当前位置:文档之家› 数列--错位相减法

数列--错位相减法

数列--错位相减法

数列:裂项相消法与错位相减法

例1:(1)已知数列{}n a 满足)

1(1+=n n a n ,求通项公式n a . (2)已知数列{}n a 满足)

2(1+=n n a n ,求通项公式n a . (3)已知数列{}n a 满足)12)(12(1+-=

n n a n ,求通项公式n a . (4)已知数列{}n a 满足1

4422

-=n n a n ,求通项公式n a . (5)已知数列{}n a 满足)

2)(1(1++=n n n a n ,求通项公式n a . (6)已知数列{}n a 满足22)1(12++=

n n n a n ,求通项公式n a .

例2:(1)已知数列{}n a 满足n n n a 2=,求前n 项和n S .

(2)已知数列{}n a 满足n n n a 2)12(-=,求前n 项和n S .

(3)已知数列{}n a 满足n

n n a 2=,求前n 项和n S . (4)已知数列{}n a 满足13)12(-+=n n n a ,求前n 项和n S .

数列求和之错位相减法练习

数列求和之错位相减法专项练习 一、解答题 1.已知正项数列{a a}是递增的等差数列,且a2?a4=6,a6=4. (1)求数列{a a}的通项公式; }的前n项和. (2)求数列{a a 2a?1 2.在数列{a a}中,前n项和为a a,a a+a a=a,a1=a1,a a=a a? a a?1(a≥2). 3.(1)设a a=a a?1,求证:{a a}为等比数列. 4.(2)求{(a+1)a a}的前n项和a a. 5. 6. 7. 8. 9. 10. 11. 12.设数列{a a}的前n项和为a a,且a a=2(a a?1)

(1)求数列{a a}的通项公式; (2)若a a=a(a a?1),求数列{a a}的前n项和a a. 13.已知等差数列{a a}的公差是1,且a1,a3,a9成等比数列. (1)求数列{a a}的通项公式; (2)求数列{a a 2a a }的前n项和a a . 14.已知{a a}是公差不为零的等差数列,满足a2+a4+a5=19,且a2是a1与a5的 等比中项,a a为{a a}的前n项和. (1)求a a及a a; (2)若a a=a a+1?3a a,求数列{a a}的前n项和.

15.已知数列{a a}是首项为1的等差数列,数列{a a}是首项a1=1的等比数列,且 a a>0,又a3+a5=21,a5+a3=13.(Ⅰ)求数列{a a}和{a a}的通项公 式; 16.(Ⅱ)求数列{2a a a a}的前n项和a a. 17. 18. 19. 20. 21. 22. 23. 24.已知数列{a a}的前n项和a a=3a2+8a,{a a}是等差数列,且a a=a a+ a a+1. (1)求数列{a a}的通项公式; (2)令a a=(a a+1) (a a+2)a a+1 ,求数列{a a}的前n项和.

八.错位相减法求数列的前n项和

八、错位相减法求数列的前n 项和 基本方法: 一般地,如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法求和,一般是在和式的两边同乘以等比数列{}n b 的公比,然后作差求解;若{}n b 的公比为参数(字母),则应对公比分等于1和不等于1两种情况分别求和. 一、典型例题 1. 设数列{}n a 的通项公式2n n a n ,求其前n 项和. 2. 已知数列n a 满足11a ,*1N n n n na na a n . 数列n b 的前n 项和为n S ,23n n S b , 求数列n n b a 的前n 项和n T . 二、课堂练习 1. 设数列{}n a 的通项公式1 12 8 3 n n a n ,求其前n 项和. 2. 已知数列n a 的前n 项和n S 满足*231n n S a n N . 求数列 21 n n a 的前n 项和n T . 三、课后作业 1. 设数列{}n a 的通项公式1 23n n a n ,求其前n 项和. 2. 已知数列n a ,1 e a ,31n n a a *n N . 设21ln n n b n a ,求数列n b 的前n 项和n T . 3. 已知数列n a 中,11 1,()3 n n n a a a n a N . (1)求证: 11 2 n a 是等比数列,并求{}n a 的通项公式; (2)数列{}n b 满足(31) 2 n n n n n b a ,数列{}n b 的前n 项和为n T ,若不等式1 (1)2 n n n n T 对一切n N 恒成立,求的取值范围.

