝板上以便散热。可控硅可用1OA/100V金封单向可控硅,将其同整流桥用螺母固定在同一散热铝板上。触发三极管Q的参数为Vceo≥60V,IM=1A,可选用2SB536、B564、B1008、B1015或2SA*、A720等管子。R6用作限流保护作用,若变压器次级输出电压合适,充电电流(平均值)不超过1.5A,该电阻亦可省去不用。 该充电器若用于其他电压的蓄电池充电(如24V、12V等),则可选取变压器的次级输出

大功率电动三轮车电瓶充电电路的设计

2015届本科毕业设计 大功率电动三轮车电瓶充电电路的设计 姓名:许申林 系别:物理与电气信息学院 专业:电气工程及其自动化 学号: 110314090 指导教师:郑世旺 2015年5月14日

目录 摘要与关键词..................................................................... II 0 引言 (1) 1 电动车蓄电池 (1) 2 蓄电池的充电方式 (2) 2.1 恒流充电方式 (2) 2.2 恒压充电方式 (2) 2.3 阶段充电方式 (2) 2.4 脉冲式充电方式 (2) 3 系统总体的设计 (2) 3.1 系统实现基本要求 (2) 3.2 系统实现整体结构图 (2) 4 整体硬件电路的设计 (3) 4.1 整体电路的连接及工作原理 (3) 4.2 调试及说明 (4) 5 部分硬件电路的设计 (4) 5.1 电源电路的设计 (4) 5.2 振荡电路的设计 (5) 5.2.1 振荡电路的振荡方式 (5) 5.2.2 振荡电路的作用 (5) 5.3 保护电路的设计 (6) 5.3.1 过流保护电路的设计 (6) 5.3.2 输出回路的设计 (7) 5.3.3 基准电路的设计 (7) 5.3.4 电压比较电路的设计 (8) 5.4 充电状态指示电路的设计 (8) 6 结语 (9) 参考文献 (9) 致谢 (9)

大功率电动三轮车电瓶充电电路的设计 摘要 本次大功率电动三轮车充电电路的设计是将220V的电压经过整流、滤波后再对蓄电池进行充电,整体硬件电路设计包括了电源电路设计、振荡电路设计、保护电路设计、充电状态指示电路设计四大模块。其中四运算放大器LM324有充放电状态控制和过流保护等作用。基准电路采用了精密稳压专用集成电路TL431来精确控制主回路输出电压。 关键词 充电器;电源;振荡;保护电路 Design of high power electric tricycle charging circuit Abstract: The design of high power electric tricycle charging circuit is the 220V voltage is rectified, filtered and then charging the battery, the overall design of hardware circuit includes power circuit, oscillator circuit design, protection circuit design, charging state indication circuit design four modules. The four operational amplifier LM324 state of charge and discharge control and overcurrent protection function. Using a precision voltage reference circuit ASIC TL431 to accurately control the main circuit output voltage. Keywords The charger; power; oscillation; protection circuit

#48伏电瓶车充电器原理图

48伏电瓶车充电器原理图 常用电动车充电器根据电路结构可大致分为两种。 第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见图表1 点击图片在新窗口查看清晰大图

图表1 工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成

稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到LM358的

电动车充电器原理(图少)

电动车充电器原理及维修 常用电动车充电器根据电路结构可大致分为两种。 第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见图表1 工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第

48V电动车充电高清电路图与原理详解

工作原理 220V 交流电经 LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经 C3 滤波后形成约 300V 的直流电压,300V 直流电压经过启动电阻 R4 为脉宽调制集成电路 IC1 的 7 脚提供启动电压,IC1 的 7 脚得到启动电压后,(7 脚电压高于 14V 时,集成电路开始工作),6 脚输出 PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过 VT1 的 S 极-D 极-R7-接地端.此时开关变压器 T1 的 8-9绕产生感应电压,经 VD6,R2 为 IC1 的 7 脚提供稳定的工作电压,4 脚外接振荡阻 R10 和振荡电容 C7 决定 IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器 4N35)配合用来稳定充电压,调整 RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级 6-5 绕组输出的电压经快速恢复二极管 VD60 整流,C18 滤波得到稳定的电压(约 53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻 R38,稳压二极管 VZD1,滤波电容 C60,为比较器 IC3(LM358)提供 12V 工作电源,VD12 为 IC3 提供基准压,经 R25,R26,R27 分压后送到 IC3 的 2 脚

