当前位置:文档之家› 经济数学模型与案例分析

经济数学模型与案例分析

经济数学模型与案例分析
经济数学模型与案例分析

经济数学模型与案例分析

摘要:经济学与数学是两个有着密切联系的学科,经济学中很多经济现象与经济理论都需要数学只是来解释。微积分作为数学知识的基础,是学习经济学的必备知识。微积分在经济领域的应用,最主要的是研究相关的函数关系。这其中最为重要的就是边际分析与弹性分析。

关键词:导数;积分;函数;弹性;边际

Abstract:There is a very close relationship betweeneconomics and mathematics. Many phenomena and theories in economics can be explained by mathematical ideal.Calculus is a necessary subject when weemulate the knowledge of economics for it is the foundation of mathematics.We will mainly research some functions in this area, therefore we must understand some common functions about it. The most important is marginal analysis and elasticity analysis.

Key words: derivative; integration; function; elasticity; margin

一.数学与经济学的关系

随着经济学发展以及研究的深化,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分析,不能保证对所研究问题前提的规范性和严密性,也不能保证其研究结论的准确性。现代经济学中,几乎每个领域或多或少都会用到数学、数理统计和计量经济学方面的知识,如果不了解相关的数学知识,就很难理解经济概念的内涵,也就无法对相关经济问题进行讨论,更谈不上做自己的研究。理解概念是学习一门学科、分析某一具体问题的重要前提。

数学方法为经济学理论的突破提供了科学的方法论,为经济学研究提供了有力的工具。数学方法是经济学分析的有力工具之一,在经济学的理论更新中起着不可低估的作用。从古典经济学的代数式的简单运算、数理经济学中的高深数学的大量运用、计量经济学的数学方法的借鉴到现代数学与现代经济理论学的有机结合,无不体现了数学方法作为工具与方法论,并成为经济理论更新的不可缺少的工具。数学方法为经济学理论的突破提供了方法论的指导,使用数学方法能得出用语言文字无法得到证明的经济学理论。

数学方法的运用大大拓展和加深了经济学科,使经济学的推理和分析过程更加严谨。数学的特点之一就是应用的广泛性。正如数学家华罗庚所说:“宇宙之大、粒子之微、火箭之速、画工之巧、地球之变、生物之秘、日用之繁无不涉及到数学。”数学在经济学的应用使新的学科不断出现,产生了数理经济学、经济计量学、福利经济学、博弈论等经济学科;系统论和经济学结合产生了经济系统分析;控制论和经济学结合产生了经济控制论。因此,数学方法的运用大大拓展了经济学科。另一方面,数学表达具有文字性表述所不具备的确定性和精确性,数学推导具有数理逻辑性,运用数学模型结合经济模型来研究经济问题,可以使经济学的推理和分析过程更加严谨。

数学方法用于经济学质的分析。数学方法不仅能对经济关系和经济现象的数量方面进行分析,而且还能对经济现象进行质的分析。任何事物都是质和量的统一体,经济现象也不例外。运用数学方法对事物的质进行研究,主要是在定性分析的基础上,考察对象从量到质的转化,从而加深对质的认识。

二.边际函数

设函数y=f(x)可导,则称函数的导数f’(x)为边际函数。同时,定义Mf(x)=f(x+1)-f (x)

F(X)可导,F(X)在点X=a处的的导数称为F(X)在点X=a处的变化率,也称为F(X)在这点的边际函数值,它表示F(X)在点X=a处的变化速度。

在点X=a处,X从a改变一个单位,Y相应改变真值应为ΔY|(X=a\ΔX=1),但当X改变的单位很小时,或X的一个单位与a值相对来说很小时,则有

ΔY|(X=a\ΔX=1)~ dY|(X=a\dX=1) = F'(X)dX|(X=a\dX=1) =F'(a)

这说明F(X)在点X=a处,当X产生一个单位的改变时,Y近似改变F'(a)个单位。在应用问题中解释边际函数值的具体意义时我们略去“近似”二字。

类似地,我们可以定义边际成本、边际收益、边际利润、边际产量、边际需求等边际函数的概念。

案例:

