当前位置:文档之家› 连续波雷达及信号处理技术探讨

连续波雷达及信号处理技术探讨

连续波雷达及信号处理技术探讨
连续波雷达及信号处理技术探讨

连续波雷达及信号处理技术探讨

摘要随着社会的进步和科学技术的发展,雷达的信号处理技术也在不断更新升级。近年来连续波雷达的使用在不断增多,因其自身具有发射功率小、隐蔽性强以及抗反辐射导弹等特点,被广泛应用于各种军事以及民用雷达之中。本文就针对连续波雷达进行概述,然后针对其信号处理方面的技术进行探讨,希望能给有关人士以借鉴。

关键词连续波;雷达信号;处理技术

前言

在我们现阶段所有雷达的使用中,主要以连续波和脉冲多普雷体制的雷达数量最多。连续波雷达具有十分明显的特点,发射功率小,抗干扰能力强以及抗反辐射导弹能力强,有了这些特点,就会使得连续波雷达不仅具有很大的作用距离,而且信号不容易被截获和干扰。不仅如此,连续波雷达还具有体积小、重量轻以及高机动性灯优势,明显的增强雷达的使用范围,也能够更好地适应各种不良环境。就现阶段而言,连续波雷达一般是用于直升机载预警、地面战场侦察以及炮瞄装备上,当然,民用方面的应用也很广泛,这里就不一一赘述了。

1 连续波雷达的定义和特点

所谓连续波雷达,顾名思义,就是可以对电磁波进行连续发射,然后根据信号发射形式的差异其分为两大类,分别是非调质单频与调频这两种。连续波雷达出现的非常早,早在1924年,英国就可是对连续波调频测距等方面进行细致的分析,然后对相关的电离层进行观测。但是在应用方面,连续波雷达最早被用于二战中,当时主要承担着飞机侦察以及对面观测这两方面的任务。但是在当时大规模使用后,发现雷达经常会出现手法隔离的情况,导致工作效果很不理想,然后又通过大量的研究,最终通过收发开关的出现解决了这个问题。随着科技不断发展,现在已经可以仅通过一天线就可以实现对信号的接收和发送,并且具有好的效果。

在连续波雷达的整个使用过程中,不需要高压的输入,也不需要点火,整个过程是通过多元化的方式进行信号的调制,大大增强了信号的稳定性以及雷达的信号处理能力。因此,在相同条件下,连续波雷达无疑受到更多的青睐,在世界上都得到了广泛的应用。而且,连续波雷达还具有体积小、重量轻、线体传输损耗低、使用方便等特点,这些特点使得连续波雷达的接收机可以使用较窄的宽带脉冲,有效了解决了杂波出现的问题,大大提高了雷达的抗干扰能力。连续波雷达对速度以及距离进行测量的过程中,具有十分高的精准度,而且几乎不受外因的干扰,具有十分优越的性能。连续波雷达的特点如下:

首先是运行频率低。运行频率低的这个特点,使得这种雷达广泛应用于军事中,对于侦察工作十分有利。而且在对信号进行接收以后,可以用连续波雷达对

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

数字信号处理系统的设计

《DSP技术与应用---基于TMS320C54X》 实验指导书 湘潭大学信息工程学院 姚志强 2010.09.23

TMS320VC5402 DSK使用注意事项 1) 先用并口电缆和串口线(用到的话)将TMS320VC5402DSK与PC机相连, 而后再将电源接上,打开Code Composer Studio(简称CCS)后有可能报TMS320VC5402DSK和PC机未能连上的错误,可在PC机的CMOS_BIOS重新设置并行口的特性。 2) 将TMS320VC5402DSK上的DIP Switches的5、6置ON,其它置OFF。 3) 要在关闭CCS后及在断电的情况下插拔USB电缆线和串口线。 4) 强烈建议不要带电插拨串口,插拨时至少有一端是断电的,否则串口容 易损坏。 5) TMS320VC5402DSK电路板上大多是CMOS集成电路,为防止静电击毁, 在拿出实验电缆后请立即将玻璃盖复原,任何时候都请不要用手及其它带电物体直接和电路板接触。 实验报告的撰写 1) 每个实验都单独写实验报告。 2) 实验要求和目的; 3) 实验主要内容; 4) 看懂程序代码,并画出程序流程图; 5) 作出硬件描述(如果与DSK板硬件有关); 6)实验结果和心得。 实验注意事项 1) 实验项目所建工程文件统一放在F:\TI\CCS\myprojects下,其余盘在重启后会复原。 2) 实验过程中,不要涉及到中文路径(CCS不支持),包括CCS程序安装路径、文件添加路径、实验源文件名称等。 3) 实验七CODEC语音回放实验用到DSK板,需要自带耳麦,请准备好。