和 5 脚。 正常充电时,R33 上端有 0.18-0.2V 的电压,此电压经 R10 加到 IC3 的3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动 VT2 导通,散热风扇得开始工作,第二路经过电阻 R34 点亮双色二极管 LED2 中的红色发光二极管,第三路输入到 IC3 的 6 脚,此时 7 脚输出低电平,双色发光二极管 LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到 44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管 LED2 中的红色发光二极管熄灭,三极管 VT2 截止,风扇停止运转,同时 IC3 的 7 脚输出高电平,此高电平一路经过电阻 R35 点亮双色发光二极管 LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经 R52,VD18,R40,RP2 到达 IC2 的 1 脚,使输出电压降低,充电器进入 200MA-300MA 的涓流充电阶段(浮充),改变 RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障 这种类型充电器的常见故障有下面几种情况: 1、高压电路故障:该部分路出现问题的主要现象是指示灯不亮。通常还伴有保险丝烧断,此时应检查整流二极管 VD1-VD4 是否击穿,电容 C3 是否炸裂或者鼓包, VT2 是否击穿, R7,R4 是否开路,此时更换损坏的元件即可排除故障,若经常烧 VT1,且 VT1 不烫手,则应重点检查 R1,C4,VD5 等元器件,若VT1 烫手,则重点检查开关变压器次级路中的元器件有无短路或者漏电。若红色指示灯闪烁,则故障多数是由 R2 或者 VD6 开路,变压器 T1 线脚虚焊引起。 2、低压电路故障:低压电路中最常见的故障就是电流检测电阻 R33 烧断,此时的故障现象是红灯一直亮,绿灯不亮,输出电压低,电瓶始终充不进电,另外,若 RP2 接触不良或者因振动导致阻值变化(充电器注明不可随车携带就是怕 RP2 因振动而改变阻值),就会导致输出电压移。若输出电压偏高,电瓶会过充,严重时会失水-发烫,最终导致充爆,若输出电压偏低,会导致电瓶欠充,缩短其寿命。

电力电子课程设计直流直流升压电路分析与设计电动汽车蓄电池充电器设计

题目1—直流/直流升压电路分析与设计 电动汽车蓄电池充电器设计 一、技术指标 输入电压:12-24V,输出电压42V,输出电压纹波<200mV,负载电阻10Ω,开关频率50kHz。 二、设计要求 1). 选择主电路的类型和相应的功率器件,并对功率器件进行设计; 2). 设计电压单闭环反馈补偿器; 3). 给出输出电压的仿真结果来验证你的设计: a)电阻由10Ω跳变到5Ω; b)输入电压由12V跳变到24V。 三、设计方案分析 3.1、DC-DC升压变换器的工作原理 DC-DC功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。下面主要讨论非隔离型升压式DC-DC变换器的工作原理。 图1(a)是升压式DC-DC变换器的主电路,它主要由功率开关管VT、储能电感L、滤波电容C和续流二极管VD组成。电路的工作原理是,当控制信号Vi为高电平时,开关管VT导通,能量从输入电源流入,储存于

电感L 中,由于VT 导通时其饱和压降很小,所以二极管D 反偏而截止,此时存储在滤波电容C 中的能量释放给负载。当控制信号Vi 为低电平时,开关管VT 截止,由于电感L 中的电流不能突变,它所产生的感应电势将阻止电流的减小,感应电势的极性是左负右正,使二极管D 导通,此时存储在电感L 中的能量经二极管D 对滤波电容C 充电,同时提供给负载。电路各点的工作波形如图1(b )。 图1DC-DC 升压式变换器电路及工作波形 3.2、DC-DC 升压变换器输入、输出电压的关系 假定储能电感L 充电回路的电阻很小,即时间常数很大,当开关管VT 导通时,忽略管子的导通压降,通过电感L 的电流近似是线性增加的。即:t L U I i I ?+=LV L ,其中ILV 是流过储能电感电流的最小值。在开关管VT 导通结束时,流过电感L 的电流为: ON LV LP T L U I I I ?+=,iL 的增量为ON I T L U ?。在开关管VT 关断时,续流二极管D 导通,储能电感L 两端的电压为dt di L U U u L I L =-=0,所以流过储能电感L 的电流为:t L U U I i I LP L ?--=0,当开关管VT 截止结束时,流过电感L 的电流为OFF I LP LV L T L U U I I i ?--==0, iL 的减少量为OFF I T L U U ?-0。在电路进入稳态后,储能电感L 中的电流在开关管导通期间的增量应等于在开关管截止期间的减量,即 OFF I ON I T L U U T L U ?-=?0,所以:I I ON I OFF U q U T T T U T T U ?-=?-=?=110,其中

电瓶车充电器电路图及原理

电瓶车充电器电路图及原理(上) 根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。也就是说,充电器输出最大达到43V/3A/129W,已经可满足。在充电过程中,充电电流还将逐渐降低。以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼。 目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为MC3842。MC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。尤其是MC3842可直接驱动MOS FET管的特点,可以使充电器的可靠性大幅提高。由于MC3842的应用极广,本文只介绍其特点。 MC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。MC3842的同类产品较多,其中可互换的有UC3842、IR3842N、SG3842、