从上图中,我们可以看到边际成本与平均总成本、平均可变成本以及平均固定成本的图像及其关系。

三.弹性函数

设函数y=f(x),当自变量的改变量为Δx时,其函数的改变量为Δy,Δx/x和Δy/y分别称为自变量的相对改变量和函数的相对改变量,函数的相对改变量与其自变量的相对改变量之比Δy/y/Δx/x,称为函数f(x)从x到x+Δx两点间的弹性。若函数f(x)可导,则称F’*x/f(x)为函数f(x)在x处的弹性,记为EY/E/x,并称其为f(x)的弹性函数。它反映函数f(x)随自变量x变化而变化的幅度大小,即反映f(x)对自变量x变化的灵敏度。

案例

需求弹性的经济意义:设需求函数Q=Q(p),则弹性

当价格为p时,若价格改变1%时,则需求改变Ed%。根据其大小,对需求弹性分类如下:当Ed<1时,称为缺乏弹性。

当Ed>1时,称为富有弹性。

当Ed=1时,称为单位弹性需求。

四.总结

以上,我们对数学尤其是微积分与经济学的关系有了初步的了解,我们从中可以看出:数学方法的运用有助于提高经济理论的实用性以及经济政策的科学性。数学的逻辑性和严密性使经济学的结论具有明确性,比如,只需一个简单的公式即能直观地表述出各种经济因素之间的关系,可以分析各经济变量之间的数量关系,为经济政策的制定提供可操作的依据。

因此,微积分对现代经济学有着重要的作用和推动力。

参考文献:

【1】张良云主编《高等数学》2014.8

【2】高鸿业主编《西方经济学》(微观部分第六版)2014.7

【3】赵树源主编《经济应用数学基础1:微积分》(第三版)2012.10 【4】百度百科:弹性、边际词条

生活中的数学模型案例

生活中的数学模型案例 吉林省松原市宁江区第五中学 二年三班许立伟 指导教师:李光辉

生活中的数学模型案例 吉林省松原市宁江区第五中学许立伟 生活与数学是分不开的,在很多领域中人们总在用不同的数学模型来描述、刻画某些生活现象或规律。其实数学和数学模型离我们很近,它是和语言一样具有国际通用性的一种工具,无论你从事什么职业。都不同程度地会用到数学知识与技能以及数学模型的思考方法。本文是我对日常生活中一般数学模型的了解,并运用数学模型来分析和解决生活中常见的几个实际问题。 案例一三角形具有稳定性 通过课本的学习我知道三角形具有稳定性,有着稳固、坚定、耐压的特点。原因是一旦三角形的三个边长确定了,三角形就确定了,各个角的角度,三个边所围成的面积,等等都不会改变,我也学过三个点可以确定一个面。一个三条腿的板凳不论在哪里都可以放稳。所以其实三角形是稳定的。埃及金字塔、钢轨、起重机、三角形吊臂、屋顶、三角形钢架、钢架桥中都应用三角形的原理。 案例二轴对称图形 什么是轴对称图形呢?如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。在我们的生活中,有很多美丽的轴对称图形。数字:0 3 8 字母:E H 汉字:中由日等,还有很多建筑如

案例三黄金分割比 黄金分割比是把一条线段分割为两部分,使其中一部分与全长之比等于 另一部分与这部分之比。近似值是0.618。由于按此比例设计的造型十分美丽, 因此称为黄金分割。也称为中外比。 一个常见的生活案例:女士们多数喜欢穿高跟鞋.因为 高跟鞋使人的身材更美,那穿多高的跟才能使女士显得迷人呢? 经过计算发现,人体的腿长与身高的比值近似0.618时(也即是黄金分割比值)。 其身材显得迷人漂亮(肚脐足理想的黄金分割点),也就是说,若此比值愈接近0.618.就愈给人一种美的感觉,一般女士由脚底至肚脐的长度与身高比都不 能达到此比值,要通过高跟鞋来调节。 总之,生活中的数学和数学模型可以说是无处不在的。在数学的发展进程 中,无时无刻不留下数学模型的印记,在数学应用的各个领域中到处都可以找 到数学模型的身影。随着科学技术的发展,它的作用就显得更加突出和重要。 因此.我们要重视它并最大限度地开发、利用它,使之更好地为人类服务。 指导老师评语: 数学模型是解决现实生活生产中一些最优方案的数学方法,徐立伟同学选择 这一题目,可见他已经懂得把学到的知识用到生活中去,用科学知识指导自己 的活动,在生活中体验到了学到知识的乐趣。