利用错位相减法解决数列求和的答题模板

利用错位相减法解决数列求和的答题模板 数列求和是高考的重点,题型以解答题为主,主要考查等差、等比数列的求和公式,错位相减法及裂项相消求和;数列求和常与函数、方程、不等式联系在一起,考查内容较为全面,在考查基本运算、基本能力的基础上又注重考查学生分析问题、解决问题的能力. [典例] ( 满分12分)已知数列{a n }的前n 项和S n =-12 n 2+kn ,k ∈N *,且S n 的最大值为8. (1)确定常数k ,求a n ; (2)求数列???? ??9-2a n 2n 的前n 项和T n . 规范审题模板 1.审条件,挖解题信息 观察条件―→S n =-12 n 2+kn 及S n 的最大值为8 n S n ???????→是于的二次函关数 当n =k 时,S n 取得最大值 2.审结论,明解题方向 观察所求结论 ―→求k 的值及a n ――――→应建立关于k 的方程S n 的最大值为8,即S k =8,k =4n S ?????→可求的表式达 S n =-12n 2+4n 3.建联系,找解题突破口 根据已知条件,可利用a n 与S n 的关系求通项公式 ―――――→注意公式的使用条件a n =S n -S n -1=92-n n ,a 1=S 1=72 ―――――→验证n =1时,a n 是否成立a n =92-n 教你快速规范审题

1.审条件,挖解题信息 观察条件―→a n =92-n 及数列???? ??9-2a n 2n 922n n a ?????????????→-可化列简数 9-2a n 2n =n 2 n -1 2.审结论,明解题方向 观察所求结论―→求数列??????9-2a n 2n 的前n 项和T n 12n n ???????→-分析通的特项点 可利用错位相减法求和 3.建联系,找解题突破口 ――――→同乘以2 ――――→错位相减

错位相减法数列求和法

特定数列求和法一错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归 纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求 和的方法一一错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学 习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过 程: 数列a n 是由第一项为a i ,且公比为q 的等比数列,它的前n 项和是 由已知有 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简 化了,从而得到等比数列的求和公式, 这种方法叫错位相减法,那我们是不是遇 到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过 程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的 复杂数列的。可以归纳数学模型如下: S n a i a i q a i q 2 a i q n i ,求S n 的通项公式。 两端同乘以 q ,有 i 时, i 时, 于是 S n a i a i q a i q 2 ... qs n aiq 2 aiq 3 a i q n ... (1 q)s n a i n a i q 由①可得 由③可得 S n s n S n n a i (q i)或者 na i i)

已知数列4是以a i 为首项,d 为公差的等差数列,数列 0是以b i 为首 项,q(q 1)为公比的等比数列,数列C n a n b n ,求数列C n 的前n 项和. 解 由已知可知 许许多多的高考试题以及课后习题证明了不是所有的数列题目都会很直接 地写明所求数列是一个等比数列乘以一个等差数列的形式, 通过对最近几年高考 中的数列题的分析总结出了以下几种错位相减法求和类型: 所求数列中的等差数列是已知 这第一种类型的题顾名思义是所求的复杂数列中直接给出其中一个是等差 数列,则只要证明或者求出另一个是等比数列, 那么就可以用错位相减法来求解 该题,同时如果另一个不能被证明是等比数列就不能用错位相减法来求解, 得另 找他法了 ■ 例1.(2013湖南文)设S n 为数列{a n }的前n 项和,已知: a 1 0,2a n a 1 S 1 S n , n N (1)求a 1,并求数列{a n }的通项公式 (2)求数列{na n }的前n 项和. 两端同乘以q 可得 qC n a1?q :a 1b 2 a 2 b 2q a ? b 3 asdq 83 匕4 .. . ...a n 1 b n 1 q a n b n q a n 1b n a n b n q 由①-②得 (1 q)C n a 1 b 1 d(b 2 b 3 ...b n 1 b n ) a n b n q 化简得 C n Cd d(b 2 b 3 ... b n 1 b n ) a n b n q / (q C n a i b 1 a 2b 2 a 3b 3 ■■- i q