实验一 CCS的安装与CCS操作界面的熟悉 一、实验目的 学会安装与设置Code Composer Studio。 熟悉CCS软件的操作界面。 二、实验设备 CCS安装光盘(本次安装程序在D:\DSP\ccs2.0ForC5000)、装有Windows 98以上操作系统的PC机 三、实验内容及步骤 https://www.doczj.com/doc/6312248874.html,S的安装 安装前需要卸载系统原来的C5000,进入控制面板进行卸载完毕后,再开始下面的步骤。 (1)找到CCS的安装软件,点击安装程序setup.exe,双击启动安装。安装完成后在 桌面上会有“CCS 2 C5000”和“SETUP CCS 2 C5000”两个快捷方式图标,分别对应CCS应用程序和CCS配置程序。 (2)双击运行“SETUP CCS 2 C5000”配置程序,配置驱动程序。本次实验没有用到实验箱,只需配置软件驱动程序。在弹出的“Import Configurantions”对话框中,先点击“Clear”键,清除以前的配置,然后选择“C5402 Simulator”,点击“Import”,最后点击“Save and Quit”按钮,完成配置。 https://www.doczj.com/doc/6312248874.html,S操作界面的熟悉 (1)在桌面上双击“CCS 2 C5000”,弹出一个TI仿真器并行调试管理器窗口。 (2)在管理器窗口的“open”菜单下选择“C54xx(C5402) Simulator”命令,将弹出一个CCS运行主窗口(如果直接弹出CCS运行主窗口,此步可略)。 (3) 点击Help_>Contents打开TMS320C54x Code Composer Stdio Help,在左边Contents列表中点击最后一个TMS320C5402 DSK,浏览了解其下所有子列表的内容,熟悉DSK板的基本硬件、配置及功能。 (4)对照教材介绍CCS的地方,逐一熟悉CCS中的12项菜单的功能,包括File、Edit、View、Project、Debug、Profiler、Option、GEL、Tools等菜单(结合实验二建立项目熟悉更好)。 (5)对照教材,逐一熟悉CCS的五种工具栏:Standard Toolbar、GEL Toolbar、Project Toolbar、Debug Toolbar、Edit Toolbar(结合实验二建立项目熟悉更好)。

一种雷达通用信号处理系统的实现与应用

一种雷达通用信号处理系统的实现与应用 一种雷达通用信号处理系统的实现与应用 FPGA是一种现场可编程器件,设计灵活方便可以反复修改内部逻辑,适用于算法结构比较简单、处理速度较高的情况。DSP是一种基于指令集的处理器,适于大信息、复杂算法的信息处理场合。鉴于两种处理器件自身优势,FPGA+DSP信号处理架构,已成为信号处理系统的常用结构。但当前FPGA+DSP的信号处理平台或者是基于某些固定目的,实现某些固定功能,系统的移植性、通用性较差。或者仅仅简要介绍了平台的结构没有给出一些具体的实现。本文提出的基于FPGA+DSP通用信号处理平台具有两种处理器的优点,兼颐速度和灵活性,而且可以应用在不同雷达信号处理系统中,具有很强的通用性。本文举例说明该系统在连续波雷达和脉冲雷达中的典型应用。1系统资源概述1.1处理器介绍本系统FPGA选择Altera公司的EP2S60F1020。Stratix II FPGA采用TSMC的90nm 低k绝缘工艺技术。Stratix II FPGA支持高达1Gb·s-1的高速差分I/O信号,满足新兴接口包括LVDS,LNPECL和HyperTransport标准的高性能需求,支持各种单端I/O接口标准。EP2S60系列内部有48352个ALUT;具有2544192bit的RAM 块,其中M512RAM(512bit)329个,M4K RAM(4kbit)255个,M-RAM(512kbit)2个。具有嵌入式DSP块36个,等效18bit×18bit乘法器144个;具有加强型锁相环EPLL4个,