投入产出数学模型练习题解答 数学建模

投入产出数学模型练习题解答 (1)在经济预测中的应用 该系统的计划期总产品和最终产品分别记为()1 2 3 ,,x x x x '= 和()1 2 3 ,,y y y y '= 。根据表中报告期的总产品 数据以及预计的计划期总产品增长幅度,该系统三个部门的计划期总产品应分别为 工业部门: ()156019%610.4x =+=亿元 农业部门: ()234017%363.8x =+=亿元 其他产业部门:()328016%296.8x =+=亿元 将这些数据代入产品分配平衡方程组,可求得 ()y I A x =- 即 1230.650.30.25610.4213.420.150.80.15363.8154.960.20.10.9296.8108.66y y y --???????? ? ??? ?=--= ? ??? ? ??? ? ?--? ??????? 由此可对该系统三个部门的计划期最终产品及其相对于报告期最终产品的增长幅度作出预测 工业部门:1213.42y =亿元,增长 213.42192 11.2%192 -= 农业部门:2153.96y =亿元,增长 153.96146 6.1%146-= 其他产业部门:2108.66y = ,增长 108.66106 2.5%106 -= 根据预测结果,可对该系统的计划期最终产品与实际需要是否相符作出判断,避免出现大的偏差。 (2)在制订计划中的应用 将数据代入产品分配方程组,可求得 ()1 x I A y -=- 即 1230.7050.2950.24521664010.1650.5350.1351764000.3650.1750.1250.475120320x x x ???????? ? ??? ?== ? ??? ? ??? ? ? ????????

高中数学讲义微专题80 排列组合中的常见模型

微专题80排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。所以共有213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

投入产出模型

第9章投入产出模型 投入产出模型对于研究分析国民经济各部门之间的数量依存关系,制定国民经济的计划与规划等都具有十分重要的作用。根据投入产出模型的原理与方法,现介绍其建模与应用分析的具体方法步骤。 第1节投入产出模型概述 1.1 概念 投入产出模型是指在马克思主义经济理论指导下,利用数学方法和电子计算机技术,来研究各种经济活动的投入与产出之间的数量依存关系,特别是研究与分析国民经济各个部门在产品的生产与消耗之间的数量依存关系所建立的一种数学模型,其主要含义如下: 1)投入产出模型的指导思想是马克思主义经济理论; 2)投入产出模型的理论基础是计量经济学理论,集中体现在投入产出方法的原理与方法; 3)投入产出模型的关键任务是直接消耗系数与列昂节夫逆矩阵的求算; 4)投入产出模型的主要方法是数学方法与计算机技术的应用,集中体现在投入产出模型数学模型的建立及运用计算机进行矩阵运算的求解应用; 5)投入产出模型的最终目的是研究与分析各个经济部门之间的数量依存关系,为社会主义经济建设中的科学决策服务。

主要用途是用于研究与分析国民经济各个部门在产品的生产与消耗之间的数量依存关系,反映各个部门之间的直接与间接的经济联系及各个部门之间的综合平衡问题。目前,已拓展到用于研究与分析各个地区,各个企业内部及之间的各种经济联系。 1.2 作用 1)编制国民经济计划。 2)经济指标的预测。 3)经济政策研究,研究重要经济政策对经济建设的影响。 4)专题研究,研究专门的社会经济问题。 5)编制区际经济计划。 1.3 发展概况 投入产出法产生于20世纪30年代,是由俄国出生的美国经济学家瓦。列昂节夫(w. Leontif)首先提出于1931年开始研究“投入产出分析法”,来分析研究美国的经济结构,随后发表了不少的论文和论著,在1944年他编制了美国经济部门的1939年投入产出表,它可称是世界上第一个“投入产出表”,当时,引起了美国政府的重视,此后,美国先后又编制了1947年,1958年,1963年,和1966年的投入产出表。 在20世纪50年代初期,西方各国曾经出现了编制投入产出表的热潮。到了20世纪50年代末期,苏联和东欧国家也开始重视这一方法。后来,发展中国家也纷纷编制了投入产出表。据不完全统计,1950年以前,只有7个国家编制了投入产出表,其后,已有100余个国家