错位相减法数列求和法(供参考)

特定数列求和法—错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求和的方法——错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过程: 数列{}n a 是由第一项为1a ,且公比为q 的等比数列,它的前n 项和是 111121...n n a a q a q a q s -=++++ ,求 n s 的通项公式。 解 由已知有 111121...n n a a q a q a q s -=++++, ○ 1 两端同乘以q ,有 ○ 1-○2得 当1q =时,由○ 1可得 当1q ≠时,由○ 3可得 于是 1(1)n s na q == 或者 11(1)1n n a a q s q q -=≠- 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简化了,从而得到等比数列的求和公式,这种方法叫错位相减法,那我们是不是遇到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的复杂数列的。可以归纳数学模型如下: 已知数列{}n a 是以1a 为首项,d 为公差的等差数列,数列{}n b 是以1b 为首项,(1)q q ≠为公比的等比数列,数列n n n c a b =,求数列{}n c 的前n 项和. 解 由已知可知 两端同乘以q 可得 = 11223311...n n n n n qc a b q a b q a b q a b q a b q --=+++++

高中数学数列求和-错位相减法

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式.形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可. 目录 简介 举例 错位相减法解题 编辑本段简介 错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列. 编辑本段举例 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 编辑本段错位相减法解题 错位相减法是求和的一种解题方法.在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用.这是例子(格式问题,在a后面的数字和n都是指数形式):S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)在(1)的左右两边同时乘上a.得到等式(2)如下:aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)(1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式.(1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S 的通用公式了.例子:求和Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方(x不等于0)当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x 的n-1次方所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方.化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法这个在求等比数列求和公式时就用了Sn= 1/2+1/4+1/8+.+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+.+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)两式相减1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n

数列求和裂项法错位相减法分组求和法

数列求和裂项法错位相减法分组求和法 Modified by JEEP on December 26th, 2020.

数列求和的三种特殊求法 例1、已知数列{a n }的通项公式为a n =12-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和: (1)211,412,813,……n n 21+,…… (2)1,211+,3211 ++…… n +??+++3211 …… (3)5,55,555.……,55……5,……(4),,,……,……5,…… 例3、已知数列的的通项,求数列的前n 项和: (1) )1(1+= n n a n (2)) 2(1 +=n n b n (3){a n }满足a n = 1 1++n n ,求S n (4)求和:+?+?= 5 34 3122 2 n S ……+) 12)(12()2(2 +-n n n (5)求和) 2)(1(1 43213211+++??+??+??=n n n S n 例4、求数列 ,,,3,2,32n na a a a (a 为常数)的前n 项和n S 。 练习:求和:21,223,325,……n n 2 1 2-,…… 知识演练: 1. (2009年广东第4题)已知等比数列}{n a 满足 )3(2,,2,1,02525≥=?=>-n a a n a n n n 且 ,则当1≥n 时,=+++-1221212log log log n a a a A .)12(-n n B .2)1(+n C .2n D .2)1(-n 2. (2010年山东第18题)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 11 n a -(n ∈N * ),求数列{}n b 的前n 项和n T . 3. (2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且 .)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c =,求数列}{n c 的前n 项和T n 小结:数列求和的方法 分组求和,裂项相消(分式、根式),错位相减(差比数列) 数列求和的思维策略: 从通项入手,寻找数列特点

数列题型(错位相减法)

