当前位置:文档之家› 半导体基纳米复合材料光催化研究进展

半导体基纳米复合材料光催化研究进展

半导体基纳米复合材料光催化研究进展
半导体基纳米复合材料光催化研究进展

 

 

 

 

 

 

 

 

 

2021年半导体光催化制氢的进展

《能源材料》课程论文 欧阳光明(2021.03.07) 题目:半导体光催化水解制氢的进展 指导教师:毛景 学生姓名:朱永坤学号: 20130800830 专业:建筑结构及功能材料 院(系):材料科学与工程 2016年 6月 8 日关键词:半导体;光催化;太阳能;电解水;制氢; 改性。 引言: 在上课过程中老师讲到的新能源汽车当中的氢燃料池 汽车让我对氢能的开发利用产生了浓厚的兴趣,就想着 写一篇关于氢能方面的文章。结合老师上课过程提到的 太阳能制氢,就定位在了半导体光催化制氢这个主题 了。 目前,氢气在氢燃料电池汽车当中得到了广泛的应 用,氢燃料电池通过液态氢与空气中的氧结合而发电,根 据此原理而制成的氢燃料电池可以发电用来推动汽车。 氢燃料电池汽车是终极环保汽车。氢燃料电池汽车零排 放,且一次加氢续驶里程长,加氢时间短,相当于汽油 车,一直以来被作为新能源汽车技术路线之一。 但是,到目前为止,氢燃料电池汽车,并没有得到大 范围的普及,因为一些技术条件的短板暂时限制了它的应 用。其中最大的问题就是氢气来源问题,世界上很多国家

的氢燃料的生产并不是以水为原料,而是以天然气作为生 产原料,先前讲到了,如果要电解水取得氢气,那需要很 大的能量消耗,而且要生产出能量值与普通汽油燃料相当 的氢燃料,我们就需要大量的水资源,水同样也是我们这 个星球稀缺的资源。同时,氢气的储存和运输过程又要耗 费很大的能量,所以到目前为止,要驱动一辆氢燃料电池 汽车,所需能耗太大,还不能达到节能环保的目的。麻省 理工学院的一些能源专家则提出,氢燃料电池车真正要 “跑起来”,至少还需要15年的时间。 那么,如何低能耗,效率高地制备氢气成为了氢燃料 汽车的一个瓶颈,目前制备氢气有也有很多方法,包括热 化学法制氢,光电化学分解法制氢,光催化法制氢,人工 光合作用制氢,生物制氢等,在这里重点介绍一下光催化 制氢的一些新的研究和进展。 摘要: 氢能具有高效、清洁、无污染、易于产生、便于输运 和可再生等特点,是最理想的能源载体。因此,氢能将会成 为未来化石能源的主要替代能源之一,利用可再生能源制 取氢气是未来能源发展的必然趋势。 利用太阳能直接从水中获得的氢气,氢气又可作为能源燃料,燃烧产物是水,它以最清洁环保的形态回到自然生态循环中,这是一种完全的可持续开发的能源利用的途径。 背景: 光解水制氢技术始自1972年,由日本东京大学Fujishima A和Honda K两位教授首次报告发现TiO2单晶电极光催化分解水从而产生氢气这一现象,从而揭示了利用太阳能直接分解水制氢的可能性,开辟了利用太阳能光解水制氢的研究道路。 利用太阳能分解水制氢或将太阳能直接转化为化学能逐渐成为能源领域的研究热点之一。近年来,太阳能利用的研究、特别是利用

第六章半导体催化剂的催化作用及光催化原理.

