当前位置:文档之家› 基于Dynaform的覆盖件冲压成形性工艺分析

基于Dynaform的覆盖件冲压成形性工艺分析

基于Dynaform的覆盖件冲压成形性工艺分析
基于Dynaform的覆盖件冲压成形性工艺分析

机械 2008年第3期 总第35卷 机械制造技术 ·41·

———————————————

收稿日期:2007-12-24 作者简介:谢斌斌(1986-),男,浙江温岭人,硕士研究生,主要研究方向为数字化设计制造。

基于Dynaform 的覆盖件 冲压成形性工艺分析

谢斌斌,丁国富,黎荣

(西南交通大学 先进设计与制造技术研究所,四川 成都 610031)

摘要:覆盖件成形难点在于工件数模复杂,工艺性难以确定。而采用计算机数值模拟技术有效地调整工艺方案,可以获得较合理的成形结果。论文基于Dynaform 研究数值模拟技术在模具工艺设计中的应用及相关技术问题,对较为复杂的覆盖件成形进行仿真分析,通过实例进行阐述,设计出一整套完整的覆盖件模具,为模具数字化设计与制造提供了思路。 关键词:覆盖件;冲压成形;Dynaform ;数值模拟;网格划分

中图分类号:TG386 文献标识码:A 文章编号:1006-0316(2008)03-0041-04

Forming analysis for automobile covering panel based on dynaform

XIE Bin-bin ,DING Guo-fu ,LI Rong

(Institute of Advanced Designing and Manufacturing ,Southwest Jiaotong University ,Chengdu 610031,China ) Abstract :The difficulty of automobile covering panel forming is that the model surface is complex and the process is hard to determine. But it is capable to get high quality of forming panel with the help of computer using numerical simulation to adjust process. The application of numerical simulation in die designing and some key problem in Dynaform are researched in the paper ,and an example of a complex covering panel is presented. The forming of it is simulated and analyzed by using Dynaform. And then the die of the covering of panel is designed. The paper supplies an instruction of digital designing and manufacturing of dies.

Key words :automobile covering panel ;stamping forming ;dynaform ;numerical simulation ;meshing

汽车覆盖件与一般冲压件相比,具有材料薄、形状复杂、结构尺寸大、表面质量要求高、曲面多为空间曲面、配合协调高等特点。因此工艺很复杂,设计周期长。近年来,随着计算机技术的发展,越来越多的覆盖件模具设计开始采用CAD/CAM 技术,大大提高了模具设计的效率。但是在整个模具开发过程中,工艺参数的选择仍是按经验来决定的,从而在完成模具设计中需要不断的试模、修模[1]。

板料数值模拟技术及分析软件,就是对成形过程进行仿真模拟,通过对仿真模型的分析,判断工件早期制造的工艺性,及时调整修改模具结构,减少实际试模次数,缩短开发周期。另外还可择优选择材料,并对各种成形参数进行优化,提高产品质量。这样不仅弥补了应用工艺资料方面的不足,还

可通过虚拟冲压模拟,提高工艺人员的设计经验[2]。

尽管材料成型数值分析得到了研究,但在应用中还存在诸多问题,本文试图在探索模具数字化设计与制造的基础上详细研究Dynaform 在模具成型工艺设计过程中的技术问题及求解思路。

1 冲压成形的数字化设计与制造过程

模具的数字化设计制造就是通过逆向工程技术将零件模型转化为数字模型,运用三维设计软件设计模具的结构,并通过有限元分析软件对成形过程进行仿真模拟,从而改进模具结构,然后利用计算机辅助制造(CAM )在数控系统上加工模具[3]。如图1为数字化设计与制造的一般流程。

其中,点云数据的获取可以通过诸如三坐标测

·42· 机械制造技术 机械 2008年第3期 总第35卷

量机等接触式测量和非接触式测量仪获得。在这些数据在进行曲面反求前,还需要进行精简冗余数据和数据分块等预处理。然后运用反求软件(Imageware 、Surfacer 等)建立曲面模型。完成曲面反求后,运用三维设计软件(如UG 、PRO/E 、CATIA 等),初步设计工艺补充面、压边面等,并转换成IGES 格式导入DYNAFORM 中进行数值模拟。参照模拟结果确定的工艺参数设计模具结构。最后在数控系统上加工模具表面。

图1 模具数字化设计与制造过程

2 基于DYNAFORM 的数值模拟技术

冲压变形过程就是金属板料在冲压力的作用下,其应力超过屈服极限而产生塑性变形,从而获得一定形状和尺寸要求的制件。在数值模拟过程中,模具、板料等各部件模型被离散化,分为有限个单元,单元用节点连接,单元之间的作用由节点传递,并根据弹塑性及相关理论建立物理方程,通过计算机按照特定算法,求解出各单元成形后的应力及应变等状态,然后建立计算结果的仿真模型,反映板料在成形后的拉裂、起皱等现象及应力应变等情况。

在DYNAFORM 的实际应用中,计算结果的仿真模型是确定合理的工艺参数,指导模具设计的依据。因此,计算结果的准确性是数值模拟技术的首要问题。而计算结果的准确性主要是由有限元模型的准确性决定的。有限元建模过程包括选择适当的网格单元对几何模型进行离散化,以获得有限元网格模型;以合理的方式获得仿真分析中准确的材料参数、摩擦润滑参数、工艺条件和各种约束条件等,建立一个可直接用于仿真计算的完整有限元模型

[4]

。其中,有限元网格质量是决定计算效率和计算

精度的主要因素。网格单元小则结果精确, 但单元数目越多计算量越大, 浪费计算时间;网格尺寸大则计算量小,但误差较大,不能真实反映模型特征。根据模具与板料在数值模拟中的不同特点,网格划分原则分为如下两种:

(1)在冲压成型的仿真模拟过程中,由于模具变形量很小,因此模具被视为刚体。在显示算法中,这些单元都不参与运算,也不保存其历史信息。因此模具单元的大小不会影响求解运算的时间[5]。另一方面,模具表面比较复杂,曲面较多,如果网格单元尺寸过大,则网格模型无法表现模具的表面特征,造成与实际生产中的误差,如图2。因此在实际应用中,应将模具的网格尺寸设置的小一点,要充分表现零件的几何形状, 例如在模具圆角处至少要有3~5个网格单元过渡[6]。

图2 网格模型与模具圆角不匹配

(2)在成型过程中,板料要经历弹性变形和塑性变形过程,因此被视为弹塑性模型。板料单元尺寸越小,结果误差越小,使板料完全成形后对模具有理想的贴模性。然而板料网格单元是参与运算的主体,是影响数值计算时间的主要因素。由于有限元控制方程的中心差分算法解的稳定条件为:

cr t t l ?≤?= (1)

式中:ρ为材料密度;E 为材料杨氏弹性模量;Δt 为时间步长;Δt cr 为临界时间步长。由式(1)可知,板料网格尺寸增大n 倍,则临界时间步长增大n 倍,相应地计算时间缩短n 倍。而且过小的临界时间步长将导致稳定条件的不成立,使求解运算无法进行。因此在实际应用中,板料网格尺寸的大小应在满足精度要求的前提下尽量大,并尽可能采用自适应网