数列专练(裂项相消法) 1. 已知数列{}n a 的前项和2 2n S n n =+; (1)求数列的通项公式n a ;(2)设1234 1 23111 1 n n n T a a a a a a a a +=++++ ,求n T . 2. 已知数列{}n a 的前项和为n S ,且满足213 (1,) 22n S n n n n N *=+≥∈ (1)求数列{}n a 的通项公式; (2)设n T 为数列? ?? ??? +11n n a a 的前n 项和,求使不等式20121005>n T 成立的n 的最小值. 2. 已知数列{}n a 的前n 项和为n S ,且11a =,()11 1,2,3, 2 n n a S n +==. (1)求数列{}n a 的通项公式; (2)当()312 log 3n n b a +=时,求证:数列11n n b b +??? ??? 的前n 项和1n n T n = +. 3. 已知数列{}n a 的前n 项和为n S ,点), (n s n n 在直线2 1121+=x y 上,数列{}n b 满足0212=+-++n n n b b b ,() *N n ∈,113=b ,且其前9项和为153. (1)求数列{}n a ,{}n b 的通项公式; (2)设) 12)(112(3 --=n n n b a c ,求数列{}n c 前n 项的和n T . 4. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-,(1,2,3)n =???;数列{}n b 中,11,b = 点 1(,)n n P b b +在直线20x y -+=上.

错位相减法求和 优秀教学设计

教学设计 一、课程基本描述 课程名称:错位相减法 课程内容所属学科:高中数学 教材选用:人教A版必修五 授课对象:高中学生 课前准备:多媒体课件、笔记本电脑 二、教学背景 数列是高中数学的重要内容之一,数列的求和是高考重点考查内容,错位相减法在书本上没有专门的要求,但错位相减法是求和中考察最多的,考察有变革,有创新,但在变中有不变性,因此,要求考生有效地分析通项,然后根据通项特征选择相应的求和方法。而错位相减法就是针对一个由等差数列{an}及一个等比数列{bn}对应项之积组成的数列求和方法.由等比数列求和的推导后,考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此类题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项或符号的正负出错,特别是含字母的需要讨论等,需要学生在不断的尝试练习、巩固练习中来提高学生的观察能力、分析问题与解决问题的能力以及计算能力,体现数学的核心素养。 三、教学目标 1.知识与技能:会用错位相减求通项为等差数列与等比数列对应项乘积的数列前n项和。 2.过程与方法:通过两等式错位相减,将不能求和的问题转化成能用等比数列求和的问题,让学生体会数学的转化思想。 3.情感、态度与价值观:在学习的过程中,培养学生的探究能力、化归能力、运算能力,真正理解和掌握基本的数学知识与技能、转化与化归的数学思想和方法、获得广泛的数学经验。 教学重点:会用错位相减法求通项为等差数列与等比数列对应项乘积的数列前n项和。 教学难点:错位相减后的项数、符号、计算问题,以及对转化数学思想的理解。 教学方法:探究式教学

四、教学过程 错位相减法的基本介绍: 通常一个公差为d 的等差数列{a n }与一个公比为q 的等比数列{b n }的对应项的乘积构成的新数列 c n ={an·bn },则求新数列的前n 项和Sn ,一般将{a n ·b n }的各项乘以其公比,并向后错一项与{a n ·b n }的同项对应相减,相减时通常是用系数大的项减去系数小的项,避免出现太多的负号,相减后的式子,有n+1项相加,然后再把n-1项构成的等比数列相加,再跟剩余两项能合并的合并,力求结果形式上简洁。(有字母的需要注意讨论公比q 是否等于1)这就是错位相减法求和的基本步骤。 例题展示1:求和T n =1×2+4×22+7×23+?+(3n ?2)×2n 解: (1) T n =1×2+4×22+7×23+?+(3n ?2)×2n (2) 2T n =1×22+4×23+7×24+?+(3n ?2)×2n +1(1)减(2)得: ?T n =1×2+3×22+3×23+?+3×2n ?(3n ?2)×2n +1 =3(2+22+23+?+2n )?(3n ?2)×2n +1?4 =3(2n +1?2)?(3n ?2)×2n +1?4 =3×2n +1?6?3n ×2n +1+2n +2?4 =2n +2+3(1?n )×2n +1?10 所以:T n =3(n ?1)×2n +1?2n +2+10 跟踪练习:求和T n =3×13+5×(13)2+7×(13)3+?+(2n +1)×(13)n 例题展示2.已知等比数列的公比为,前项和为,,分{a n }q ≠1n S n a 1+a 3=S 4 S 2a 1?1,a 2?1,a 3?1别是一个等差数列的第1项,第2项,第5项. (Ⅰ)求数列的通项公式; {a n }(Ⅱ)设,求数列的前项和. b n =a n lga n {b n }n T n 解:由分别是一个等差数列的第1项,第2项,第5项, a 1?1,a 2?1,a 3?1得, a 3?1?(a 1?1)=4[(a 2?1)?(a 1?1)]即, a 3?a 1=4(a 2?a 1)因 为,所以 {a n }是等比数列a n ≠0 即, q 2?1=4(q ?1)又因为,所以, q ≠1q +1=4,q =3由得,,所以,所以. a 1+a 3=S 4S 2a 1+a 1q 2=S 2(1+q 2)S 2=1+q 2a 1=1a n =3n ?1