第六章半导体催化剂的催化作用及光催化 原理 ?本章主要内容: ?半导体的能带结构及其催化活性 ?从能带结构出发,讨论催化剂的导电性能、逸出功与催化活性的关 系 ?半导体多相光催化原理 金属氧化物与金属硫化物催化剂概述 过渡金属氧化物与过渡金属硫化物有许多相似之处,多为半导体型化合物。 作为氧化用的过渡金属氧化物催化剂主要催化反应类型是烃类的选择性氧化和NOx的还原等; 作为催化剂的多为过渡金属硫化物,如Mo、W、Ni、Co、Fe等的金属硫化物具有加氢、异构、氢解等催化活性,用于油品的加氢精制;加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。 半导体的能带结构及其催化活性 过渡金属氧化物、硫化物(半导体)催化剂 过渡金属氧化物、硫化物催化剂多属半导体类型,本章用半导体能带理论来说明这类催化剂的催化特性。将半导体的导电性能、电子逸出功与催化活性相关联,解释解释这类催化剂的催化作用。 固体的能带结构 原子核周围的电子是按能级排列的。例如1S,2S,2P,3S,3P……内层电子处于较低能级,外层电子处于较高能级。 固体是由许多原子组成的,固体中许多原子的电子轨道发生重叠,其中外层电子轨道重叠最多。由于这种重叠作用,电子不再局限于在一个原子内运动,而是在整个固体中运动,这种特性称为电子的共有化。 但重叠的外层电子也只能在相应的轨道间转移运动。例如3S引起3S共有化,形成3S 能带;2P轨道引起2P共有化,形成2P能带。 禁带、满带或价带、空带或导带 3S能带与2P能带之间有一个间隙,其中没有任何能级,故电子也不能进入此区,称之为禁带; 下面一部分的能级组成一个带,一般充满或部分充满价电子,称为满带或价带; 上面一部分的能带也组成一个带,在基态时往往不存在电子,只有处于激发态时才有电子进入此带,所以称为空带,又叫导带; 激发到空带中去的自由电子提供了半导体的导电能力。 金属的能带结构 导体、半导体、绝缘体的能带结构比较

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

光催化原理

光催化原理 光催化的原理: (1)它是一种利用新型的复合纳米高科技功能材料的技术。 (2)它一种是低温深度反应技术,光催化剂纳米粒子在一定波长的光线照射下受激生成电子—空穴对,空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化—还原作用,将光催化剂表面的各种污染物摧毁。 (1)低温深度反应: 光催化氧化可在室温下将水、空气和土壤中有机污染物完全氧化成无毒无害的物质。而传统的高温焚烧技术则需要在极高的温度下才可将污染物摧毁,即使用常

规的催化氧化方法亦需要几百度的高温。 (2)净化彻底: 它直接将空气中的有机污染物,完全氧化成无毒无害的物质,不留任何二次污染,目前广泛采用的活性炭吸附法不分解污染物,只是将污染源转移。 (3)绿色能源: 光催化可利用太阳光作为能源来活化光催化剂,驱动氧化—还原反应,而且光催化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。(4)氧化性强: 大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(HO),HO的氧化性高于常见的臭氧、双氧水、高锰酸钾、次氯酸等。 (5)广谱性: 光催化对从烃到羧酸的种类众多有机物都有效,美国环保署公布的九大类114 种污染物均被证实可通过光催化得到治理,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。 (6)寿命长: 理论上,催化剂的寿命是无限长的。

光催化材料研究进展

. 光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅[1]。光催化适合特定的污染物而不适合大规模推广应用等方面的缺陷氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO 、ZnO、CdS、2 WO 、Fe O 等半导体光催化技术因其可以直接利用光能而被许332[2]。多研究者看好1.1 TiO光催化概述 21.1.1 TiO的结构性质 2二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO在自然界主要有三种结晶形态分布:锐钛矿型、2金红石型和板钛矿型。三种晶体结构的TIO中,锐钛矿和金红石的工2业用

途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密资料Word . 度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见 光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在[3]。光催化处理环境污染物方面有着极为广阔的应用前景 1.1.2TiO光催化反应机理2半导休表面多相光催化的基本原理:用 能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价-+)随后h(e,.)—空穴(带产生相应的空穴,这样就半导体内部生成电子电子-空穴对迁移到粒子表面不同位置、 与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态 的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复 合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO催化剂的局限及改性途径2作为光催化剂,虽然二氧化钛 具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大 规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不 高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸 收的光的波长主要集中在紫外区,而在照射到地球表面的太阳光中,

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备, 表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。 1.1研究背景与意义

半导体光催化制氢的进展.