高中生物学中的数学模型资料

高中生物学中的数学模型 山东省嘉祥县第一中学孙国防 高中生物学中的数学模型是对高中生物知识的高度概括,也是培养学生分析推理能力的重要载体,本文通过归纳高中生物学中的数学模型以提高学生的分析推理能力。 1. 细胞的增殖 【经典模型】 1.1间期表示 1.2 有丝分裂中各时期DNA、染色体和染色单体变化 1.3 减数分裂中各时期DNA、染色体和染色单体变化 【考查考点】细胞增殖考点主要考察有丝分裂、减数分裂过程中DNA、染色体、染色单体的数量变化以及同源染色体的行为,并以此为载体解释遗传的分离定律和自由组合定律。 2. 生物膜系统 【经典模型】

【考查考点】 3物质跨膜运输 【经典模型】 【考查考点】 自由扩散、协助扩散和主动运输的影响因素和特点。 4. 影响酶活性的因素 【经典模型】 【考查考点】 影响酶活性的因素,主要原因在于对酶空间结构的影响。酶促反应是对酶催化的更高层次的分析。 5. 影响细胞呼吸及光合作用的因素 【经典模型1】 【考查考点】 真正光合速率= 净光合速率+呼吸速率 光合作用实际产O2量=实测O2释放量+呼吸作用耗O2 光合作用实际CO2消耗量=实测CO2消耗量+呼吸作用CO2释放 光合作用葡萄糖生产量=光合作用葡萄糖积累量+呼吸作用葡萄糖消耗量

【经典模型2】 【考查考点】氧气浓度对有氧呼吸和无氧呼吸的影响,以及在种子和蔬菜储存中的原因。 6 基因的分离和自由组合定律 【典型例题】男性并指、女性正常的一对夫妇,生了一个先天性聋哑的儿子,这对夫妇以后所生子女,(并指是常染色体显性遗传病,两种病均与性别无关) 正常的概率:_________同时患两种病的概率:_________患病的概率:_________ 只患聋哑的概率:_________只患并指的概率:_________只患一种病的概率:_________ 序号类型计算公式 1 患甲病的概率m 则非甲病概率为1-m 2 患乙病的概率n 则非乙病概率为1-n 3 只患甲病的概率m-mn 4 只患乙病的概率n-mn 5 同患两种病的概率mn 6 只患一种病的概率m+n-2mn或m(1-n)+n(1-m) 7 患病概率m+n-mn或1-不患病概率 8 不患病概率(1-m)(1-n) 7. 中心法则 【经典模型】 DNA分子的多样性:4N DNA的结构:A=T,G=C,A+G=T+C,(A1%+A2%)/2=A%, A1%+T1%=A2%+T2%=A%+T% DNA的复制:某DNA分子复制N次所需要的游离的鸟嘌呤脱氧核苷酸:(2N-1)G 15N标记的DNA分子在14N的原料中复制n次,含15N的DNA分子占总数的比例:2/2n DNA中的碱基数和其控制的蛋白质中的氨基酸数的比例关系:6:1 【考查考点】DNA的结构,碱基组成,半保留复制和基因的表达。 8. 现代生物进化理论 【典型例题】某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是 A.10/19 B.9/ 19 C.1/19 D.1/2 答案:A 【经典模型】 设A的基因频率为P,a的基因频率为q,因P+q=l,故(P+q)2 =I,将此二项式展开得:

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

[实用参考]高中常见数学模型案例.doc

高中常见数学模型案例 中华人民共和国教育部20KK 年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数P 与按新价让利总额P 之间的函数关系是___________。 分析:欲求货物数P 与按新价让利总额P 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 4 5=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路P (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程P 和时间t 得函数关系式P (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离Pkm 与时间th 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间th 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。 解:设小矩形长为P ,宽为P ,则由图形条件可得:l y x x =++911π ∴x l y )11(9π+-= 要使窗所通过的光线最多,即要窗框面积最大,则: )44(32)442(644])11([322622 222 2ππππππ+++-+-=+-+=+=l l x x lx x xy x s