快速锁相环FPLL8个。这些锁相环具有高端功能包括时钟切换,PLL 重新配置,扩频时钟,频率综合,可编程相位偏移,可编程延迟偏移,外部反馈和可编程带宽等。本系统DSP选择ADI公司的ADSP TS201。它有高达600MHz的运行速度,1.6ns的指令周期;有24MB的片内DRAM;双运算模块,每个计算块包含1个ALU,一个乘法器,1个移位器,1个寄存器组和1个通信逻辑单元(CLU);双整数ALU,提供数据寻址和指针操作功能;集成I/O接口,包括14通道的DMA控制器,外部端口,4个链路口,SDRAM控制器,可编程标识引脚,2个定时器和定时器输出引脚等用于系统连接;IEEE1149.1兼容的JTAG端口用于在线仿真;通过共享总线可以无缝连接多达8个TigerSHARC DSP。1.2FPGA+DSP结构由于FPGA和DSP各自的自身优势,FPGA+DSP信号处理架构已成为信号处理系统的常用结构。一般情况下FPGA+DSP的拓扑结构会根据需要进行不同的连接,这就导致这种结构的专用性,缺乏灵活性。对于一个通用处理平台要考虑到各种不同的信号通路,因此大部分通用FPGA+DSP平台都采取各个处理器间均有通路的方式。这种拓扑结构灵活方便,可以满足各种不同的通路需求,这种结构的缺点就是硬件设计的复杂以及可能会有资源浪费。对于这种通用FPGA+DSP 结构,FPGA与各个DSP之间均有连接,不同之处便是DSP之间的拓扑结构。一般分两种,一是高速外部总线口耦合结构组成多DSP 系统,这种结构可以实现多DSP共享系统内的资源,系统内的个处理器可以共享RAM,SDRAM和主机等资源,还可共享其他处理器核

信号处理及其应用

1.单项选择题 1 . 用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的( )所产生的现象。B A. 干扰 B. 交叠 C. 冲击 D. 阶跃 2 . 用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的( )有关。得分: 5 A A. 采样点数 B. 采样频率 C. 采样范围 D. 采样周期 3 . 当采样频率不满足奈奎斯特采样定理时,就会发生频谱的( )。得分: 5 D A. 采样 B. 非采样 C. 不混叠 D. 混叠 4 . δ(n)的z变换是()。A A. 1 B. δ(w) C. 2πδ(w) D. 2π 5 . 无限长单位冲激响应(IIR)滤波器的结构是()型的。C A. 非递归 B. 反馈 C. 递归 D. 不确定 6 . 若数字滤波器的单位脉冲响应h(n)是对称的,长度为N,则它的对称中心是()。 B A. N/2 B. (N-1)/2 C. (N/2)-1 D. 不确定 7 . y(n)+0.3y(n-1) = x(n)与y(n) = -0.2x(n) + x(n-1)是( )。C A. 均为IIR B. 均为FIR C. 前者IIR,后者FIR D. 前者FIR, 后者IIR

8 . 对于序列的傅立叶变换而言,其信号的特点是()D A. 时域连续非周期,频域连续非周期 B. 时域离散周期,频域连续非周期 C. 时域离散非周期,频域连续非周期 D. 时域离散非周期,频域连续周期 9 . 实序列的傅里叶变换必是( )。A A. 共轭对称函数 B. 共轭反对称函数 C. 奇函数 D. 偶函数 10 . 若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( )。A A. N≥M B. N≤M C. N≤2M D. N≥2M 2.判断题 1. y(n)=x2(n)+3所代表的系统是时不变系统。√ 2. 用窗函数法设计FIR数字滤波器时,改变窗函数的类型可以改变过渡带的宽度。√ 3. 有限长序列的N点DFT相当于该序列的z变换在单位圆上的N点等间隔取样。× 4. 一个线性时不变离散系统是因果系统的充分必要条件是:系统函数H(z)的极点在单位圆内。× 5. 对正弦信号进行采样得到的正弦序列必定是周期序列。√ 6. 在离散傅里叶变换中引起混迭效应的原因是因为为采样时没有满足采样定理。√ 7. 在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“平滑”滤波器。× 8. 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“抗折叠”滤波器。× 9. 如果采样频率过低,再DFT计算中再频域出现混迭线性,形成频谱失真;需提高采样频率来克服或减弱这种失真。√