《能源材料》课程论文 题目:半导体光催化水解制氢的进展 指导教师:毛景 学生姓名:朱永坤学号:20130800830 专业:建筑结构及功能材料 院(系):材料科学与工程 2016年6月8 日

关键词:半导体;光催化;太阳能;电解水;制氢;改性。 引言: 在上课过程中老师讲到的新能源汽车当中的氢燃料池汽车让我对氢能的开发利用产生了浓厚的兴趣,就想着写一篇关于氢能方面的文章。结合老师上课过程提到的太阳能制氢,就定位在了半导体光催化制氢这个主题了。 目前,氢气在氢燃料电池汽车当中得到了广泛的应用,氢燃料电池通过液态氢与空气中的氧结合而发电,根据此原理而制成的氢燃料电池可以发电用来推动汽车。 氢燃料电池汽车是终极环保汽车。氢燃料电池汽车零排放,且一次加氢续驶里程长,加氢时间短,相当于汽油车,一直以来被作为新能源汽车技术路线之一。 但是,到目前为止,氢燃料电池汽车,并没有得到大范围的普及,因为一些技术条件的短板暂时限制了它的应用。其中最大的问题就是氢气来源问题,世界上很多国家的氢燃料的生产并不是以水为原料,而是以天然气作为生产原料,先前讲到了,如果要电解水取得氢气,那需要很大的能量消耗,而且要生产出能量值与普通汽油燃料相当的氢燃料,我们就需要大量的水资源,水同样也是我们这个星球稀缺的资源。同时,氢气的储存和运输过程又要耗费很大的能量,所以到目前为止,要驱动一辆氢燃料电池汽车,所需能耗太大,还不能达到节能环保的目的。麻省理工学院的一些能源专家则提出,氢燃料电池车真正要“跑起来”,至少还需要15年的时间。 那么,如何低能耗,效率高地制备氢气成为了氢燃料汽车的一个瓶颈,目前制备氢气有也有很多方法,包括热化学法制氢,光电化学分解法制氢,光催化法制氢,人工光合作用制氢,生物制氢等,在这里重点介绍一下光催化制氢的一

光催化研究发展综述性报告

光催化研究发展综述性报告 本人申请攻读动力工程与工程热物理专业博士学位,由于对后续能源与新能源技术专业太阳能分解水制氢方向有浓厚的兴趣,通过对相关文献的阅读和参加相关报告,对太阳能光催化分解水制氢有了详细的了解,对其发展简述如下: 1.前言 当今人类社会面临能源和环境两大问题[1-2]。能源的短缺和环境的污染严重制约着人类社会的发展。一方面,社会的高速发展使得人类对于能源的需求越来越大,而我们目前所用的能源还是以传统的化石燃料为主,但是因为化石燃料的不可再生性,或者说是形成的时间周期太长,使得其必有枯竭的一天。据估计,按照目前的开采水平和消耗量,石油还能够维持四十年左右,煤炭最多也就是两百年,而天然气还可以维持大概六十多年。另一方面,化石燃料的燃烧,引起严重的环境污染和对环境的危害,如温室效应、酸雨、光化学烟雾等等,对人类的生存产生了严重的威胁。 研究自然的、社会的、生态的、经济的以及利用自然资源过程中的基本关系,以确保全球的可持续发展已经成为各国都十分关注的一个话题。就像美国,在2009年提出的7870亿美元的巨额经济刺激计划中,把发展新能源定位于抢占未来发展制高点的重要战略产业,并提出在未来的三年的时间里,国内可再生能源产量要增加一倍。而我国人口众多,常规能源储备远低于世界平均水平,而且近几十年来,环境污染也是日益严峻。这使得寻找一种清洁可持续的替代能源变得更加迫切。而我国幅员辽阔,拥有极为丰富的太阳能资源,开发潜力巨大,从长远发展来看完全可以满足国家可持续发展的需求。但太阳能能量密度低、分散性强、不稳定、不连续的缺点使得我们至今仍缺乏对其高效低成本大规模利用的有效手段。但是考虑到占地表约3/4的水域和植物的光合作用,我们是不是可以利用太阳能分解水,制取氢气,而氢气又是是一种无色无臭无味无毒的清洁燃料,

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备,表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。