格划分[7]。

3 基于DYNAFORM 的数值模拟技术实例

针对DYNAFORM 成形分析,相关的模具工艺

模具

网格

参数主要有压边力、拉延筋和冲压方向。下面以一个覆盖件冲压成形的有限元仿真分析为例,如图3,研究Dynaform 在模具成型工艺设计过程中的应用过程和解题思路。

(1)分析该零件工艺性。如图3所示,零件曲面形状复杂,一小部分曲率变化较急,但零件大部分表面平坦,拉深深度较小。故此零件的拉深工艺性较好。

(2

)划分网格。网格的划分应该正确反映结构的受力和变形情况,粗细稠密选择要适当,网格划分完后,需要对网格进行检查,并对有缺陷的网格进行修补。如图4

为凹模和板料的网格模型。

图3 覆盖件的3D 模型

图4 凹模和板料的网格模型

(3)冲压方向的选择。冲压方向的选择一般根据用户的经验决定,也可以参考TIPPING 命令中的最小拉伸深度和最小过切来调节冲压方向,或者运用Auto-Tipping 命令自动调整方向。

(4)工艺参数的选择。冲压方向的选择可按照DYNAFORM 中Auto-Tipping 命令自动调整方向。先不布置拉延筋,可等第一次分析后,根据模拟结果,决定是否需要加拉延筋,拉延筋的位置和尺寸参数。压边力的设置可按照式(2)计算。

Q F Ap =

(2)

式中:A 为在压边圈下的毛坯投影面积;P 为单位压边力,MPa 。

(5)分析模型的建立。将各单元集分别定义为凹凸模、板料和压边圈。设置好模具、板料和压边圈之间的相对位置,并定义它们之间的接触类型、

参数和运动曲线,设置必要的工艺参数。板料厚度为1.5 mm 。材料选用材料库中的material type36,材质为08F 钢,其弹性模量E =2.07×105 MPa ,泊松比为μ=0.28,屈服应力σs =648 MPa ,Lankford 系数r 0=1.87,r 45=1.27,r 90=2.17,硬化指数n =0.22。压边力为F Q =A p =279348 N 。

(6)运算求解。DYNAFORM 携带的求解器 LS-DYNA 可自动进行计算,不需要用户的干预。如果发现计算过程中长时间停滞不前,则需要强制中止程序。然后,分析程序产生的相关文件,确定问题所在,重新计算。

(7)分析计算结果。计算正常结束后,生成一个d3plot 文件和dynain 文件。利用EtaPost 读取

d3plot 文件进行后处理,可以观察部件运动情况,分析拉裂和起皱的情况,检查危险部位。图5为数

值模拟结果的FLD 图。

图5 第一次模拟结果的FLD 图

如图5所示,板料成形结果质量较好,零件没

有出现破裂,但在1和2区域起皱明显。

针对模拟结果,提出如下改进方案:在压边面上布置拉延筋,调节冲压方向使零件旋转12

度,保持压边力不变,重新进行数值模拟。模拟结果的FLD 图如图6所示。

图6 第二次模拟结果的FLD 图

如图6所示,零件起皱明显减少,零件大部处于安全状态,起皱只存在零件四周,由于坯料四周要在修边工序中切除掉,并不影响覆盖件质量。

(下转第73页)

其中尺寸A 控制在0.1~0.2 mm ,B 为2.5 mm 。

2.3 调整压缩比,改良燃烧状况

压缩比是柴油机的一个重要结构参数,是柴油机燃烧容积与排量的一个比值。压缩比偏高会对轴瓦产生瞬时的撞击。对压缩比的选择,既要保证柴油机的冷起动容易,同时又避免过高的燃烧爆发力,减轻零部件所承受的机械负荷和高的摩擦损失。CG8柴油机原压缩比24.14。压缩比偏高虽然对柴油机起动较好,但由于压缩比偏高,燃烧爆发压力偏高,对连杆上瓦产生破坏加大。由于连杆与曲轴为刚件,刚度和强度很高,夹在两者中间的连杆瓦成为力的挤压对象,使连杆瓦边上呈现“龟裂”现象,所以需要加大燃烧室容积降低压缩比。以前CG8柴油机燃烧室容积为6.9 ml ,通过加工将燃烧室调整至7.8 ml ,保持压缩比为21.6。将加大燃烧室的气缸盖换上,开机后通过噪音测试对比,柴油机燃烧噪音降低了,声音比较柔和。

从连杆瓦的尺寸设计和受力分析这两个因素出发,找出了以上三个问题。通过对相关零部件的尺

寸调整:加大气缸盖燃烧室容积、增大连杆瓦尺寸过盈量、布置连杆瓦垃圾槽。与外协厂沟通后,尽快地按要求制作了零件,同时进行第二次300 h 强化试验,对比前200 h 的两次拆瓦分析,连杆瓦的磨损情况正常。

图3 轴瓦垃圾槽

3 结束语

通过对CG8柴油机连杆瓦故障的分析,主要有以下两点结论:

(1)柴油机连杆瓦作为高速运转件,在工作时承受着高温高压的环境影响。连杆瓦的过盈量以及气体传递的压力值大小对其使用产生很大的影响;

(2)CG8柴油机连杆瓦通过降低压缩比、增大过盈量以及布置垃圾槽,有效地解决了合金层疲劳的症状,保持了柴油机运转的可靠性。

(上接第43页)

通过实例表明,采用计算机数值模拟技术后,可获得比较合理的工艺参数。图7为根据数值模拟确定的工艺参数设计的覆盖件模具结构的3D 模型。

图7 模具结构的3D 模型

4 结束语

Dynaform 在模具成型工艺设计过程中的应用过程和解题思路是运用计算机模拟冲压成形过程,预测板料的变形规律。通过模拟、优化成形工艺参数,并通过再次的模拟验证使冲压成形结果满足要求。这个过程可能需要进行数次,但相对于传统的试模过程,用计算机进行仿真模拟,有效降低了设计和

制造成本,改善了车身质量,缩短了生产周期,提高了企业的市场竞争力。如今,冲压成形的数值仿真技术成为模具设计中必不可少的技术之一。

参考文献:

[1]危熠平,王健,雷君相.汽车覆盖件冲压模具仿真设计[J].模具工业,2005,(10):3-5.

[2]于汇泳,祁文军,李昌雪.有限元数值模拟技术在汽车冲压成形

中得应用[J].现代制造工程,2005(增):71-73.

[3]陆佳平,薛克敏,汪昌盛.逆向工程在汽车覆盖件设计中的应用[J].合肥工业大学学报,2006.3,29(3):278-280.

[4]林忠钦,等.车身覆盖件冲压成形仿真[M].机械工业出版社,2005:22-23.

[5]于汇泳.汽车覆盖件成形过程有限元数值模拟技术研究及应用[D].新疆大学,2006:18-21.

[6]孙杰,袁国定,等.冲压成形仿真过程中有限元网格模型的建立[J].模具工业,2003,(6):3-6.

[7]印雄飞,叶又,等.板料成形数值模拟中计算时间的控制[J].模具工业,1999,(7):11-13.