错位相减法(万能模板法)

1 数列求和之错位相减法 用“错位相减法”求和的数列特征:即如果一个数列的各项是由一个等差数列和一个等比数列的对应项乘积构成的,那么这个数列的前n 项和则采用“错位相减法” 求和 高考数列用错位相减的几个步骤: 第一步:判断通项公式是否满足一下关系式: 第二步:写出求和的展开式: 第三步:在第二步的基础上等式两边同时乘上该等比数列的公比q 第四步:①——②化简得:n s 例题1:[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列???? ?? a n 2n 的前n 项和. 例题2:已知数列{a n }的前n 项和为S n ,且S n =2a n -1;数列{b n }满足b n -1-b n =b n b n -1(n ≥2,n ∈N *),b 1=1. (1)求数列{a n },{b n }的通项公式; (2)求数列???? ?? a n b n 的前n 项和T n . 课后练习: 已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若b n =na n ,求数列{b n }的前n 项和T n 。 (15年天津)已知 {}n a 是各项均为正数的等比数列,{}n b 是等差数列,且 112331,2a b b b a ==+=,5237a b -=. (I )求{}n a 和{}n b 的通项公式; (II )设c n =n a b n 求数列{}n c 的前n 项和. 已知等比数列{}n a 的公比1q >, 1a 和4a 的一个等比中项,2a 和3a 的等差中项为6,若数列{}n b 满足2log n n b a =(n ∈*N ). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和n S . (全国)已知数列{}n a 的首项32 1=a ,1 21+=+n n n a a a , 3,2,1=n (1)证明:数列??? ?? ?-11n a 是等比数列; (2)求数列? ?? ???n a n 的前n 项和n S 。 121122=+++=+++n n n n S c c c a b a b a b ……① 升高一次右边式子每一项的指数=n qS ……② c n n n n q B An b a c ++==).(即形如:n n n b a c =

错位相减法求和附答案解析00839

错位相减法求和专项 错位相减法求和适用于{a n`b n }型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意: ①项的对应需正确; ②相减后应用等比数列求和部分的项数为(n-1)项; ③若等比数列部分的公比为常数,要讨论是否为1 1. 已知二次函数的图象经过坐标原点,其导函数,数列的前项和为,点均在函数的图象上. (Ⅰ)求数列的通项公式; (Ⅱ)设,是数列的前项和,求. [解析]考察专题:2.1,2.2,3.1,6.1;难度:一般 [答案] (Ⅰ)由于二次函数的图象经过坐标原点, 则设,, ∴,∴, 又点均在函数的图象上, ∴. ∴当时,, 又,适合上式,

∴............(7分) (Ⅱ)由(Ⅰ)知,, ∴, ∴,上面两式相减得: . 整理得..............(14分)2.已知数列的各项均为正数,是数列的前n项和,且 . (1)求数列的通项公式; (2)的值. [答案]查看解析 [解析] (1)当n = 1时,解出a1 = 3, 又4S n = a n2 + 2a n-3 ①

当时4s n-1 = + 2a n-1-3 ② ①-②, 即, ∴ , (), 是以3为首项,2为公差的等差数列,6分 . (2)③ 又④ ④-③ = 12分 3.(2013年四川成都市高新区高三4月月考,19,12分)设函数 ,数列前项和,,数列,满足. (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前项和为,数列的前项和为,证明:

. [答案] (Ⅰ) 由,得 是以为公比的等比数列,故. (Ⅱ)由,得 …, 记…+, 用错位相减法可求得: . (注:此题用到了不等式:进行放大. )4.已知等差数列中,;是与的等比中项. (Ⅰ)求数列的通项公式: (Ⅱ)若.求数列的前项和 [解析](Ⅰ)因为数列是等差数列,是与的等比中项.所以,又因为,设公差为,则, 所以,解得或,

错位相减法数列求和十题

错位相减法数列求和十题 1.设正项等比数列{a n}的前n项和为S n,且a3=4,S2=3. 2.(1)求数列{a n}的通项公式; 3.(2)令b n=(2n-1)a n(n∈N*),求数列{b n}的前n项和为T n. 4.已知函数f(x)=x2+2x,数列{a n}的前n项和为S n,对一切正整数n,点P n(n,S n)都 在函数f(x)的图象上,且过点P n(n,S n)的切线的斜率为k n. 5.(1)求数列{a n}的通项公式;(2)若b n=2kn?a n,求数列{b n}的前n项和T n. 6.数列的前项和为,且是和的等差中项,等差数列满足 ? 7.(1)求数列、的通项公式 8.(2)设=,求数列的前项和. 9.(本小题满分12分)已知数列{a n}的前n项和为S n,且a n是S n与2的等差中项,数列 {b n}中,b1=1,点P(b n,b n+1)在直线上。 10.(1)求a1和a2的值;???? 11.(2)求数列{a n},{b n}的通项a n和b n; 12.(3)设c n=a n·b n,求数列{c n}的前n项和T n. 13.已知数列{a n}的前n项和为S n,点(a n+2,S n+1)在直线y=4x-5上,其中n∈N*.令 b n=a n+1-2a n.且a1=1.求数列{b n}的通项公式;若f(x)=b1x+b2x2+b3x3+…+b n x n,计算f′ (1)的结果. 14.已知数列的前项和,数列满足 15.(1)求数列的通项公式;(2)求数列的前项和; 16.(3)求证:不论取何正整数,不等式恒成立 17.已知等差数列{a n}的前n项和为S n,满足a1=1,S6=36,数列{b n}是等比数列且满足b1+b2=3, b4+b5=24。 18.(1)求数列{a n}和{b n}的通项公式; 19.(2)设c n=1+a n·b n,求c n的前n项和T n。 20.已知等差数列{a n}的公差d不为0,设S n=a1+a2q+…+a n q n-1,T n=a1-a2q+…+(-1)n-1a n q n-1, q≠0,n∈N*, 21.(1)若q=1,a1=1,S3=15,求数列{a n}的通项公式; 22.(2)若a1=d,且S1,S2,S3成等比数列,求q的值; 23.(3)若q≠±1,证明(1-q)S2n-(1+q)T2n=,n∈N*。

数列求和之错位相减法、倒序相加法

数列求和之错位相减法、倒序相加法 1、错位相减法适用于c n =a n ×b n ,其中a n {}是等差数列,b n {}是等比数列。 步骤:此时可把式子 的两边同乘以公比 q (q 10且 q 11),得到 ,两式错位相减整理即可求出 S n . 2、倒序相加法适用于数列首尾项的和为定值。 【例1】已知数列2 11,3,5, ,(21)(0)n a a n a a --≠,求前n 项和. 【例2】已知 a n { } 是一个公差大于0的等差数列,且满足 a 3a 6 =55,a 2+a 7=16 (Ⅰ)求数列 a n {}的通项公式: (Ⅱ)若数列 a n { } 和数列 b n { } 满足等式:2 n n n a b =,求数列 b n {} 的前n 项和S n .

【例3】求和:222 2sin 1sin 2sin 3sin 89+++ + 【例4】已知函数()()R x x f x ∈+= 2 41,点()111,y x P ,()222,y x P 是函数()x f 图像上 的两个点,且线段21P P 的中点P 的横坐标为2 1. (Ⅰ)求证:点P 的纵坐标是定值; (Ⅱ)若数列{}n a 的通项公式为()m n N m m n f a n ,,2,1, =∈? ? ? ??=,求数列{}n a 的前m 项的和m S ; 【变式训练】

1、已知数列26a --,14a --,2-,0,2a ,24a ,...,(-8+2n )3 n a -求前n 项和. 2、若数列 {}n a 的通项公式为23n a n =+,数列 b n { } 满足等式:2n n n b a =,求数列 b n { } 的 前n 项和S n 3、求cos1cos 2cos3cos178cos179+++++的值.