光催化材料的基本原理

二,光催化材料的基本原理 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,

Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9

银基光催化材料的研究进展

14 近些年来,随着可持续发展战略的推行,我国的科学技术水平也飞速提升,在国民生活质量得到全面改善的同时,环境不断恶化、资源大大短缺等问题也日益严峻。导致环境恶化的污染物主要为工业生产中排放的废渣、废气、废水等物质,它们成分大都比较复杂,基本为不同类型的有机物,若直接处理难度非常大。在实际生产过程中,如果对污染物的深度处理操作不能在短时间内完成,则必定会导致该企业的运营成本提高。如今,水资源的污染是世界各国普遍存在且急需解决的重大问题之一。许多对人体和动植物有毒害作用的污染物质很难被土壤、水体等环境自我降解去除,同时,它们在水资源和土壤等环境中存在范围很广、时间很长,对人类健康存在很大的威胁。对于这些难降解的有毒有害污物若继续沿用传统的物理、化学、生物等工艺进行处理已收效甚微,因此,为了提高污水处理效率及循环利用率,开展经济而有效的水体中难降解有机污染物控制技术的研究课题迫在眉睫。 1?光催化降解技术 光催化降解技术被认为是当前在处理工业污水、环境污物等方面最有效且最具有应用前景的一种技术。光催化降解技术与传统的降解方法不同之处在于它主要是利用太阳全光或其中的可见光来降解空气和水体中的有机污物,其降解过程绿色环保,不易产生二次污染,同时操作过程简单易懂、成本较低,因此,该处理方法被认为是在处理废水方面最有研究价值的技术之一。 2?传统光催化材料 目前应用最广泛的光催化剂是TiO 2纳米材料,其具有优秀的光稳定性和光催化活性。但TiO 2纳米材料只能受太阳光光谱中含量仅为4 %的紫外光照射,才能表现出其优异的催化活性,这严重阻碍了TiO 2纳米材料在光催化方面的实际应用[1]。因此,为了拓宽纳米材料在光催化领域的应用范围,有必要合成一些能充分利用太阳光光谱中含量为43%的可见光的新型纳米光催化剂,如WO 3,CdS,Bi 2O 3,Cu 2O 等,它们均可利用 太阳光处理环境中难以去除的有机污物。在大量的新型纳米光催化剂中,银基纳米复合材料展现出许多优异的特性,特别是在对太阳光中的可见光吸收方面,绝大部分银基纳米复合物都具有较宽的可见光的吸收范围。所以,近些年银基纳米化合物已成为可见光催化领域中的重要研究材料。 3?银基纳米光催化材料 银基催化剂,如AgSbO 3、AgVO 3、Ag 3PO 4、AgX (X=Br,I)、Ag 2CO 3、Ag 2O、AgNbO 3、AgMO 2(M=Al,Ga,In等)[2]、等均具有很强的可见光光催化活性。它们的光催化降解能力远远高于传统的可见光光催化剂,如P25,N-TiO 2等,有些甚至达到它们的20倍左右。早在2003年,叶金花教授就致力于研究AgInW 2O 8纳米化合物对有机污物的光催化降解作用[3]。在此后的近十年时间里,其课题组对AgIn 5S 8、AgMO 2(M=Al,Ga,In 等)、Ag 2ZnGeO 4、Ag 2O、β-AgAl1-xGaxO 2等一系列含银纳米材料进行了广泛而深入地研究。上述的银基多金属氧化物的价带顶均由O2p和Ag4d的电子轨道杂化形成,而导带底均由其它的金属离子和Ag5s的最外层s电子轨道或d电子轨道杂化形成,它们的带隙较窄,能够很好地吸收太阳中的可见光部分。除此之外,上述的银基多金属氧化物的空穴氧化能力很强,且价带电势位置较正,所以它们可受太阳光中的可见光的激发,高效地降解有机污染物,且其效果远远超过传统的TiO 2纳米光催化剂。到了2010年,该课题组还发表了磷酸银纳米光催化剂在可见光照射下光解水分子产生氧,同时能高效地降解RhB等有机污物,其中磷酸银纳米材料的量子效率超过90%[4]。同时,其他外国学者们也对AgSbO 3、AgGaO 2等一系列银基纳米复合物的可见光光催化性能进行了广而深地研究。在中国,国家生态环境研究中心的胡春课题组正长期研究含银纳米复合材料在可见光照射下的光催化性能。他们的研究说明了AgVO 3、AgX (X=Br,I)等银基纳米复合材料均具有很强的可见光光催化降解性能。南京大学的邹志刚教授课题组也对 银基光催化材料的研究进展 陈颖 广州工程技术职业学院 广东 广州 510075 摘要:纳米半导体材料光催化技术在处理环境污染方面具有潜在的应用研究价值,是当今环保领域的重要研究热点。银基光催化纳米材料由于其在可见光催化降解环境污物中的突出表现已逐步发展成为当今催化领域的重要课题之一。 关键词:光催化技术 银基?纳米 Research?Progress?of?Silver-based?Photocatalytic?Materials? Chen?Ying? Guangzhou Vocational College of Engineering and Technology ,Guangzhou 510075 Abstract:Semiconductor?photocatalytic?technology?has?potential?application?value?in?environmental?treatment,and?it?is?an?important?and hot?research?topic?in?the?environmental?protection?field.?Ag-based?catalytic?materials?have?wide?application?prospects?in?photoelectricity?and?catalysis?etc?due?to?their?excellent?photocatalytic?activity,promising?high?photo-response?performance. Keywords:photocatalytic?activity;Ag-based;Nano (下转第13页)