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

雷达数字信号处理解决方案

雷达数字信号处理解决方案 1.背景 数字信号处理是现代通信、雷达和电子对抗设备的重要组成部分。在实际应用中,利用数字信号处理技术对接收数据进行处理,不仅可以实现高精准的目标定位和目标跟踪,还能够将目标识别、目标成像、精确制导、电子对抗等功能进行拓展,实现多种业务的一体化集成。 在现代雷达系统中,随着有源相控阵和数字波束形成(DBF)技术的广泛应用,接收前端存在大量的数据需要并行处理,并需要保证高性能和低延迟的特点。雷达日益复杂的应用环境,让雷达系统具备自适应于探测目标和环境的能力,数字信号处理部分也需要使用多种更加复杂的算法,并且可以做到算法模块化,以及通过软件配置功能模块的参数,实现软件定义的功能。更大的数据处理带宽能够使雷达获得更高的分辨率,更高的工作频率使得雷达可以小型化,能够在更小的平台上安装,这样对于硬件平台实现也有低功耗的要求。 在电子对抗设备中,可以在最短的时间内对多个威胁目标进行快速分析和响应,同样需要数字信号处理的相关算法具备高实时,高动态范围和自适应的特点。如何在宽频噪声的环境中寻找到目标的特征数据,如何在宽带范围内制造虚假目标实现全覆盖,数字信号的处理性能是至关重要的设计因素。 加速云的SC-OPS和SC-VPX产品,针对5G通信和雷达的数字信号处理的要求,结合Intel最新14nm 工艺的Stratix10 FPGA系列,提供了一套完整的硬件和软件相结合的解决方案。SC-OPS产品作为单独的硬件加速卡,通过PCIe插卡的方式实现与主机的通信功能,还可以通过多卡级联的方式实现数字信号的分布式处理方案。SC-VPX产品是由FPGA业务单板、主控板和机箱组成的VPX系统。借助于FPGA可编程的特性,加速云提供了高性能数学加速库FBLAS和FFT的RTL级IP,具有高性能和算法参数可配置的特点实现了多重信号分类(MUSIC)和自适应数字波束形成(ADBF)的核心算法,提高了5G通信和雷达在对抗干扰方面的性能。为了方便客户使用高层语言开发,加速云提供基于FPGA完整的OpenCL异构开发环境,快速实现用户自定义的信号处理加速方案。 图1. 加速云SC-OPS和SC-VPX产品

北京工业大学信号处理工程应用训练

北京工业大学 通信系统工程应用训练报告 专业:通信工程 学生姓名:刘莹莹 指导教师:席大林 完成时间:2016年4月29日

目录 训练十一 DFT性质研究 (1) 训练十二 DFT及抽样定理研究 (13) 训练十三数字滤波器制作 (20) 训练十四 IIR数字滤波器设计与实现 (25) 训练十五线性卷积计算 (46) 训练十六 FIR数字滤波器设计与实现 (55)

训练十一 DFT性质研究 验证dft函数正确性 设置原始输入信号为x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}},将输入信号x[8]进行DFT正变换,dft(X,x,8,1),输出保存在X[8],如下: 可以看到,输入信号x(n)已经变换到频域X(k),且仍为8位。再对X[8]进行DFT反变换,dft(x,X,8,-1),重新得到x[8],观察得到的输出与原始输入数据是否相同。 结果如下: 可以看到,输出的x[8]取值仍为 x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}},证明经过DFT正反变换后,

信号能够恢复原始信号。

根据帕塞瓦尔定理,应有时域、频域总能量相等:。经过计算,时域、频域能量和分别为,证明时域、频域能量和相同,符合帕塞瓦尔定理。 综上,证明DFT变换正确。 A、补0效应研究 原数组: x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,},{8,0}} 示例程序中补0后数组为: x2[16]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0},{0,0},{0,0},{0,0},{0,0} ,{0,0},{0,0},{0,0},{0,0}} 补0方式 我使用的补0方式为: for(i=8;i<13;i++)x2[i]=COMPLEX(0,0); 补0后数组为: x2[13]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0},{0,0},{0,0},{0,0},{0,0} ,{0,0}} 结果分析与图 在时域中,信号长度增加,由于所增加的项均为零,波形仍与未补0时相同 未补零时的信号时域图

雷达信号处理

雷达信号处理技术与系统设计 第一章绪论 1.1 论文的背景及其意义 近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。 雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。固定杂波的中心频率位于零频,很容易设计滤波器将其消除。但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术 2.1 引言 雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。 脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。这种情况在实际工作中是不允许的。采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。但用模拟技术实现时实际结果与理论值相差很大,而用数字技术实现时实际输出的距离旁瓣与理论值非常接近。数字脉压以其许多独特的优点正在或已经替代模拟器件进行脉冲压缩处理。 2.2 数字脉压实现方法 用数字技术实现脉冲压缩可采用时域方法或频域方法。至于采用哪种方法。 要根据具体情况而定,一般而言,对于大时宽带宽积信号,用频域脉压较好;对 于小时宽带宽积信号,用时域脉压较好。 2.2.1 时域卷积法实现数字脉压 时域脉冲压缩的过程是通过对接收信号)(t s 与匹配滤波器脉冲响应)(t h 求卷积的方法实现的。根据匹配滤波理论,)()(0*t t s t h -=,即匹配滤波器是输入信号的共轭镜像,并有响应的时移0t 。 用数字方法实现时,输入信号为)(n s ,起匹配滤波器为)(n h ,即匹配滤波器的输出为输入离散信号)(n s 与其匹配滤波器)(n h 的卷积