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

生活中的数学模型案例

. 生活中的数学模型案例 吉林省松原市宁江区第五中学 二年三班许立伟 指导教师:李光辉

生活中的数学模型案例 吉林省松原市宁江区第五中学许立伟 生活与数学是分不开的,在很多领域中人们总在用不同的数学模型来描述、刻画某些生活现象或规律。其实数学和数学模型离我们很近,它是和语言一样具有国际通用性的一种工具,无论你从事什么职业。都不同程度地会用到数学知识与技能以及数学模型的思考方法。本文是我对日常生活中一般数学模型的了解,并运用数学模型来分析和解决生活中常见的几个实际问题。 案例一三角形具有稳定性 通过课本的学习我知道三角形具有稳定性,有着稳固、坚定、耐压的特点。原因是一旦三角形的三个边长确定了,三角形就确定了,各个角的角度,三个边所围成的面积,等等都不会改变,我也学过三个点可以确定一个面。一个三条腿的板凳不论在哪里都可以放稳。所以其实三角形是稳定的。埃及金字塔、钢轨、起重机、三角形吊臂、屋顶、三角形钢架、钢架桥中都应用三角形的原理。 案例二轴对称图形 什么是轴对称图形呢?如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。在我们的生活中,有很多美丽的轴对称图形。数字:0 3 8 字母:E H 汉字:中由日等,还有很多建筑如

案例三黄金分割比 黄金分割比是把一条线段分割为两部分,使其中一部分与全长之比等于 另一部分与这部分之比。近似值是0.618。由于按此比例设计的造型十分美丽, 因此称为黄金分割。也称为中外比。 一个常见的生活案例:女士们多数喜欢穿高跟鞋.因为 高跟鞋使人的身材更美,那穿多高的跟才能使女士显得迷人呢? 经过计算发现,人体的腿长与身高的比值近似0.618时(也即是黄金分割比值)。 其身材显得迷人漂亮(肚脐足理想的黄金分割点),也就是说,若此比值愈接近0.618.就愈给人一种美的感觉,一般女士由脚底至肚脐的长度与身高比都不 能达到此比值,要通过高跟鞋来调节。 总之,生活中的数学和数学模型可以说是无处不在的。在数学的发展进程 中,无时无刻不留下数学模型的印记,在数学应用的各个领域中到处都可以找 到数学模型的身影。随着科学技术的发展,它的作用就显得更加突出和重要。 因此.我们要重视它并最大限度地开发、利用它,使之更好地为人类服务。 指导老师评语: 数学模型是解决现实生活生产中一些最优方案的数学方法,徐立伟同学选择 这一题目,可见他已经懂得把学到的知识用到生活中去,用科学知识指导自己 的活动,在生活中体验到了学到知识的乐趣。

2016-2017学年高中数学 第三章 统计案例 3.1 第2课时 残差分析及回归模型的选择学案 新

3.1 第二课时 残差分析及回归模型的选择 一、课前准备 1.课时目标 (1) 了解残差分析回归效果; (2) 了解相关指数2R 分析回归效果; (3) 了解常见的非线性回归转化为线性回归的方法. 2.基础预探 1.在线性回归模型y bx a e =++中,a b 和为模型的未知参数,e y 是与y bx a =+之间的误差,通常e为随机变量,称为_______.它的均值E(e)=0,方差2 ()0D e σ=>. 线性回归模型的完整表达形式为2 ()0,()y bx a e E e D e σ=++??==? .在此模型中,随机误差r的方差2 σ越小,通过回归直线y bx a =+预报真实值y的精度越高. 2.对于样本点1122(,),(,), ,(,)n n x y x y x y 而言,相应于它们的随机误差为 (1,2,,)i i i i e y y y bx a i n =-=--=,其估计值为(1,2, ,)i i i i i e y y y bx a i n =-=--=, i e 称为相应于点(,)i i x y 的______.类比样本方差估计总体方差的思想,可以用 2 1 (,)2 Q a b n σ= -(n>2)作为2σ的估计量,其中a b 和由公式给出,()Q a b ,称为残差平方和.可以用2 σ衡量回归直线方程的预报精度.通常2 σ越小,预报精度越高. 3.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差12,, n e e e 来判断模型拟合的效果,判断 原始数据中是否存在可疑数据.这方面的分析工作称为_______. 4.用相关指数2 R 来刻画回归的效果,其计算公式是:2 2 12 1 () 1() n i i n i i y y R y y ==-=- -∑∑.显然2 R 取值 越大,意味着残差平方和_______,也就是说模型的拟合效果________. 二、学习引领 1. 进行回归分析的步骤是什么? (1)确定研究对象,明确是哪两个变量之间的相关关系. (2)画出散点图,观察它们之间的关系是否存在线性关系,也可计算变量间的线性相关系数的值来精确判断它们之间是否存在相关关系.如果不存在线性相关关系,判断散点图是否存在非线性相关关系.