光催化氧化反应的研究进展

杨 尧(浙江大学材料与化学工程学院,浙江杭州310027) 摘要:概述了光催化氧化技术降解废水废气的原理,影响因素,提高光催化剂活性的途 径,以及光催化技术在有机合成中的应用。制备高效的催化剂,解决太阳光的利用问题,开发光催化反应器将是今后研究的重点。 关键词:光催化氧化;光催化反应器 以太阳能化学转化和储存为主要背景的半导体光催化特性的研究始于1917年,1972年Fujishima和Honda在Nature杂志发表关于TiO2电极分解水的论文标志着光催化新时代的开始。1977年Bard提出利用半导体光催化反应处理工业废水中的有害物质以后,在半导体微粒悬浮体系中进行光催化消除污染物的研究日趋活跃起来。光催化过程采用半导体材料作为光催化剂,在常温常压下进行,如果利用太阳光作光源,则可大大降低污水处理费用。更主要的是,光催化技术可将污染物降解为无毒的无机小分子物质如CO2、H2O及各种相应的无机离子而实现无害化,为治理水污染提供了一条新的、有潜力的途径。 科学技术的进步和对光催化技术广泛而深入的研究,使光催化技术得到迅速发展。除了利用半导体材料来进行光催化氧化降解废水、废气以外,也有不少研究机构利用该技术为有机合成提供了一条新途径。 1光催化氧化处理废水、废气的研究现状 1.1TiO2光催化氧化处理废水、 废气的原理1976年Garey等首先应用二氧化钛光催化降解水中的氯代联苯并取得成功。三十多年来,TiO2光催化氧化技术迅速发展,研究者已利用TiO2催化降解了水和空气中几千种不同的有毒化合物,其中包括许多难解有机化合物,如有机氯化物、农药、氯酚类、染料类以及近年来倍受人们关注的环境荷尔蒙 类物质。因此,可以说TiO2光催化技术是国内外的研究前沿和开发热点。 TiO2是一种多晶形的化合物,目前研究最多的 是锐钛矿型TiO2。它是一种N型半导体材料,它的光催化活性高,反应速率快,对有机物的降解无选择性且能使之完全矿化。它的能带结构一般由填满电子的低能价带和空的高能导带构成,它们之间由禁带分开,其禁带宽度为3.2eV,根据λg(nm)=l240/Eg(eV)可知,其激发波长为387.5nm。当吸收了波长小于或等于387.5nm的光子后,价带电子被激发,越过禁带进入导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+。在电场的作用下,电子与空穴发生分离,迁移到粒子表现的不同位置。热力学理论表明,电子具有还原性,空穴具有氧化性。吸附在 TiO2表面的氧俘获电子形成O2-,分布在表面的h+可 以将吸附在TiO2表面OH-和H2O分子氧化成?OH自由基,而?OH自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化大多数的有机污染物及部分无机污染物,并将其最终降解为CO2、H2O等无害物质。由于?OH自由基对反应物几乎无选择性,因而在光催化氧化中起着决定性的作用。 1.2影响光催化氧化的因素 以TiO2为例,TiO2的粒径小,光生电子和空穴 从TiO2体内扩散到表面的时间短,它们在TiO2体内的复合几率减小,到达表面的电子和空穴数量多,因此光催化活性高。 此外,粒径小,比表面积大,有助于氧气及被降解有机物在TiO2表面的预先吸附,则反应速率快,光催化效率必然增大。当颗粒大小为1~10nm时,出 收稿日期:2007-01-18 作者简介:杨尧(1983 ̄),男,浙江大学材料与化学工程学院化工所研究生,应用化学专业。主要从事精细有机化工产品的合成与研究。 光催化氧化反应的研究进展 文章编号:1006-4184(2007)05-0017-05