测速雷达数字信号处理系统的设计

西安工程大学学报 Journal of Xi’an Polytechnic University  第22卷第3期(总91期)2008年6月Vol.22,No.3(Sum.No.91) 文章编号:16712850X(2008)0320329204 测速雷达数字信号处理系统的设计 张雪侠1,党幼云1,杨 进2 (1.西安工程大学电子信息学院,陕西西安710048;2.西安展意信息科技有限公司,陕西西安710075) 摘要:采用PCI29812数据采集卡和XC2S200FP GA芯片共同完成测速雷达系统的信号处理,即高速A/D转换模块和频谱的分析,并利用VB语言实现速度时间曲线的拟合问题和终端界面的显示,完成友好的人机交互功能. 关键词:测速雷达;信号处理系统;PCI29812采集卡;界面显示 中图分类号:TN911.25 文献标识码:A 0 引 言 传统的测试速度技术,如靶圈测试、天幕靶测试等方法因测试过程繁琐,精度较差,已不能满足实时战地测试的需要[1].连续波雷达回波的多普勒频移测量方法,具有测速精度高,无速度模糊[2],并且可以得到单值无模糊的频率值[3]的特点,单对于测速来说,是最理想的方法.对于雷达后端信号处理部分,根据实际要求的不同,存在有不同的处理方法[427].目前,实际应用中存在多种车载雷达测速仪,它主要是测量出运动目标的即时速度并进行记录与显示,因而对于终端信号处理相对比较简单.本文设计的测速雷达数字信号处理系统不仅能完成弹丸速度的实时测量、记录与显示,更重要的是通过弹丸速度的连续测定,进而获取弹丸初速值.弹丸初速值的确定对于计算弹道的相关参数,分析弹丸的形状及大小具有重要的意义. 1 测速雷达系统组成 1.1 基本原理 连续波测速雷达系统的理论基础是多普勒效应[4]在电磁波领域中的应用.其基本原理是雷达中的波震荡器震荡出一系列的波,通过天线向着飞行中的弹丸发射电磁波,同时接收弹丸的反射回波,由于弹丸在运动,所以反射波和接收波之间存在有频率差,即发生了频率的变化,就是所谓的频移现象.这一频率差和弹丸的运动速度成正比例关系.其数学表达式为多普勒频差f d=2V t/λ,式中λ为信号波长,V t为运动目标的即时速度;λ=c/f0,c为光速,为常量,由于雷达发射的频率f0已知,可求出λ,那么只要再求出多普勒信号的频率差值f d,即可求得弹丸的即时速度V t.由于得到的是连续的f d的值,即对应多个V t值,因此可得出弹丸飞行轨迹上的多点瞬时速度值,即弹丸速度变化曲线,再根据此曲线按最小二乘法进行拟合,推算出弹丸的初速V o值. 1.2 整体结构 测速雷达由信号采集机和信号处理机组成,其中信号采集机包括高频组件、喇叭天线、前置放大器、红外启动器;信号处理机包括数字信号处理器和终端显示界面. 信号采集机部分完成了雷达发射机和部分接收机的功能.8mm波振荡器产生连续的8mm电磁波,通 收稿日期:2008204211 通讯作者:党幼云(19622),女,陕西省澄城县人,西安工程大学教授.E2mail:xk_dyy@https://www.doczj.com/doc/6312248874.html,