汽车冲压工艺

汽车制造的冲压工艺培训资料 培训讲师-倪慨宇2012年12月培训范围:冲压工艺、车间、工装管理员 主要内容及介绍: 1、冲压前期工作 1.1开卷--洗 2、汽车制造中的冲压工艺 2.1 冲压工艺的基本知识 2.2汽车覆盖件 2.2.1介绍 2.2.2覆盖件分类及工艺特性 2.2.3特点及要求 2.3覆盖件冲模 2.3.1拉延模 2.3.1.1工艺补充与拉延筋 2.3.1.2拉延质量及穿、冲工艺孔

2.3.2修边模 2.3.2.1修边模介绍 2.3.2.2修边模的分类 2.3.3翻边模 2.3.3.1翻遍模的介绍 2.3.3.2翻遍模的分类 2.4汽车制造冲压工艺的新发展2.4.1模块式冲压 2.4.2亚毫米冲压 2.4.3特种冲压成型技 2.4.4液压式成型技 2.4.5电磁式成型技术 2.5 A级曲面介绍

1、冲压前期工作(开卷----清洗) 第一步首先需要做的就是开卷工艺,所谓开卷就是将送到工厂中的钢板卷还原成钢板,同时对钢材进行表面的清洗并进行初步的粗裁剪。 在钢板出厂前,往往会涂有防锈油,同时运输期间外界的污染物物也会附着在钢板上,这些杂质的存在会导致车辆在喷涂和焊接上导致喷漆不均和焊点不牢,因此在冲压钢板之前需要清洗掉它们。同时清洗钢板必须使用专用的洗涤溶剂,不可用酸性或者碱性溶剂,因为酸性或碱性会给车用钢板造成损伤,影响车身的质量造成钢板腐蚀。 粗剪后的钢板就像上图一样将按照生产计划投放到各条生产线上。目前开卷工艺的生产频率可达60片/分钟,而粗剪的精度也可达到0.1mm,与一根头发丝的粗细相当。 2、汽车制造中的冲压工艺 2.1冲压工艺的基本知识 汽车制造中有60%-70%的金属零部件需经塑性加工成形,冲压加工是完成金属塑性成形的一种重要手段,它是最基本、最传统、最重要的金属加工方法之一。车身上的各种覆盖件(图片)、车内支撑件、结构加强件,还有大量的汽车零部

冲压件的工艺分析与计算

广东工业大学 华立学院 课程设计(论文) 一、课程设计(论文)的内容

1.冲压件的工艺分析与计算 1.1工艺分析 产品零件图如下所示 图1-1-1产品零件外形 1)此工件只有落料和冲孔两个工序。工件结构相对简单,有2个Φ10的孔,孔与孔,孔与边缘之间的最小C距离满足C>1.5t要求,最小壁厚为7mm,尺寸精度较低,普通冲裁完全能满足要求。 2)正方形部分清角(不带圆角R),异形凸模加工困难,且容易折断,所以应分步冲裁;正方形部分有尖叫,查表夹角部分应设计R0.4。 3)冲裁件质量是指断面状况、尺寸精度和形状误差。断面状况尽可能垂直、光洁、毛刺小,尺寸精度应该保证在图纸规定的公差范围之内,零件外形应该满足图纸要求,表面尽可能平直,即拱弯小。本产品在断面粗糙度和毛刺高度没有严格要求,所以要模具达到一定要求,冲裁件的断面质量可以保证。 4)本产品的材料为10钢(普通碳素钢,未退火),具有良好的冲压性能,适合冲裁,抗剪强度为255~333t/MPa,抗拉强度为294~432бb/MPa,屈服强度为206бs/MPa,可见产品材料性能符合冲压加工要求。 5)产品批量为大批量,很适合采用冲压加工,最后采用连续模或复合模,加上自动送料装置,会提高生产率。 经上述分析,该零件的尺寸精度能够在冲裁加工中得到保证 孔落料级进冲裁模进行加工。 1.2冲裁工艺方案的确定 止动片冲裁工艺过程包括落料、冲孔两个基本工序,可有以下三种工艺方案:方案一:先冲孔,后落料。 特点:结构简单,但需要两道工序两副模具,成本高生产效率低,难以满足大批量生产的要求。 方案二:落料—冲孔复合冲模,采用复合模生产。 特点:只需要一副模具,工件精度及生产效率都较高,工件最小壁厚为7mm,模具强度较好,但模具制造比较复杂,调整维修较麻烦。 方案三:冲孔—落料级进冲模,采用级进模生产。特点:也只需要一副模具,生产效率高,操作方便,但是制造精度不如复合模,模具制造比较复杂,调整维修较麻烦。 通过对上述三种方案的分析比较,根据本零件的设计要求以及各方案的特点,采用方案三(级进模)最合理,即选用级进模具结构。 分析得到:止动片的形状为上下对称,下端水平,采用直对排效率较高。2.2选择搭边值 排样时冲裁件之间以及冲裁件与条料侧边之间留下的工艺废料叫搭边。搭边的作用一是补偿定位误差和剪板误差,确保冲出合格零件;二是增加条料刚度,方便条料送进,提高劳动生产率;同时,搭边还可以避免冲裁时条料边缘的毛刺被拉人模具间隙,从而提高模具寿命。搭边值由上表得到,工件间1a=2mm,沿边a=2.5mm。 2.3送料步距与条料宽度 制件步距的计算公式为:S=maxD+1a 式中:maxD——条料宽度方向冲裁件的最大尺寸 1a——搭边值

dynaform冲压件分析

课程名称:材料成形过程计算机模拟 基于Dynaform的冲压瓶盖的 CAE分析 作者姓名:黄彬兵 作者学号:0801040305 专业名称:材料成型及控制工程 指导教师:苏春建 山东科技大学 二〇一一年十二月

摘要 Dynaform是由美国ETA公司开发的用于板料成形模拟的专用软件包,可以帮助模具设计人员显著减少模具开发设计时间及试模周期,不但具有良好的易用性,而且包括大量的智能化自动工具,可方便地求解各类板成形问题。它可以预测成形过程中板料的破裂、起皱、减薄、划痕、回弹,评估板料的成形性能,从而为板料成形工艺及模具设计提供帮助;可以用于工艺及模具设计涉及的复杂板成形问题;还包括板成形分析所需的与CAD软件的接口、前后处理、分析求解等所有功能。 本文简述了CAE技术在瓶盖冲压成形中的应用,通过对拉延工序进行冲压成形模拟分析,提前预知成形缺陷,并采取有效措施,进行工艺参数的调整与优化。实践证明,分析计算缩短了模具制造周期,减少了模具调试次数,节约了生产成本。 关键词:CAE技术,Dynaform,冲压成形,模具调试

1 绪论 冲压成形是塑性加工的基本方法之一,它主要用于加工板料零件,可以加工金属板料,也可以加工非金属板料。冲压加工时,板料在模具的作用下,于其内部产生使之变形的内力。当内力的作用达到一定程度时,板料毛坯或毛坯的某个部位便会产生与内力的作用性质相对应的变形,从而获得一定形状、尺寸和性能的零件。 许多金属冲压件具有外形尺寸较大,材料比较薄,型面起伏复杂,尺寸精度与表面质量要求较高,在拉伸成形过程中容易出现拉裂、起皱现象。模具调试过程中需要浪费大量的人力、物力和财力。近年来随着计算机技术的不断发展,CAE(计算机辅助工程)技术目前已经在各大模具厂广泛用于产品模拟分析、冲压板材成形过程分析。通过提前对产品可能出现的成形缺陷进行研究,预示冲压件冲压成形的可行性。根据理论上的模拟分析结果,提高产品工艺补充设计的合理性,减少模具实际调试次数,近而达到缩短模具制造周期、降低生产调试成本,提高企业生产效能,保证新产品及时投放市场。本文利用Dynaform分析软件,以瓶盖冲压成型分析为例,介绍CAE技术在金属件冲压成形的应用。 2 瓶盖的冲压工艺分析 本文采用瓶盖形状如图1所示,材料为SS304,厚度1.0mm,整体来看,具有材料较薄,外形尺寸不大,拉延深度较大,成型较困难,有可能出现破裂或起皱等缺陷,因此可先进行CAE分析,观察成型情况。 图1

冲压件工艺性分析与计算(doc 8页)

冲压件工艺性分析与计算(doc 8页)