半导体光催化研究现状

半导体光催化研究现状 2016-06-01 13:52来源:内江洛伯尔材料科技有限公司作者:研发部 半导体光催化反应 石油、煤和天然气等化石燃料是当前世界使用的最主要能源。然而,化石燃料不仅是非可再生能源,不能满足人类发展的长期需求,而且其使用过程中产生废水、废气和废渣等有害物质,对环境造成极大污染。因此,寻找洁净的、可再生的新能源成为关系人类生存和可持续发展的重大课题。光催化技术不仅可以通过半导体材料直接将太阳能转化为易储存的化学能,如分解水产氢和还原二氧化碳等,而且能对环境中有机污染物实现完全矿化降解,被认为是解决能源短缺和环境污染问题最有效途径之一。 半导体光催化过程通常分为 3 个主要阶段:( 1) 光催化材料吸收大于能带隙的光子产生电子空穴对; ( 2) 光生电子空穴对发生分离,并迁移到半导体的表面; ( 3) 迁移到表面的光生电子和空穴分别与吸附物发生氧化还原反应。目前,光催化技术已经被应用到杀菌、处理污水和净化室内空气等方面,但很多光催化材料的太阳能转换效率仍然很低,无法实现大规模应用。这是由于Ti O2、Zn O 等传统光催化材料的带隙较宽 ( 3. 2e V) ,只对占太阳能很小一部分( 4% ) 的紫外光响应,而占太阳能 53% 比例的可见光和 43% 比例的近红外光却得不到有效的利用。另一原因是量子效率低,有相当大比例的光生载流子在半导体的体内或者表面发生复合,以发光和发热的形式散发掉,这部分能量没有得到有效利用。近几十年,国内外学者在拓展光催化材料的光响应范围和提高量子效率方面开展了广泛的研究,取得了巨大的进展。研究发现: 金属( 非金属) 掺杂、固溶体、染料敏化和等离子体光催化等不同的方法可以提高光催化材料的性能。然而,半导体带隙变窄的同时其氧化还原能力也下降,从而光催化性能降低。如何在保持宽光谱响应的同时实现载流子有效分离成为近些年研究的重点和热点。另外,近些年的研究主要集中在将光响应从紫外光拓展到可见光范围,很少关注近红外光响应催化。具有近红外区域光响应的光催化研究报道甚少。因此,拓展近红外光响应材料的研究同样对提高太阳能利用率具有重要意义。

光催化原理

光催化原理 光催化的原理: 1.光催化净化的基本原理是什么? (1)它是一种利用新型的复合纳米高科技功能材料的技术。 (2)它一种是低温深度反应技术,光催化剂纳米粒子在一定波长的光线照射下 受激生成电子一空穴对,空穴分解催化剂表面吸附的水产生氢氧自由基,电子使 其周围的氧还原成活性离子氧,从而具备极强的氧化一还原作用,将光催化剂表面的各种污染物摧毁。 mm 伽的w啊轴刊蛉恳Mtn抽iok甜1■自翊HI II住萨轉棉割愉沛抽齢讨堰闵鋼離曲毗n 總需旳擁. 2. 光催化净化的技术特征? (1)低温深度反应: 光催化氧化可在室温下将水、空气和土壤中有机污染物完全氧化成无毒无害的物质。而传统的高温焚烧技术则需要在极高的温度下才可将污染物摧毁,即使用常规的催化氧化方法亦需要几百度的高温。

(2)净化彻底: 它直接将空气中的有机污染物,完全氧化成无毒无害的物质,不留任何二次污染,目前广泛采用的活性炭吸附法不分解污染物,只是将污染源转移。 (3)绿色能源: 光催化可利用太阳光作为能源来活化光催化剂,驱动氧化一还原反应,而且光催 化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。(4)氧化性强: 大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(HO , H0的氧化性高 于常见的臭氧、双氧水、高锰酸钾、次氯酸等。 (5)广谱性: 光催化对从烃到羧酸的种类众多有机物都有效,美国环保署公布的九大类114 种污染物均被证实可通过光催化得到治理,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。 (6)寿命长: 理论上,催化剂的寿命是无限长的。 3. 光催化空气净化器基本净化流程

相关主题
文本预览
相关文档 最新文档