现代信号处理及其应用

成绩: 现代信号处理 及其应用 题目:现代信号处理在通信对抗中的应用学号:111143321 姓名:王琦 2015年6月

现代信号处理在通信对抗中的应用 摘要:信息技术在现代军事领域占有越来越重要的地位,成为决定战争胜负的一个关键因素。信息战已经成为现代战争的主要作战形式之一。应用于军事通信对抗的现代信号处理理论发展非常迅速,这得益于两个方面的动力:其一,军事通信的技术和手段不断更新。其二,现代信号处理的三大热点—谱估计、高阶统计量方法、时频分析的理论和技术日臻完善,并逐渐应用于通信对抗领域。通信对抗是电子战的重要组成部分。 关键词:通信对抗;信号检测;现代信号处理技术 一、引言 信号处理是信息科学的重要组成部分。在现代科技领域,电子信息系统的应用范围十分广泛,主要有通信、导航、雷达、声纳、自动控制、地震勘探、医学仪器、射电天文等。这些领域的研究进展很大程度上依赖于信号处理理论和技术的进步。通信对抗是电子战的重要组成部分,也是电子战领域中技术含量最高的部分。[1]通信对抗不仅采用了最先进的电子和通信技术,而且有力地推动了信号处理理论的发展,促进了通信技术的发展。通信对抗在现代战争中具有广泛的应用价值。本文探讨的内容主要涉及现代信号处理理论在通信对抗技术中相关的应用。 二、现代信号处理技术基本原理 信号是信息的载体,是随时间和空间变化的物理量。要想得到有用信息就必须对信号进行分析处理。它分为确定信号和随机信号。其中,确定信号:序列在每个时刻的取值服从某种固定函数的关系的信号;随机信号:序列的取值服从某种概率规律的信号。而确定信号又分为周期信号与非周期信号;随机信号分为平稳随机信号和非平稳随机信号。 现代信号处理技术,则是要把记录在某种媒体上的信号进行处理,以便抽取出有用信息的过程,是对信号进行提取、变换、分析、综合等处理过程的统称。 [2]利用观测数据作出关于信号与(或)系统的某种统计决策。统计决策理论主要解决两大类问题:假设检验与估计。信号检测、雷达动目标检测等是假设检验的典型问题。估计理论设计的范围更广泛,它又被分为非参数化和参数化两类方法。 三、现代信号处理技术在通信对抗中应用 在军事通信对抗中,军用无线电台是电子战部队实施电子侦测、截获和干扰的主要目标。电台在工作中常常受到敌方有针对性地发射的电磁波攻击。扩频通信是目前军用电台的常见通信方式。扩频通信具有良好的低功率谱密度发射所带

最新 连续波雷达及信号处理技术初探-精品

连续波雷达及信号处理技术初探 摘要:连续波雷达,主要就是连续发生电磁波的雷达,可以根据不同发射信号的形式,将其划分成为非调制单频与调频两种类型。在连续波雷达系统实际应用的过程中,应当科学使用信号处理技术开展相关处理工作,在实际观测的过程中,解决收发开关中存在的问题,保证雷达信号接收与发射工作效果。关键词:连续波雷达;信号处理技术;应用措施在使用信号处理技术对连续波雷达进行控制的过程中,应当建立多元化的管理机制,明确各方面工作要求,创新信号处理工作形式,保证能够提升信号处理技术的应用水平,创建专门的管理机制。一、连续波雷达定义与特征分析对于连续波雷达而言,主要是针对电磁波进行连续的发射,根据发射信号形式将其划分成为非调制单频与调频两种类型。在1924年的时候,英国就开始通过连续波课调频测距相关分析,对电离层开展观测工作。且在第二次世界大战的过程中,已经使用连续波雷达开展飞机观测与地面观测工作。然而,在实际使用的过程中,经常会出现收发隔离的现象,难以保证工作效果,因此,使用收发开关对此类问题进行了解决。当前,在使用连续波雷达的过程中,已经能够通过同一天线开展信号接收与发射工作,产生良好的工作效果。在使用连续波雷达发射机设备的过程中,不需要高压的支持,也不会出现打火的现象,能够利用多元化的方式开展信号调制工作,有利于提升信号的发射效率,增强雷达处理效果,因此,在相同体积、重量的雷达设备中,连续波雷达受到广泛关注与重视,应用于世界的各个国家。同时,连续波雷达的体积很小,重量很轻,馈线的损耗最低,使用流程简单,与其他雷达相较可以得知,连续波雷达在接收机方面,所使用的宽带脉冲较窄,有利于抵抗杂波问题,提升电磁干扰的抵抗能力。在应用连续波雷达对距离与速度进行测量的过程中,其测量准确性较高,不会受到其他因素的干扰。对于连续波雷达而言,其特点主要表现为以下几点: (一)发射机的运行功率较低连续波雷达的发射机运行功率很低,有利于应用在侦查工作中。一般情况下,在使用侦查接收机的过程中,可以利用连续波雷达对其进行处理,提升工作效率,加快侦查速度,保证瞬时频率符合相关规定。同时,在使用连续波雷达的过程中,还要使用伪随机码调相方式对其进行处理,减少外界带来的干扰,做好反侦察工作,保证可以符合实际发展需求。(二)接收机的宽带很窄连续波雷达在实际运行的过程中,接收机的宽带很窄,在杂波环境中,能够实行检测工作,提升自身抗干扰能力。且在电磁干扰的环境中,可以提升自身的抗干扰性能,满足实际处理需求[1]。(三)对小目标进行检测连续波雷达设备的使用,可以提升发射机的功率,增加收发天线的收益,且可以减少噪音问题,在一定程度上,能够减少微波损耗问题,更好的对隐身目标进行检测,合理开展雷达探测等工作,提升相关信号的处理效果,满足实际发展需求。二、连续波雷达的相关工作园林分析连续波雷达的运行,需要明确实际工作原理,通常情况下,雷达发射线性三角调频的相关连续性信号,那么,雷达设备的载频就在f0的数值之上,在此过程中,可以将调频宽带设置成为A,将调频间隔设置成为C。在对信号频率与时间进行计算的过程中,应当明确相关原理,创新管理工作形式,对具有代表性的内容进行合理分析,保证可以提升自身分析工作效果。在信号处理工作中,应当重点关注发射信号与目标回波信号,通过合理的计算方式,创建多