数列综合练习(错位相减法裂项相消法)

数列综合练习(一) 1.等比数列前n 项和公式: (1)公式:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1) na 1 (q =1) . (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q (1-q n )=A (q n -1).其中:A =a 1 q -1 . 3.推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和. 4.拆项成差求和经常用到下列拆项公式: (1)1n (n +1)=1n -1n +1; 一、选择题 1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5 S 2 等于( ) A .11 B .5 C .-8 D .-11 2.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10 S 5 等于( ) A .-3 B .5 C .-31 D .33 3.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4 a 2 等于( ) A .2 B .4 C.152 D.172 4.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.172 5.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n +k ,则实数k 的值为( ) A .0 B .1 C .-1 D .2 6.在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( ) A .514 B .513 C .512 D .510 二、填空题 7.若{a n }是等比数列,且前n 项和为S n =3n - 1+t ,则t =________. 8.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 9.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________. 10.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________. 三、解答题 11.在等比数列{a n }中,a 1+a n =66,a 3a n -2=128,S n =126,求n 和q . . 12.已知S n 为等比数列{a n }的前n 项和,S n =54,S 2n =60,求S 3n .

错位相减法(万能模板法)

精心整理 数列求和之错位相减法 用“错位相减法”求和的数列特征:即如果一个数列的各项是由一个等差数列 和一个等比数列的对应项乘积构成的,那么这个数列的前n 项和则采用“错位相减法” 求和 高考数列用错位相减的几个步骤: 第二步:写出求和的展开式: 第四步:①——②化简得:n s 例题1:[2014·全国新课标卷Ⅰ] 已知{a n }x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列?????? ??? ?a n 2n 的前n 项和. 例题2:已知数列{a n }的前n 项和为S n ,且-b n =b n b n -1(n ≥2,n ∈N *),b 1=1. (1)求数列{a n },{b n }的通项公式; (2)求数列???? ?? a n b n 的前n 项和T n . 课后练习: 已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若b n =na n ,求数列{b n }的前n 项和T n 。 (15年天津)已知 {}n a 是各项均为正数的等比数列,{} n b 是等差数列,且 112331,2a b b b a ==+=,5237a b -=. (I )求{}n a 和{}n b 的通项公式; (II )设c n =n a b n 求数列{}n c 的前n 项和. 已知等比数列{}n a 的公比1q >, 是1a 和4a 的一个等比中项,2a 和3a 的等差中项为6,若数列{}n b 满足2log n n b a =(n ∈*N ). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和n S . 121+=+n n a a , 3,2,1=n 121122=+++=++n n S c c c a b a b 右边式子每一项的指数=n qS c n n n n b a c +=即形如:

数列求和裂项法 错位相减法 分组求和法

数列求和的三种特殊求法 例1、已知数列{a n }的通项公式为a n =12-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和: (1)21 1,41 2,81 3,……n n 21 +,…… (2)1,211 +,3211 ++……n +??+++3211 …… (3)5,55,555.……,55……5,……(4)0.5,0.55,0.555,……,0.55……5,…… 例3、已知数列的的通项,求数列的前n 项和: (1) )1(1+=n n a n (2))2(1 +=n n b n (3){a n }满足a n =11++n n ,求S n (4)求和:+?+?=53431222n S ……+)12)(12()2(2 +-n n n (5)求和)2)(1(1 4321 3211 +++??+??+??=n n n S n 例4、求数列ΛΛ,,,3,2,32n na a a a (a 为常数)的前n 项和n S 。 练习:求和:21,223,325,……n n 21 2-,…… 知识演练: 1. (2009年广东第4题)已知等比数列}{n a 满足)3(2,,2,1,02525≥=?=>-n a a n a n n n 且Λ, 则当1≥n 时,=+++-1221212log log log n a a a Λ A .)12(-n n B .2)1(+n C .2n D .2)1(-n 2. (2010年山东第18题)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =21 1n a -(n ∈N *),求数列{}n b 的前n 项和n T . 3. (2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c =,求数列}{n c 的前n 项和T n 小结:数列求和的方法 分组求和,裂项相消(分式、根式),错位相减(差比数列) 数列求和的思维策略: 从通项入手,寻找数列特点