一.冲压件工艺性分析 (1)材料分析 08F是优质沸腾钢,强度低和硬度、塑性、韧性好,易于拉伸和冲裁成形。 (2)结构分析 冲压件为外形为弧形和直边组成近似矩形的结构、有凸缘筒形浅拉深、冲三个圆孔的结构。零件上有3个孔,其中最小孔径为5.5mm,大于冲裁最小孔径d≥1.0t=1.2mm的要求。另外,孔壁与制件直壁之间的最小距离满足L=3.475 min ≥R+0.5t=1.6.的要求。所以,该零件的结构满足冲裁拉深的要求。 (3)精度分析 零件上有4个尺寸标注了公差要求,由公差表查得其公差要求都属于IT11~IT13,所以,普通冲裁可以满足零件的精度要求。 由以上分析可知,该零件可以用普通冲裁和拉深的加工方法制得。 二.冲压件工艺方案的确定 (1)冲压方案 完成此工件需要落料、拉深、冲孔三道工序。因此可以提出以下5种加工方案分: 方案一:先落料,再冲孔,后拉深。采用三套单工序模生产。 方案二:落料—拉深—冲孔复合冲压,采用复合模生产。 方案三:冲孔—拉深—落料连续冲压,采用级进模生产。 方案四:拉深—冲孔复合冲压,然后落料,采用级进模生产。 方案五:落料—拉深复合冲压,然后冲孔。采用两套模生产。 (2)各工艺方案的特点分析 方案一和方案五需要多套工序模,模具制造简单,维修方便,但生产成本较低,工件精度低,不适合大批量生产;方案二只需一副模具,冲压件的形状位置精度和尺寸精度易于保证,且生产效率高。方案三和方案四的级进模,生产效率高,但模具制造复杂,调整维修麻烦,工件精度较低; (3)工艺方案的确定

拉深尺寸计算 ,拉深基本公式为 d 0d δD D = 0p )(p Z D D δ-= 尺寸mm 0 33.030-φ,p δ=0.03 d δ=0.05,双边间隙Z=2.2t=2.64,则 d 0d δD D ==05.00 30 0p )(p Z D D δ-==003.0)64.230(-=05.0036.27 中心距尺寸计算 :零件上两孔中心距为L=mm 5.1709.009.0+ -mm (2)拉深凸、凹模圆角半径的计算 凹模圆角半径的计算:拉深凹模圆角半径的计算为 ()t d D r d -80.01= 此零件落料冲孔的周长L 为94mm ,材料厚度t 为1.2mm ,08F 钢的抗拉强度b σ取390MPa ,则零件所需拉深力为 ()()mm t d D r d 35.22.16.272.3680.080.01=?-=-= 凸模圆角半径的计算:拉深凸模圆角半径的计算为 18.01d r r p = 根据凹模圆角半径,计算凸模半径为 88.135.28.08.011=?=d r r p = 四.冲压力的计算及初选压力机 (1)落料工序冲压力的计算 冲裁力基本计算公式为τKLT F = 此零件落料的周长1L 为153mm ,材料厚度t 为 1.2mm ,08F 钢的抗剪强度τ取310MPa ,则冲裁该零件所需冲裁力为 kN 748.73990N 3102.11533.1≈=???=N F 落 模具采用弹性卸料装置和推件结构,所需卸料力X1F 和推件力T1F 为

冲压件回弹有限元仿真分析

冲压件回弹有限元仿真分析 摘要针对不锈钢件难以成形以及在冲压过程中易产生回弹,采用有限元分析软件DYNAFORM,以沈阳地铁2号线连接板为例,对模拟得到的材料厚薄图、材料回弹图进行分析,优选工艺设计。阐述了CAE技术在模具开发中的重要作用。 关键词有限元分析;冲压;DYNAFORM 0 引言 2006年大连机车引进了不锈钢城轨车体生产线,并先后承接大连快轨金州延伸线、沈阳地铁2号线、天津地铁2号线城轨地铁车辆的生产。 不锈钢相对传统碳钢城轨车有外表面无需涂装,可有效实现车辆轻量化,可有效提高车辆使用寿命等优点。虽然有以上优点,但是奥氏体不锈钢热膨胀系数是钢的1.1倍,弹性模量大,抗拉强度屈服强度大,这些特点决定了不锈钢车体从设计到制造都与碳钢车体有着很大的不同。它决不是简单的材料替换,而是一种全新的车体,因此开发周期和质量都难以控制。 在不锈钢车体中有大量的冲压件,对不锈钢车体的生产起着至关重要的作用。回弹是冲压模具设计中要考虑的重要因素之一。回弹现象主要表现为整体卸载回弹、切边回弹和局部卸载回弹,当回弹量大于允许容差时,就会影响冲压件的产品精度,从而产生缺陷产品。因此,回弹一直是影响、制约模具和产品质量的重要因素。本文以地铁车辆中的连接板为例,使用DYNAFORM软件对板材进行冲压成形模拟仿真,预测冲压所产生的回弹,为模具的设计提供前期依据。 1 DYNAFORM介绍 美国ETA公司和LSTC公司联合研发的DYNAFORM软件,是一种基于有限元方法建立,模拟仿真板料成型过程的专用软件。Dynaform软件包含BSE、DFE、Formability三个大模块,能够完成坯料形状、压边力、拉延筋、冲压速度等几乎所有冲压模具设计参数。 回弹是一种小变形过程,是在加载完成后卸载过程中产生的。但是在回弹过程中毛坯的所有点不会同时处于卸载状态中,部分点存在加载的可能。因此成型模拟的准确性会影响回弹模拟的准确性。 DYNAFORM使用混合计算方法来分析回弹变形,为避免准静态隐式积分算法中的迭代计算,成型的模拟采用动态显式积分算法。回弹时,卸载起主要作用,工件主要为弹性变形,而静态隐式算法可以得到较为准确的计算结果。所以DYNAFORM采用动态显示算法模拟成型过程,以静态隐式算法计算回弹。

汽车车身覆盖件冲压工艺

汽车覆盖件冲压工艺编制(上) 汽车覆盖件形状复杂,表面质量要求高。用最少的模具成本、最少的设备台时加工出高质量的冲压件,需要编制合理精益的工艺方案,是对工艺人员的高要求。 汽车覆盖件的特点和要求 汽车覆盖件(以下简称覆盖件)是指构成汽车车身或驾驶室、覆盖发动机和底盘的薄金属板料制成的异形体表面和内部零件。轿车的车前板和车身、载重车的车前板和驾驶室等都是由覆盖件和一般冲压件构成的。 覆盖件组装后构成了车身或驾驶室的全部外部和内部形状,它既是外观装饰性的零件,又是封闭薄壳状的受力零件。覆盖件的制造是汽车车身制造的关键环节。 一、覆盖件的分类 按功能和部位分类,可分为外部覆盖件、内部覆盖件和骨架类覆盖件三类。外部覆盖件和骨架类覆盖件的外观质量有特殊要求,内部覆盖件的形状往往更复杂。 按工艺特征分类如下: (1)对称于一个平面的覆盖件。诸如发动机罩、前围板、后围板、散热器罩和水箱罩等。这类覆盖件又可分为深度浅呈凹形弯曲形状的、深度均匀形状比较复杂的、深度相差大形状复杂的和深度深的几种。 (2)不对称的覆盖件。诸如车门的内、外板,翼子板,侧围板等。这类覆盖件又可分为深度浅度比较平坦的、深度均匀形状较复杂的和深度深的几种。 (3)可以成双冲压的覆盖件。所谓成双冲压既指左右件组成一个便于成型的封闭件,也指切开后变成两件的半封闭型的覆盖件。 (4)具有凸缘平面的覆盖件。如车门内板,其凸缘面可直接选作压料面。 (5)压弯成型的覆盖件。 以上各类覆盖件的工艺方案各有不同,模具设计结构亦有很大差别。 二、覆盖件的特点和要求 同一般冲压件相比,覆盖件具有材料薄、形状复杂、结构尺寸大和表面质量要求高等特点。覆盖件的工艺设计、冲模结构设计和冲模制造工艺都具有特殊性。因此,在实践中常把覆盖件从一般冲压件中分离出来,作为一各特殊的类别加以研究和分析。 覆盖件的特点决定了它的特殊要求。 1. 表面质量 覆盖件表面上任何微小的缺陷都会在涂漆后引起光线的漫反射而损坏外形的美观,因此覆盖