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 课程编号: 11322617,11222617,11522617 课程名称:数字信号处理 英文名称:Digital Signal Processing 课程类型: 专业核心课程 总学时:56 讲课学时:48 实验学时:8 学分:3 适用对象: 通信工程专业、电子信息科学与技术专业 先修课程:信号与系统、Matlab语言及应用、复变函数与积分变换 执笔人:王树华审定人:孙长勇 一、课程性质、目的和任务 《数字信号处理》是通信工程、电子信息科学与技术专业以及电子信息工程专业的必修课之一,它是在学生学完了信号与系统的课程后,进一步学习其它专业选修课的专业平台课程。本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础。 二、课程教学和教改基本要求 数字信号处理是用数字或符号的序列来表示信号,通过数字计算机去处理这些序列,提取其中的有用信息。例如,对信号的滤波,增强信号的有用分量,削弱无用分量;或是估计信号的某些特征参数等。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计和识别等都是数字信号处理的研究对象。 本课程介绍了数字信号处理的基本概念、基本分析方法和处理技术。主要讨论离散时间信号和系统的基础理论、离散傅立叶变换DFT理论及其快速算法FFT、IIR和FIR数字滤波器的设计以及有限字长效应。通过本课程的学习使学生掌握利用DFT理论进行信号谱分析,以及数字滤波器的设计原理和实现方法,为学生进一步学习有关信息、通信等方面的课程打下良好的理论基础。 本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础,应当达到以下目标: 1、使学生建立数字信号处理系统的基本概念,了解数字信号处理的基本手段以及数字信号处理所能够解决的问题。 2、掌握数字信号处理的基本原理,基本概念,具有初步的算法分析和运用MATLAB编程的能力。 3、掌握数字信号处理的基本分析方法和研究方法,使学生在科学实验能力、计算能力和抽象思维能力得到严格训练,培养学生独立分析问题与解决问题的能力,提高科学素质,为后续课程及从事信息处理等方面有关的研究工作打下基础。 4、本课程的基本要求是使学生能利用抽样定理,傅立叶变换原理进行频谱分析和设计简单的数字滤波器。 三、课程各章重点与难点、教学要求与教学内容

雷达系统中的信号处理技术

雷达系统中的信号处理技术 摘要本文介绍了雷达系统及雷达系统信号处理的主要内容,着重介绍与分析了雷达系统信号处理的正交采样、脉冲压缩、MTD和恒虚警检测几种现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,通过MTD来探测动目标,通过恒虚警(CFAR)来实现整个系统对目标的检测。 关键词雷达系统正交采样脉冲压缩MTD 恒虚警检测 1雷达系统概述 雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。雷达的任务就是测量目标的距离、方位和仰角,还包括目标的速度,以及从目标回波中获取更多有关目标的信息。典型的雷达系统如图1,它主要由雷达发射机、天线、雷达接收机、收发转换开关、信号处理机、数据处理机、终端显示等设备组成。 图1雷达系统框图

随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、计算机技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。 雷达发射机产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由雷达接收机接收,然后对雷达回波信号依次进行信号处理、数据处理,就可以获知目标的相关信息。 雷达信号处理的流程如下: 图 2 雷达信号处理流程 2雷达信号处理的主要内容 雷达信号处理是雷达系统的主要组成部分。信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。内容包括雷达信号处理的几个主要部分:正交采样、脉冲压缩、MTD和恒虚警检测。 正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内,直接中频数字正交采样是当代雷达的主要技术之一。脉冲压缩技术在现代雷达系统中得到了广泛的应用。脉冲压缩雷达既能保持窄脉冲雷达的高距离分辨力,又能获得脉冲雷达的高检测力,并且抗干扰能力强。现在,脉冲压缩雷达使用的波形正在从单一的线性调频发展到时间、频率、编码混合调制,在尽可能不增加整机复杂度的条件下实现雷达性能的提升。杂波抑制是雷达需要具备的重要功能之一。动目标指示与检测是通过回波多普勒频移的不同来区分动目标和固定目标,通过设计合理的滤波器(组),就可以把目标号和杂波分开。