CM3842(国产)、LM3842等。MC3842内部方框图见图1。其特点如下:单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。 启动电压大于16V,启动电流仅1mA即可进入工作状态。进入工作状态后,工作电压在10~34V之间,负载电流为15mA。超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。 内设5V/50mA基准电压源,经2:1分压作为取样基准电压。 输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。若驱动双极型晶体管,宜在开关管的基极接入RC截止加速电路,同时将振荡器的频率限制在40kHz以下。若驱动MOS场效应管,振荡频率由外接RC电路设定,工作频率最高可达500kHz。 内设过流保护输入(第3脚)和误差放大输入(第1脚)两个脉冲调制(PWM)控制端。误差放大器输入端构成主脉宽调制(PWM)控制系统,过流检测输入可对脉冲进行逐个控制,直接控制每个周期的脉宽,使输出电压调整率达到0.01%/V。如果第3脚电压大于1V或第1脚电压小于1V,脉宽调制比较器输出高电平使锁存器复位,直到下一个脉冲到来时才重新置位。如果利用第1、3脚的电平关系,在外电路控制锁存器的开/闭,使锁存器每个周期只输出一次触发脉冲,无疑使电路的抗干扰性增强,开关管不会误触发,可靠性将得以提高。 内部振荡器的频率由第4、8脚外接电阻和电容器设定。同时,内部基准电压通过第4脚引入外同步。第4、8脚外接电阻、电容器构成定时电路,电容器的充/放电过程构成一个振荡周期。当电阻的设定值大于5kΩ时,电容器的充电时间远大于放电时间,其振荡频率可根据公式近似得出:f=1/Tc=1/0.55RC=1.8/RC。 由MC3842组成的输出功率可达120W的铅酸蓄电池充电器如图2所示。该充电器中只有开关频率部分为热地,MC3842组成的驱动控制系统和开关电源输出充电部分均为冷地,两种接地电路由输入、输出变压器进行隔离,变压器不仅结构简单,而且很容易实现初次级交流2000V的抗电强度。该充电器输出端电压设定为43V/1.8A,如有需要可将电流调定为3A,用于对容量较大的铅酸蓄电池充电(如用于对容量为30AH的蓄电池充电)。 市电输入经桥式整流后,形成约300V直流电压,因而对此整流滤波电路的要求与通常有所不同。对蓄电池充电器来说,桥式整流的100Hz脉动电流没必要滤除干净,严格说

电动车经典_48V-3A_充电器原理图与讲解_高清版

电动车48V-3A 充电器原理图与维修 电动车充电器实际上就是一个开关电源加上一个检测电路,目前很多电动车的48V 充电器都是采用KA3842 和比较器LM358 来完成充电工作理图如图1 所示 工作原理 220V 交流电经LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时,集成电路开始工作),6 脚输出PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过VT1 的S 极-D 极-R7-接地端.此时开关变压器T1 的8-9绕产生感应电压,经VD6,R2 为IC1 的7 脚提供稳定的工作电压,4 脚外接振荡阻R10 和振荡电容C7 决定IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器4N35)配合用来稳定充电压,调整RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级6-5 绕组输出的电压经快速恢复二极管VD60 整流,C18 滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V 工作电源,VD12 为IC3 提供基准压,经R25,R26,R27 分压后送到IC3 的 2 脚和5 脚。 正常充电时,R33 上端有0.18-0.2V 的电压,此电压经R10 加到IC3 的 3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时7 脚输出低电平,双色发光二极管LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管LED2 中的红色发光二极管熄灭,三极管VT2 截止,风扇停止运转,同时IC3 的7 脚输出高电平,此高电平一路经过电阻R35 点亮双色发光二极管LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2 到达IC2 的 1 脚,使输出电压降低,充电器进入200MA-300MA 的涓流充电阶段(浮充),改变RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障

电动车充电器原理及维修36

赵海MJE13001 1A VCEO≥400V VCBO≥600V 10~40 (Ic=0.1A,VCE=10V) TO-126 MJE13002 1.2A VCEO≥400V VCBO≥600V 10~40 (Ic=0.1A,VCE=10V) TO-126 MJE13003 1.5A VCEO≥400V VCBO≥600V 10~40 13005 8A 13007 4A 13009 12A 电动车充电器原理及维修 常用电动车充电器根据电路结构可大致分为两种。 第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见图表1

图表1 工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤

市场上最常用的两款电动车充电器电路原理及维修

市场上最常用的两款电动车充电器电路原理及维修2007/05/20 09:42 常用电动车充电器根据电路结构可大致分为两种。 第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见图表1

图表1 工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充

相关主题
文本预览
相关文档 最新文档