冲压工艺分析流程及要点

冲压工艺分析流程及要点 说明: 本规范为TG0数据设计指导。 该系列设计规范用于指导结构功能说明、结构布置与 尺寸控制的正向设计,尤其是在没有标杆车的状态下 的正向开发;基于本规范完成结构数据TG0版的设计 开发。 本规范是TG0版数据的设计指导。 [键入文字]

内容 一.冲压SE宏观流程 二.冲压SE流程详解 三.根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布 四.根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP点五.根据冲压方向做成型工艺补充,压边圈按要求尽量平缓过渡光顺,并将修边线展出。调整分模线平滑光顺 六.根据项目提供信息及材料进行成型工艺模拟 七.对成型模拟结果进行分析,此过程需项目负责人(冲压工艺负责人)监督完成,根据模拟结果分析要求进行反复模拟验证 八.根据结果分析要求对该产品优化,并提出相应的ECR。(ECR格式和内容待商定) 九.经项目负责人(冲压工艺负责人)确认结果分析无误后,可开始进行UG建型。并开始正式UG 数据模拟计算并分析结果 十.根据结果进行局部小修改,直到模拟结果没问题,将数型数据交给精算人员进行PAM精算。根据PAM精算结果进行局部修改,同时准备后续翻边整形的粗算及数型数据。并交给精算人员进行精算 十一.准备工艺数型,根据要求完成数型优化和层的摆放 十二.制作DL图,并优化二维图 十三. 项目负责人(冲压工艺负责人)审核完工艺数型和DL图后,可提交给项目助理整理并最终按节点交付材料 注意:红色字体为推荐值

冲压SE分析流程及要点 一.冲压SE宏观流程: 1. 接到数据在项目负责人(冲压工艺负责人)协助下分析工艺数据宏观缺陷。 2. 根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布。 3. 根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP 点,此过程根据分析结果需反复操作。 4. 根据冲压方向做成型工艺补充,压边圈按要求尽量平缓过渡光顺,并将修边线展出。调整分 模线平滑光顺。 5. 根据项目提供信息及材料进行成型工艺模拟。 6. 对成型模拟结果进行分析,此过程需项目负责人(冲压工艺负责人)监督完成,根据模拟结 果分析要求进行反复模拟验证。 7. 根据结果分析要求对该产品优化,并提出相应的ECR。 8. 经项目负责人(冲压工艺负责人)确认结果分析无误后,可开始进行建型。并开始正式数据 模拟计算并分析结果。 9. 根据结果进行局部小修改,直到模拟结果没问题,将数型数据交给精算人员进行PAM精算。 根据PAM精算结果进行局部修改,同时准备后续翻边整形的粗算及数型数据。并交给精算人员进行精算。 10. 准备工艺数型,根据要求完成数型优化和层的摆放。 11. 制作DL图,并优化二维图。 12. 项目负责人(冲压工艺负责人)审核完工艺数型和DL图后,可提交给项目助理整理并最终按 节点交付材料。 二.冲压SE流程详解: A. 接到数据在项目负责人(冲压工艺负责人)协助下分析工艺数据宏观缺陷。 在接受到客户输入的数据后,项目负责人(冲压工艺负责人)会做一次全面的工艺审查并分序,包括工艺数据各个方面的宏观缺陷,之后将按人力和资源将任务分配到个人。当个人接到数据后,将数据打开开始通过观察和经验进行分析该数据的宏观缺陷。宏观缺陷主要包括: ①.数据有无造型缺陷。如缺面,多面,残面,未倒角,等其他面品缺陷。 ②.数据有无拉延缺陷。如负角,拔模角度小,圆角过小(简算最小R≥3t),尖点,三面包 角等成型缺陷。 ③.数据有无修边冲孔缺陷。如孔离边缘太近(小于3mm),立修角度小,立壁缺口,三面包 角无缺口,模具强度弱,缺口距离小于4mm等缺陷。 ④.数据有无后序成型缺陷。如翻边有负角,翻边后拐角无缺口,翻边干涉,翻边后有无冲孔 等缺陷。 以上所有宏观缺陷基本由项目负责人(冲压工艺负责人)在全面工艺审查时已经提出,个人接到数据后在协助检查一下,务必做到问题提前发现,提前预防,在第一次ECR就将问题大部分消灭。 三.根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布。 在做完宏观缺陷分析后,就可以根据工艺评审表对该数据的分序进行理解,弄清楚该产品是按拉延还是按压型做,以及后序的排布,明白后序分模线在什么地方,拉延或者压型该从什么地方开始做工艺补充。并确定是否对件。 四.根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP点,

塑件成型工艺性分析3

一、塑件成型工艺性分析 1、塑件的分析 (1)外形尺寸该塑件壁厚为3mm,塑件外形尺寸不大,塑件熔体流程不太长,适合于注射成型。 (2)精度等级每个尺寸的公差都不一样,有的属于一般精度,有的属于高精度,就按实际公差进行计算。 (3)脱模斜度 ABS属无定形塑料,成型收缩率较小,选择该塑件上型芯和凹模的统一脱模斜度为1度。 2、ABS的性能分析 (1)使用性能综合性能好,冲击强度、力学强度较高,尺寸稳定,耐化学性,电气性能好;易于成型和机械加工,其表面可镀铬,适合制作一般机械零件、减摩零件、传动零件和结构零件。 (2)成型性能 1)无定型塑料。其品种很多,各品种的机电性能及成型特性也各有差异,应按品种来确定成型方法及成型条件。 2)吸湿性强。含水量应小于0.3%(质量)。必须充分干燥,要求表面光泽的塑件应要求长时间预热干燥。 3)流动性中等。溢边料0.04mm左右。 4)模具设计时要注意浇注系统,选择好进料口位置、形式。推出力过大或机械加工时塑件表面呈白色痕迹。 (3)ABS的主要性能指标其性能指标见下表

ABS 性能指标 密度/g ·3cm 1.02~1.08 屈服强度/MPa 50 比体积/13-?g cm 0.86~0.96 拉伸强度/MPa 38 吸水率(%) 0.2~0.4 拉伸弹性模量/MPa 1.4×310 熔点/C ο 130~160 抗弯强度/MPa 80 计算收缩率(%) 0.4~0.7 抗压强度/MPa 53 比热熔/1)(-??C kg J ο 1470 弯曲弹性模量/MPa 1.4310? 3、ABS 的注射成型过程及工艺参数 (1)注射成型过程 1)成型前的准备。对ABS 的色泽、粒度和均匀度等进行检验,由于ABS 吸水性较大,成型前应进行充分的干燥。 2)注射过程。塑件在注射机料和筒内经过加热、塑化达到流动状态后,由模具的浇注系统进入模具型腔成型,其过程可分为充模、压实、保压、倒流和冷却五个阶段。 3)塑件的后处理。的介质为空气和水,处理温度为60~75C ?,理时间为16~20s 。 (2)注射工艺参数 1)注射机:螺杆式,螺杆转数为30r/min 2)料筒温度(C O ):后段150~170; 中段160~180;