数列求和方法错位相减法分组求和

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 1文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 错位相减法求和 如:{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 例1. 已知数列)0()12(,,5,3,112≠--a a n a a n Λ,求前n 项和。 例2 求和S n =n n n n 2 12232252321132-+-++++-Λ 例3:求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数)的前n 项和。 例4(07高考全国Ⅱ文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且 1(1)21n a n d n =+-=-,112n n n b q --==.求数列n n a b ?????? 的前n 项和n S . 例5.设数列{a n }满足a 1+3a 2+32a 3+…+3 n-1a n = 3n ,n ∈N *. (1)求数列{a n }的通项; (2)设n n a n b =,求数列{b n }的前n 项和S n . 分组求和 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1:S n =-1+3-5+7-…+(-1)n (2n-1) 例2已知数列{}n a 的前五项是111111,2,3,4,5,392781243 (1)写出该数列的一个通项公式; (2)求该数列的前n 项和n S . 例3 求下面数列的前n 项和: 例4 求数列:1223 131311,,31311,311,1n +++++++ΛΛ的前n 项的和. 例5求2222121234(1)n S n -=-+-++-L (n N +∈) 例6、求和:???? ? ?+++???? ??++???? ?? +n n y x y x y x 11122Λ()1,1,0≠≠≠y x x 例7 求数列{n(n+1)(2n+1)}的前n 项和.

错位相减法数列求和法教学内容

错位相减法数列求和 法

特定数列求和法—错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求和的方法——错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过程: 数列{}n a 是由第一项为1a ,且公比为q 的等比数列,它的前n 项和是 111121...n n a a q a q a q s -=++++ ,求 n s 的通项公式。 解 由已知有 111121...n n a a q a q a q s -=++++, ○ 1 两端同乘以q ,有 231111...n n qs a q a q a q a q =++++ ○ 2 ○ 1-○2得 11(1)n n q s a a q -=- ○ 3 当1q =时,由○ 1可得 1n s na = 当1q ≠时,由○ 3可得 111n n a a q s q -= - 于是 1(1)n s na q == 或者 11(1)1n n a a q s q q -=≠- 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简化了,从而得到等比数列的求和公式,这种方法叫错位相减法,那我们是不是

遇到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的复杂数列的。可以归纳数学模型如下: 已知数列{}n a 是以1a 为首项,d 为公差的等差数列,数列{}n b 是以1b 为首项,(1)q q ≠为公比的等比数列,数列n n n c a b =,求数列{}n c 的前n 项和. 解 由已知可知 112233...n n n c a b a b a b a b =++++ ○ 1 两端同乘以q 可得 = 1223341...n n n n a b a b a b a b a b q -+++++ ○ 2 由○ 1-○2得 11231(1)(...)n n n n n q c a b d b b b b a b q --=+++++- 化简得 11231(...)(1)1n n n n n a b d b b b b a b q c q q -+++++-= ≠- 许许多多的高考试题以及课后习题证明了不是所有的数列题目都会很直接地写明所求数列是一个等比数列乘以一个等差数列的形式,通过对最近几年高考中的数列题的分析总结出了以下几种错位相减法求和类型: 所求数列中的等差数列是已知 这第一种类型的题顾名思义是所求的复杂数列中直接给出其中一个是等差数列,则只要证明或者求出另一个是等比数列,那么就可以用错位相减法来求解该题,同时如果另一个不能被证明是等比数列就不能用错位相减法来求解,得另找他法了. 例1.(2013湖南文)设n S 为数列{}n a 的前n 项和,已知: 11223311...n n n n n qc a b q a b q a b q a b q a b q --=+++++

相关主题
文本预览
相关文档 最新文档