现代信号处理方法及工程应用的研究

现代信号处理方法及工程应用的研究 班级:研1102 学号:2011020058 姓名:赵鹏飞 摘要 本文首先介绍了时频发展的基本概念和比较成熟的时频分析方法一一短时Fourier分析。然后给出了实际转子振动信号的时频分析。其次,介绍了二进小波分析,并应用二进小波分析实现了对透平压缩机信号的监测分析,得到了压缩机原始信号在不同频率段分解的细节信号和逼近信号。用小波分析和谱分析相结合的方法对某国产电机的噪声进行了分析,找出了人的听闭不阅的几个高谱峰位置,进行了空气动力噪声计算,通过与理论计算结果进行对比分析,进一步找出了产生该频闻谱峰的几个原因。第三,介绍了谐波小波和分形的基本原理。对车辆的一般振动信号和复杂振动信号进行了分形分析。第四,对车辆传动系的振动信号进行了检测分析与故障诊断。首先对汽车传动系进行了模态测试与分析,然后对汽车传动系各部分在垂直方向上的相对振动幅值进行了测试与分析。根据上述测试分析并综合其它因素得出了结论。 关键词:小波分析,分形,故障诊断,信号 第一章绪论 世界从本质上说是非线性的,线性是非线性的特殊情况:以非线性为特征的非线性科学是一门跨学科的综合性基础科学,旨在揭示非线性系统的共同性质、基本特征和运动规律。当前研究非线性科学的主要工具有Fourier变换(STFT)、小波分析(Wavelet Analysis)、分形理论、人工神经网络等。 1.1时频分析的发展及应用 Fourier分析方法的应用,使科学与技术研究领域发生了具大的变化,从而极大地推动了经济发展乃至社会变革,目前在信号处理与图象处理方面Fourier 变换是不可缺少的分析工具。在机械设备状态监测与诊断系统中,应用最广泛也是最成功的就是基于Fourier变换的各种分析方法:许多在时域分析困难的问

信号处理工程应用训练(指导书)

训练一信号与系统函数编程 训练目的 1﹑学会将信号与系统函数转变成计算机程序。 2﹑基本掌握将数学函数转变为程序函数的技巧与规范。 3﹑了解理论函数与程序函数的差异。初步认识计算机适用范围。 训练介绍 1﹑数学函数转化问题 把根据数学函数编写的C函数子程序称为程序函数。数学函数与程序不可能完全一致。一是计算机运算都有一个范围,所做运算超出范围便会出错;二是因为计算机不能做除零运算,这会产生一除法错,理论函数无此限制。所以要求在编写程序函数时一定要结合实际应用情形来确定如何编写,不能简单照搬数学函数。三是程序函数不象数学函数那样易于进行代数运算或者具有某种运算性质,例如理论上的冲击函数,则不易编写对应的函数子程序,所以数学函数并不能全由计算机的程序函数完全实现。一般在将一数学函数转变为一计算机上程序函数时,要具体情况具体处理。编写程序函数有一些规范和注意事项: (1)数学函数当中若有除法运算,需仔细函数奇异值的处理,须通过程序中的判断和特殊处理使程序函数返回正确值。 (2)数学函数中跳变点的极限值,常取左右极限的均值,程序函数中以右极限作为函数的取值。若特殊需要,须与数学函数完全一致,则仍按数学函数规定取值。 (3)所有函数子程序的输入与输出参量尽量规定为double型,建议不用float型,这是出于规范考虑。 (4)所有程序函数的输入输出参量声明时写成如下形式: Double function(Type out1,Type out2,... Type in1,Type in2,...) Double function(Type out1,Type out2,...

Type io1,Type io2,... Type in1,Type in2,...) 即,输出变量占一行,输入输出变量占一行,输入变量占一行。输入变量的第一个参量为主变量。 (5) 尽量减少函数变量个数,例如sin(t)有两个参数,编程只 需实现sin(x)。 (6) 每个函数子程序须有适当文字注释,注释的内容包括索引号, 对应的理论函数,编者姓名及日期,函数的功能﹑定义域﹑值域,使用举例等。说明应简洁清楚,以备能长期正确使用。 (7) 程序函数块内的小块以一空行进行分割,程序函数体之间, 以2、3空行行分割。组织一个函数库文件时应将功能,特征相近的函数子程序归在一起。各分类块间应有适当的注释说明。 2﹑以下以单位阶跃U(t)、方波和函数 ] )3][()1[(2 2 2 2 2 2b a b a b a h +-+-+= 三种信号函数为例进行编程示范: 训练内容 0 1、斜变函数R(t)= t ,t>0 2、锯齿波:f(t)=t / T,0≤t>ω。 训练步骤

相关主题
文本预览
相关文档 最新文档