DYNAFORM在冲压成形中的应用研究

DYNAFORM在冲压成形中的应用研究 作者:中航工业南方航空动力公司皮克松郑南松 在模具设计初期,进行冲压件可成形性研究和设计改进,预测并解决在板材成形加工中可能遇到的质量问题是钣金成形制造业界的热门话题。作为虚拟制造技术之一的冲压成型数值模拟技术的日渐成熟以及它在新产品开发和模具设计中日益广泛的应用,为实现新的钣金制品和相应冲压模的设计提供了途径。本文以典型冲压成形件为例,阐述了DYNAFORM数值模拟技术具体的应用研究,并提出和解答了DYNAFORM使用中的常见技术问题。 冲压数值模拟软件系统 板材成形有限元分析技术起源于20世纪70年代初期,在近20年内得到了迅速发展。其高效的计算功能使它的应用范围不断扩大,目前已用于分析复杂三维板材成形的过程,包括成形缺陷分析,如破裂、起皱和回弹等。这一技术既可应用于模具设计阶段,也可应用于分析和解决实际生产中出现的产品质量问题。有限元模拟技术涉及到数值方法、力学、材料科学、计算机技术以及塑性加工技术等多门学科,是当今比较前沿的研究领域之一。 国外开发的板料成形模拟商品软件已经达到了工程实用的阶段,也获得越来越广泛的应用,并收到了很大的经济效益。国内外知名的飞机、航空制造厂家在虚拟制造领域已经有了多年的应用历史,也从冲压成形数值模拟技术中获得了丰厚的经济回报。我国近几年来在湖南大学、南昌航空大学、北京航空航天大学等一些院校及一汽集团、海尔集团等企业中也进行了这方面的应用研究。目前,已经达到实用阶段的数值模拟软件有法国的OPTRIS软件和美国ANSYS公司代理的eta/DYNAFORM软件,另外还有欧洲著名软件公司Quantech ATZ公司的Stempacka软件。以上3种软件都是专业的钣金成形数值模拟软件,是真正的面向工程实际的钣金成形仿真系统,具有功能强大、操作流程自动化、界面友好的特点。 为填补我国航空制造业在此方面的空白,我公司引进了eta/DYNAFORM软件,并开展了冲压成形模拟技术应用开发工作。 DYNAFORM数值模拟分析系统 DYNAFORM软件是由ETA公司研制的基于LS-DYNA的钣金冲压分析软件,它把LS-DYNA、LS-NIKE3D强大的分析能力与eta/FEMB 的流程化前后处理功能结合起来。eta/DYNAFORM分析的求解器是LS-DYNA和LS-NIKE3D,这两个程序是通用的、非线性的、动态的有限元分析程序,利用显式和隐式计算方法来解决结构及流体等问题,已经成功地应用于钣金成形的数值模拟。 DYNAFORM的主要功能包括分析拉伸、成形、弯曲、翻边、切边等板料成形过程中的不同工序,也可以进行多步成形(或多工序加工)分析。通过用户已定义好的冲压工艺及模具曲面形状来预测成形状态,其中包括减薄拉裂、起皱、回弹等各种问题;同时可以对成形力、压边力、拉伸筋、模具磨损等各种工艺问题进行分析,以便优化工艺和模具设计。DYNAFORM的核心技术包括以下几个方面:(1)动力显式积分算法;(2)板壳有限元理论的研究;(3)本构理论和屈服准则(材料模型);(4)接触判断算法和网格细化自适应技

冲压工艺过程设计的内容及步骤

第二章冲压件工艺过程设计的内容及步骤 不论冲压件的几何形状和尺寸大小如何,其生产过程一般都是从原材料剪切下料开始,经过各种冲压工序和其他必要的辅助工序(如退火,酸洗,表面处理等)加工出图纸所要求的零件。对于某些组合冲压件或精度要求较高的冲压件,还需要经过切削,焊接或铆接等加工,才能完成。冲压件工艺过程的制定和模具设计是冷冲压课程设计的主要内容。进行冲压设计就是根据已有的生产条件,综合考虑影响生产过程顺利进行的各方面因素,合理安排零件的生产工序,最优地选用,确定各工艺参数的大小和变化范围,设计模具,选用设备等,以使零件的整个生产过程达到优质,高产,低耗,安全的目的。 2.1 工艺过程设计的基本内容 冲压工艺规程是模具设计的依据,而良好的模具结构设计,又是实现工艺过程的可靠保证,若冲压工艺有改动,往往会造成模具的返工,甚至报废。冲制同样的零件,通常可以采用几种不同方法。工艺过程设计的中心就是依据技术上先进,经济上合理,生产上高效,使用上安全可靠的原则,使零件的生产在保证符合零件的各项技术要求的前提下,达到最佳的技术效果和经济效益。 冲压件工艺过程设计的主要内容和步骤是: 一. 分析零件图(冲压件图) 产品零件图是分析和制定冲压工艺方案的重要依据,设计冲压工艺过程要从分析产品的零件图人手。分析零件图包括技术和经济两个方面: 1. 冲压加工的经济性分析 冲压加工方法是一种先进的工艺方法,因其生产率高,材料利用率高,操作简单等一系列优点而广泛使用。由于模具费用高,生产批量的大小对冲压加工的经济性起着决定性作用,批量越大,冲压加工的单件成本就越低,批量小时,冲压加工的优越性就不明显,这时采用其他方法制作该零件可能有更好的经济效果。例如在零件上加工孔,批量小时采用钻孔比冲孔要经济;有些旋转体零件,采用旋压比拉深会有更好的经济效果。所以,要根据冲压件的生产纲领,分析产品成本,阐明采用冲压生产可以取得的经济效益。 2. 冲压件的工艺性分析 冲压件的工艺性是指该零件在冲压加工中的难易程度。在技术方面,主要分析该零件的形状特点,尺寸大小,精度要求和材料性能等因素是否符合冲压工艺的要求。良好的工艺性应保证材料消

Dynaform软件的板料冲压成形操作指引

Dynaform 软件的板料冲压成形操作指引 1 常用仿真术语定义: 冲压成形:用模具和冲压设备使板材产生塑性变形获得形状、尺寸、性能合乎要求的冲压件的加工方法。多在室温下进行。其效率高,精度高,材料利用率也高,可自动化加工。 冲压成形工序与工艺: 剪切:将板材剪切成条料、块料或具有一定形状的毛坯的加工工序称为剪切。分平剪、斜剪和震动剪。 冲裁:借助模具使板材分离的工艺。分为落料和冲孔。 落料--从板料上冲下所需形状尺寸坯料或零件的工序; 冲孔-- 在工件上冲出所需形状孔的工序。 弯曲:在弯曲力矩作用下,使平板毛坯、型材、管材等产生一定曲率和角度,形成一定形状冲压件的方法。 拉深:冲裁得到的平板毛坯成形成开口空心零件的冲压加工方法。 拉伸参数: ? 拉深系数m :拉深零件的平均直径 d 与拉深前毛坯 D 之比值m, m = d/D ; ? 拉深程度或拉深比:拉深系数 m 的倒数 1/m ; ? 极限拉深系数:毛坯直径 D 确定下,能拉深的零件最小直径 d 与D 之比。 胀形:指将材料不向变形区转移,只在变形区内产生径向和切向拉深变形的冲压成形方法。 翻边:在毛坯的平面或曲面部分的边缘,沿一定曲线翻起竖立直边的成形方法。 板材冲压成形性能评价指标:硬化指数n 、厚度方向系数γ、成形极限图。 成形极限:是指冲压加工过程中所能达到的最大变形程度。 2 Dynaform 仿真分析目的及流程 ETA/DYNAFORM 5.7是由美国工程技术联合公司(ENGINEERING TECHNOLOGY ASSOCIALTES, INC.)开发的一个基于LS-DYNA 的板料成形模拟软件包。作为一款专业的CAE 软件,ETA/DYNAFORM 综合了LS-DYNA 强大的板料成形分析功能以及强大的流线型前后处理功能。它主要应用于板料成形工业中模具的设计和开发,可以帮助模具设计人员显著减少模具开发设计时间和试模周期。基于Dynaform 软件的仿真结果,可以预测板料冲压成形中出现的各种问题,如破裂、起皱、回弹、翘曲、板料流动不均匀等缺陷,分析如何及时发现问题,并提供解决方案。Dynaform 仿真分析分析的步骤和流程如下图: 冲压成形 分离工序 剪切 冲裁 修边 成形工序 弯曲 拉深 胀形 翻边