投入产出模型实例

投入产出模型实例 例1: 假设某企业在所考察的期间内,生产甲、乙两种产品。生产过程中,甲、乙两种产品的产品量,可提供的商品量及互相提供消耗的数量关系统计如下表(表中第一列的两个数分别表示生产250t 甲产品时甲产品和乙产品的消耗量,第二列的两个数分别表示生产100 m3 乙产品时甲产品和乙产品的消耗量)。 (1)假设在下一个生产周期内,设备和技术条件不变,商品需求量增加。其中甲增加到85t ,乙增加到50 m3 。应该如何计划甲、乙两种产品的总产量才能满足市场需求? (2)假设下一个生产周期计划总产量甲为260t ,乙为110 m3 ,那么可提供给市场的商品量各是多少? 通过上述表格,我们可以求出甲、乙两种产品各生产单位产品量时对甲、乙产品的消耗量。设下个生产周期甲、乙产品的总产量和可提供的商品量分别为 x1、x2和y1、y2则可得下表 在下个生产周期,甲、乙计划总产量为297t 、122m3 时扣除消耗掉的产品量后的商品量才满足市场需求。 虽然计划总产量增加了,由于比例不当,在下一个生产周期内甲产品的商品量反而减少了。 ??????= ????? ????? =25.014.025.12.0100252503510012525050A ?? ? ???=1001I ??????--=??????----=-75.014 .025.18 .025.0114.0025.102.01A I 1 28550y y ????= ? ?????将 带入(2) 1 1 1220.8 1.252970.140.75122x y x y --???????? == ? ? ? ?-???? ????12260110x x ????= ? ?????11220.8 1.2570.50.140.7546.1y x y x -? ??????? == ? ? ? ?-???? ????

投入产出数学模型练习题 数学建模

投入产出数学模型经济应用案例 投入产出数学模型的应用领域很广,常用于分析经济系统的部门结构和比例关系、进行经济预测、调整经济计划等各个方面。 由投入产出模型的理论知道,只要经济系统各个部门的生产技术条件没有变化,就可将报告期的投入产出数学模型直接应用于计划期的经济工作。下面将以实例说明其在经济中的应。 例题设某个地区的经济系统划分为工业、农业、其他产业三个部门。上一年度三个部门的生产与消耗情况如下表所示: 生产与消耗情况表

假定该系统三个部门的生产技术条件都没有变化,从而该系统的直接消耗系数矩阵不变,由此建立的产品分配方程组和产值构成方程组也不变。在此基础上,分别分析该系统的报告期投入产出数学模型在计划期经济计划工作方面的下列应用。 (1)在经济预测中的应用 假定根据上例所示经济系统的生产发展情况,预计该系统工业、农业、其他产业三个部门的计划期总产品将在报告期总产品的基础上分别增长9%、7%、6%。由于在生产过程中系统内部存在着复杂的产品消耗关系,故一般说来,各个部门最终产品的增长幅度与总产品的增长幅度并不一致。试预测该系统最终产品的增长情况。 (2)在制订计划中的应用 投入产出数学模型为合理制订经济系统的生产计划提供了一个科学的方法。根据社会需要确定社会产品的原则,先通过对计划期需要量的预测,确定系统各个部门的最终产品,再利用投入产出数学模型推算出各个部门的总产品,在此基础上编制经济系统计划期的投入产出表,作为安排各个部门计划期生产活动的依据。 现假定通过预测,引例所示经济系统三个部门的计划期 最终产品需要量分别为工业部门: 1216 y=亿元,农业部门: 2716 y=亿元,其他产业部门: 3120 y=亿元。试确定计划期

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

小学数学建模案例

小学数学建模案例 相遇问题。①创设问题情境,激发学生的求知欲。先请两位同学在黑板的两边同时相向而行,可以让学生重复多走几次。接着可以问同学们看到了什么。学生的回答会有很多,如:他们在中间碰到了;两个人面对面在走;两个人背对背在走……此时就可以引入相遇问题中的一些条件:同时出发、相向而行、相背而行、途中相遇。当学生对此有一定的了解之后就可以举一个具体的例子来进入教学重点了。例如:甲乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即返回,第二次在距A地60千米处相遇。求A、B两地间的路程。②抽象概括,建立模型,导入学习课题。此题可以将整个过程用线段图来形象地描述,这就是这个相遇问题建立的数学模型。③研究模型,形成数学知识。 总结出一般规律之后可以举个例子让学生做,看看学生是否已经掌握,是否会应用这个规律来解决实际问题。如:两艘渡轮在同一时刻垂直驶离H河的甲、乙两岸相向而行,它们在距离甲岸720米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客