ABS塑料特性、成型工艺、用途

ABS塑料特性、成型工艺、用途 ABS 丙烯腈-丁二烯-苯乙烯共聚物化学和物理特性ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。 ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。 ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。 注塑模工艺条件 干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件为80~90C下最少干燥2小时。材料温度应保证小于0.1%。 熔化温度:210~280C;建议温度:245C。模具温度:25…70C。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。 注射压力:500~1000bar。 注射速度:中高速度。典型用途汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等。 PA12 聚酰胺12或尼龙12 典型应用范围: 水量表和其他商业设备,电缆套,机械凸轮,滑动机构以及轴承等。 注塑模工艺条件: 干燥处理:加工之前应保证湿度在0.1%以下。如果材料是暴露在空气中储存,建议要在 85C热空气中干燥4~5小时。如果材料是在密闭容器中储存,那么经过3小时温度平衡即可 直接使用。 熔化温度:240~300C;对于普通特性材料不要超过310C,对于有阻燃特性材料不要超过270C。模具温度:对于未增强型材料为30~40C,对于薄壁或大面积元件为80~90C,对于增强型材料为

基于Dynaform的覆盖件冲压成形性工艺分析

机械 2008年第3期 总第35卷 机械制造技术 ·41· ——————————————— 收稿日期:2007-12-24 作者简介:谢斌斌(1986-),男,浙江温岭人,硕士研究生,主要研究方向为数字化设计制造。 基于Dynaform 的覆盖件 冲压成形性工艺分析 谢斌斌,丁国富,黎荣 (西南交通大学 先进设计与制造技术研究所,四川 成都 610031) 摘要:覆盖件成形难点在于工件数模复杂,工艺性难以确定。而采用计算机数值模拟技术有效地调整工艺方案,可以获得较合理的成形结果。论文基于Dynaform 研究数值模拟技术在模具工艺设计中的应用及相关技术问题,对较为复杂的覆盖件成形进行仿真分析,通过实例进行阐述,设计出一整套完整的覆盖件模具,为模具数字化设计与制造提供了思路。 关键词:覆盖件;冲压成形;Dynaform ;数值模拟;网格划分 中图分类号:TG386 文献标识码:A 文章编号:1006-0316(2008)03-0041-04 Forming analysis for automobile covering panel based on dynaform XIE Bin-bin ,DING Guo-fu ,LI Rong (Institute of Advanced Designing and Manufacturing ,Southwest Jiaotong University ,Chengdu 610031,China ) Abstract :The difficulty of automobile covering panel forming is that the model surface is complex and the process is hard to determine. But it is capable to get high quality of forming panel with the help of computer using numerical simulation to adjust process. The application of numerical simulation in die designing and some key problem in Dynaform are researched in the paper ,and an example of a complex covering panel is presented. The forming of it is simulated and analyzed by using Dynaform. And then the die of the covering of panel is designed. The paper supplies an instruction of digital designing and manufacturing of dies. Key words :automobile covering panel ;stamping forming ;dynaform ;numerical simulation ;meshing 汽车覆盖件与一般冲压件相比,具有材料薄、形状复杂、结构尺寸大、表面质量要求高、曲面多为空间曲面、配合协调高等特点。因此工艺很复杂,设计周期长。近年来,随着计算机技术的发展,越来越多的覆盖件模具设计开始采用CAD/CAM 技术,大大提高了模具设计的效率。但是在整个模具开发过程中,工艺参数的选择仍是按经验来决定的,从而在完成模具设计中需要不断的试模、修模[1]。 板料数值模拟技术及分析软件,就是对成形过程进行仿真模拟,通过对仿真模型的分析,判断工件早期制造的工艺性,及时调整修改模具结构,减少实际试模次数,缩短开发周期。另外还可择优选择材料,并对各种成形参数进行优化,提高产品质量。这样不仅弥补了应用工艺资料方面的不足,还 可通过虚拟冲压模拟,提高工艺人员的设计经验[2]。 尽管材料成型数值分析得到了研究,但在应用中还存在诸多问题,本文试图在探索模具数字化设计与制造的基础上详细研究Dynaform 在模具成型工艺设计过程中的技术问题及求解思路。 1 冲压成形的数字化设计与制造过程 模具的数字化设计制造就是通过逆向工程技术将零件模型转化为数字模型,运用三维设计软件设计模具的结构,并通过有限元分析软件对成形过程进行仿真模拟,从而改进模具结构,然后利用计算机辅助制造(CAM )在数控系统上加工模具[3]。如图1为数字化设计与制造的一般流程。 其中,点云数据的获取可以通过诸如三坐标测

汽车覆盖件冲压工艺的设计说明

第八章汽车覆盖件冲压工艺设计 1.汽车覆盖件的特点 (3) 2.汽车覆盖件冲压工艺设计 (3) 2.1汽车覆盖件冲压工艺设计容 (3) 2.2拉延工艺设计 (9) 2.2.1拉延冲压方向的确定 (9) 2.2.2拉延工艺补充、压料面、及凸模轮廓线的设计 (9) 2.2.3拉延筋的应用及设计 (12) 2.2.4拉延毛坯形状及展开 (18) 2.2.5 DL图的容及设计 (20) 2.3修边冲孔工艺设计 (23) 2.3.1 修边冲孔冲压方向的确定 (23) 2.3.2修边冲孔工艺方案的设计 (26) 2.4翻边工艺设计 (40) 2.4.1翻边冲压方向的确定 (40) 2.4.2翻边工艺方案的设计 (40) 2.5整形工艺设计 (46) 2.6回弹分析及校正工艺设计 (47) 2.6.1回弹的分类及产生原因 (47) 2.6.2常见的回弹及其对策 (47) 2.7特殊材料的汽车覆盖件冲压工艺设计 (50) 2.7.1拼焊板的冲压工艺设计 (50)

2.7.2复合板的冲压工艺设计 (53) 2.7.2 铝合金板的冲压工艺设计 (54) 3.汽车覆盖件典型零件冲压工艺分析及方案 (56) 3.1 顶盖的冲压工艺分析及方案 (56) 3.2 后围外板的冲压工艺分析及方案 (56) 3.3 车门外板的冲压工艺分析及方案 (57) 3.4长头车前围外板的冲压工艺分析及方案 (57) 3.5油底壳的冲压工艺分析及方案 (58)

1.汽车覆盖件的特点 (容见原书) 2.汽车覆盖件冲压工艺设计 2.1汽车覆盖件冲压工艺设计容 随着人们对汽车覆盖件冲压工艺设计重要性认识的加深,覆盖件冲压工艺的设计容已经不再局限于简单的工艺排序及拉延补充,而是深入到模具设计、模具制造、乃至模具及冲压件检查等各个方面。目前,汽车覆盖件冲压工艺设计的容主要包括: 1.确定基准点及与冲模中心的关系 所谓基准点是指基于汽车产品坐标系,位于汽车覆盖件表面或接近汽车覆盖件表面,用于反映汽车覆盖件在模具中的位置关系的一个空间坐标点。 基准点的设定需注意: ①基准点应尽量取在汽车覆盖件的坐标交点上,其坐标值最好是 整数。 ②如将基准点放在汽车覆盖件表面,则要尽量放在平滑的表面 上。 ③标记方法: 按汽车覆盖件相对与冲压方向的旋转情况分为以下三种情况: ⑴汽车覆盖件相对与冲压方向无旋转

冲压件工艺性分析讲解

一、止动件冲压件工艺性分析 1、零件材料:为Q235-A 钢,具有冲裁; 2、零件结构良好的冲压性能,适合:相对简单,有2个φ20mm 的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为14mm (φ20mm 的孔与边框之间的壁厚) 3、零件精度:全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。 查表得各零件尺寸公差为: 外形尺寸:0 1130-、062.048-、074.060-、03.04-R 、074.060-R 内型尺寸:052.0020+ 孔中心距:60±0.37 二、冲压工艺方案的确定 完成该零件的冲压加工所需要的冲压基本性质的工序只有落料、冲孔两道工序。从工序可能的集中与分散、工序间的组合可能来看,该零件的冲压可以有以下几种方案。 方案一:落料-冲孔复合冲压。采用复合模生产。 方案二:冲孔-落料级进冲压。采用级进模生产。 方案一只需一副模具,工件的精度及生产效率都较高,工件最小壁厚14mm 大于凸凹模许用最小壁厚3.6mm--4.0mm ,模具强度好,制造难度中等,并且冲压后成品件可通过卸料板卸下,清理方便,操作简单。

方案二也只需一副模具,生产效率高,操作方便,工件精度也能满足要求,但是模具结构复杂,制造加工,模具成本较高。 结论:采用方案一为佳 三、模具总体设计 (1)模具类型的选择 由冲压工艺分析可知,采用复合模冲压,所以模具类型为复合模。(2)定位方式的选择 因为该模具采用的是条料,控制条料的送进方向采用导料板,无侧压装置。控制条料的送进步距采用挡料销定距。而第一件的冲压位置因为条料长度有一定余量,可以靠操作工目测来定。 (3)卸料、出件方式的选择 因为工件料厚为1.5mm,相对较薄,卸料力也比较小,故可采用弹性卸料。又因为是倒装式复合模生产,所以采用上出件比较便于操作与提高生产效率。 (4)导向方式的选择 为了提高模具寿命和工件质量,方便安装调整,该倒装式模采用导柱导向方式。 四、排样方案确定及材料利用率 (1)排样方式的确定及其计算 设计倒装式复合模,首先要设计条料排样图,采用直排。 方案一:搭边值取2mm和3mm(P33表2-9),条料宽度为135mm

塑料成型的工艺性分析

一、塑料成型的工艺性分析 该塑件是外壳产品,其零件图如下图所示。本塑件的材料采用聚氯乙烯PVC, 1.1.1塑件的原材料分析 P50 塑件注射成型工艺参数的确定: 根据该塑件的结构特点和得成型性能,查相关手册得到ABS塑件的成型工艺参数: 塑件的注射成型工艺参数

二.分型面位置的确定 根据塑件结构形式分型面应选在I上,如下图: 三.确定型腔数量和排列方式 1.该塑件精度要求不高,批量大,可以采用一模多腔,考虑到模具的制造费用和设备的运转费用,定为一模两腔。 四.模具结构形式的确定 从上面的分析中可知本模具采用一模两腔,直排,推干推出,流道采用平衡式,浇口采用侧浇口,动模部分需要一块型芯,固定板,支撑板。 五.注射机型号的选定 1.通过测量,塑件的质量为6.5gPVC的密度为1.4g/cm3 V= 草稿本上 4、注射机有关参数的校核 型腔数校核合格。 式中,K—-注塑机最大注射量的利用系数一般取0.8

m—注射机的额定塑化量(10.5g/s) T—成型周期取30s 3、开模行程校核 开模行程是指从模具中取出塑料所需要的最小开合距离,用H表示,它必须小于注射机移动模板的最大行程S。所需开模行程为:六.浇注系统的设计 6.1 主流道设计 1)主流道尺寸设计 根据所选注射机,则主流道小端尺寸为 d=注射机喷嘴尺寸+1 =5 2)主流道球面半径为 SR=喷嘴球面半径+(1-2)=13mm 3)球面配合高度 h=3mm-5mm,取h=4mm 4)主流道长度,尽量小于60,由标准模架结合该模具的结构,取L=20+20=40mm 5)主流道大端直径 D=d+2Ltana=8.5mm(半锥角a为,取a= )取D=10mm 6.2 主流道衬套的形式 主流道小端入口处与注射机喷嘴反复接触属易损性,对材料要求严格,因而模具主流道部分常设计可拆卸更换的主流道衬套形式即浇口

基于Dynaform软件的板料冲压成形仿真操作指引

基于Dynaform 软件的板料冲压成形仿真操作指引 1 常用仿真术语定义: 冲压成形:用模具和冲压设备使板材产生塑性变形获得形状、尺寸、性能合乎要求的冲压件的加工方法。多在室温下进行。其效率高,精度高,材料利用率也高,可自动化加工。 冲压成形工序与工艺: 剪切:将板材剪切成条料、块料或具有一定形状的毛坯的加工工序称为剪切。分平剪、斜剪和震动剪。 冲裁:借助模具使板材分离的工艺。分为落料和冲孔。 落料--从板料上冲下所需形状尺寸坯料或零件的工序; 冲孔-- 在工件上冲出所需形状孔的工序。 弯曲:在弯曲力矩作用下,使平板毛坯、型材、管材等产生一定曲率和角度,形成一定形状冲压件的方法。 拉深:冲裁得到的平板毛坯成形成开口空心零件的冲压加工方法。 拉伸参数: ? 拉深系数m :拉深零件的平均直径 d 与拉深前毛坯 D 之比值m, m = d/D ; ? 拉深程度或拉深比:拉深系数 m 的倒数 1/m ; ? 极限拉深系数:毛坯直径 D 确定下,能拉深的零件最小直径 d 与D 之比。 胀形:指将材料不向变形区转移,只在变形区内产生径向和切向拉深变形的冲压成形方法。 翻边:在毛坯的平面或曲面部分的边缘,沿一定曲线翻起竖立直边的成形方法。 板材冲压成形性能评价指标:硬化指数n 、厚度方向系数γ、成形极限图。 成形极限:是指冲压加工过程中所能达到的最大变形程度。 2 Dynaform 仿真分析目的及流程 ETA/DYNAFORM 5.7是由美国工程技术联合公司(ENGINEERING TECHNOLOGY ASSOCIALTES, INC.)开发的一个基于LS-DYNA 的板料成形模拟软件包。作为一款专业的CAE 软件,ETA/DYNAFORM 综合了LS-DYNA 强大的板料成形分析功能以及强大的流线型前后处理功能。它主要应用于板料成形工业中模具的设计和开发,可以帮助模具设计人员显著减少模具开发设计时间和试模周期。基于Dynaform 软件的仿真结果,可以预测板料冲压成形中出现的各种问题,如破裂、起皱、回弹、翘曲、板料流动不均匀等缺陷,分析如何及时发现问题,并提供解决方案。Dynaform 仿真分析分析的步骤和流程如下图: 冲压成形 分离工序 剪切 冲裁 修边 成形工序 弯曲 拉深 胀形 翻边

相关主题
文本预览
相关文档 最新文档