上船下船,然后返航。这两艘在距离乙岸4OO米处又重新相遇。问:该河的宽度是多少?可以请两位同学到黑板上来做,其他同学做在作业本上,然后讲解,并充分肯定学生的表现,增强学生的学习积极性。案例二:小学高年级数学教学时会遇到“牛吃草问题”,牛吃草问题又称消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。 由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断变化。例:牧场上一片青草,每天牧草都匀速生长,这片草地可供l0头牛吃20天,或者可以供l5头牛吃10天,问:可供25头牛吃几天?分析:这类题目难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新长出来的草两部分。牧场上原有的草是不变的,新长出来的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面就要设法计算出原有的草量和每天新长出的草这两个不变的量。

高中物理中常用的三角函数数学模型(强烈推荐)

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 斜边对边正弦= 邻边对边正切= 斜边邻边余弦= 对边 邻边余切= (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 正弦 对边斜边= 余弦邻边斜边= 2、由斜边求直角边 正弦斜边对边?= 余弦斜边邻边?= 3、两直角边互求 正切邻边对边?= 余切对边邻边?= (四)典例分析 经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少? θtan 1?=mg F θ cos 2mg F = 经典例题2 如图3所示,质量为m 的小球静止于斜面与挡板之间,斜面倾角为θ,挡板与斜面垂直,求小球对挡板和对斜面的压力大小分别是多少? 【解析】小球受到的重力产生的效果是压紧 挡板和使球压紧斜面,重力的分解如图4所示。 θsin 1?=mg F 图 3 图2 图 4

数学建模案例――最佳捕鱼方案.(优选)

最佳捕鱼方案 摘要: 本文解决的是一个最佳捕鱼方案设计的单目标线性规划问题,目的是制定每天的捕鱼策略,使得总收益最大。根据题设条件,结合实际情况,我们设计了成本与损失率随天数的增加成反比变化的函数曲线(见图三所示),并导出总收益的表达式: 212121 111i i i i i i i i W w p s q m =====?-?∑∑∑。 由于价格是关于供应量的分段函数(见图一所示),我们引入“0-1”变量法编写程序(程序见附录一),并用数学软件LINGO 求解,得到最大收益(W)为441291.4元,分21天捕捞完毕。其中第1~16天,日捕捞量在1030~1070公斤之间,第17~21天的日捕捞量为1610~1670公斤之间(具体数值见正文)。由结果分析,我们对模型提出了优化方向,例如人工放水来降低成本。 关键词:“0-1”整数规划,单目标线性规划,离散型分布。 一. 问题重述 一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库里的杂鱼做一次彻底清理,因此放水清库。水库现有水位平均为15米,自然放水每天水位降低0.5米,经与当地协商水库水位最低降至5米,这样预计需要二十天时间,水位可达到目标。据估计水库内尚有草鱼二万五千余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤处于饱和。捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。 承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳? 二. 模型假设 1.池塘中草鱼的生长处于稳定状态,不考虑种群繁殖以及其体重增减,即在捕 捞过程中草鱼总量保持在25,000公斤不变。 2.第一天捕捞时水位为15m ,每天都在当天的初始水位捕捞草鱼,水库水位每 天按自然放水0.5m 逐渐降低,20天后刚好达到最低要求水位5m 。 3.在水库自然放水的21内将草鱼捕完。 4.在草鱼日供应量未达饱和的之前,市场供应量等于销售量。 5.每天草鱼的捕捞成本随着每天水位的降低呈等差数列递增分布。 6.随着水库水位的下降,草鱼的种群密度逐渐变大,存在着对空间、食物、氧 气的竞争,种群死亡率逐渐升高。题设中给定草鱼死亡及捕捞损失率随着水位的降低而升高,在这里我们假设草鱼损失率是一个统计学概念,即已经综合了因自然死亡和捕捞等其他原因共同造成的损失。 7.草鱼损失率与水库水位成反比关系,每天捕捞量的损失率与当天池塘总鱼量 的损失率是一致的,以每次捕捞时池塘总鱼数为当次基数。 8.捕捞上的草鱼中的死鱼将另行处理,不会放回水库也不会与活鱼一起出售。 9.日供应量在1000---1500公斤时,我们假定草鱼价格为20元每公斤这一常数。

相关主题
文本预览
相关文档 最新文档