当前位置:文档之家› 自适应滤波器设计与Matlab实现

自适应滤波器设计与Matlab实现

自适应滤波器设计与Matlab实现
自适应滤波器设计与Matlab实现

自适应滤波器:根据环境的改变,使用自适应算法来改变滤波器的参数和结构。这样的滤波器就称之为自适应滤波器。

数学原理编辑

以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。

20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。

以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得

式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。

B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量

式中憕【ε2(n)】为均方误差梯度估计,

k s为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。

自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。

抽头延迟线的非递归型自适应滤波器算法的收敛速度,取决于输入信号自相关矩阵特征值的离散程度。当特征值离散较大时,自适应过程收敛速度较慢。格型结构的自适应算法得到广泛的注意和实际应用。与非递归型结构自适应算法相比,它具有收敛速度较快等优点。人们还研究将自适应算法推广到递归型结构;但由于递归型结构自适应算法的非线性,自适应过程收敛性质的严格分析尚待探讨,实际应用尚受到一定限制。

自适应滤波器

自适应滤波器

应用领域编辑

自适应滤波器应用于通信领域的自动均衡、回波消除、天线阵波束形成,以及其他有关领域信号处理的参数识别、噪声消除、谱估计等方面。对于不同的应用,只是所加输入信号和期望信号不

自适应滤波器

发展前景编辑

1、广泛用于系统模型识别

如系统建模:其中自适应滤波器作为估计未知系统特性的模型。

2、通信信道的自适应均衡

如:高速modem采用信道均衡器:用它补偿信道失真,modem必须通过具有不同频响特性而产生不同失真的信道有效地传送数据,则要求信号均衡器具有可调系数,据信道特性对这些系数进行优化,以使信道失真的某些量度最小化。

又如:数字通信接收机:其中自适应滤波器用于信道识别并提供码间串扰的均衡器。

3、雷达与声纳的波束形成

如自适应天线系统,其中自适应滤波器用于波束方向控制,并可在波束方向图中提供一个零点以便消除不希望的干扰。

4、消除心电图中的电源干扰

如:自适应回波相消器,

自适应噪声对消器:其中自适应滤波器用于估计并对消预期信号中的噪声分量。

5、噪声中信号的滤波、跟踪、谱线增强以及线性预测等。

自适应滤波器设计及Matlab实现

摘要

本文从随机噪声的特性出发,分析了传统滤波和自适应滤波基本工作原理和性能,以及滤波技术的现状和发展前景。然后系统阐述了基本维纳滤波原理和自适应滤波器的基本结构模型,接着在此基础上结合最陡下降法引出LMS算法。在MSE准则下,设计了一个定长的自适应最小均方横向滤波器,并通过MATLAB编程实现。接着用图像复原来验证该滤波器的性能,结果表明图像的质量在MSE准则下得到了明显的改善。最后分析比较了自适应LMS滤波和频域维纳递归滤波之间的性能。本文还对MATLAB里面的自适应维纳滤波函数wiener2进行了简单分析。

关键字:退化图像维纳滤波自适应滤波最陡下降法 LMS

Abstract

This paper analyses the basic work theory, performance of traditional filter and adaptive filter based on the property of random noise, and introduce the status quo and the foreground of filter technology. Then we explain basic theory of wiener filter and basic structure model of adaptive filter, and combine the method of steepest descent to deduce the LMS. Afterward according to the MSE rule, we design a limited length transversal filter, and implement by MATLAB. And then we validate performance of adaptive LMS filter by restoring images, Test result show that the quality of the degrade images were improved under the rule of MSE. Finally, we compare the performance of adaptive LMS filter and iterative wiener filter.

We also simply analyses the wiener2 () which is a adaptive filter in MATLAB.

Keywords:degrade image;wiener filter;adaptive filter;ADF;LMS algorithm

目录

1绪论 (1)

1. 1 引言 (1)

1. 2 研究目标及现状 (1)

1. 2 .1 图像复原技术的目标 (1)

1. 2 .2 图像复原技术的研究现状 (1)

2理论基础 (3)

2. 1 基本自适应滤波器的模块结构 (3)

2. 2 基本维纳滤波原理 (4)

3自适应滤波原理及算法 (6)

3.1 横向滤波结构的最陡下降算法 (7)

3.1.1 最陡下降算法的原理 (7)

3.1.2 最陡下降算法稳定性 (10)

3.2 LMS滤波原理及算法 (11)

3.2.1 从最陡下降算法导出LMS算法 (11)

3.2.2 基本LMS算法的实现步骤 (11)

3.2.3 基本LMS算法的实现流程图 (12)

3.2.4 LMS算法的Matlab实现 (12)

3.2.5 wiener2()的原理 (12)

3.2.6 LMS性能分析——自适应收敛性 (13)

4Matlab 实验结果 (14)

4.1.LMS滤波器的收敛性 (14)

4.2.LMS滤波器和频域迭代维纳滤波器的性能比较 (16)

5总结 (18)

致谢 (19)

参考文献 (20)

附录 A (21)

附录 B (22)

附录 C (27)

1 绪论

1.1引言

人类传递信息的主要媒介是语言和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉、触觉、嗅觉总的加起来不过占20%,所以图像信息是十分重要的信息[1]。然而,在图像的获取和图像信号的传输过程中,图像信号中不可避免的混入各种各样的随机噪声,造成图像失真(图像退化)。造成人类所获取的信息和实际是有偏差的,成为人类从外界获取准确信息的障碍。因此,对图像信号中的随机噪声的抑制处理是图像处理中非常重要的一项工作。

在图像的获取和传输过程中所混入的噪声,主要来源于通信系统中的各种各样的噪声,根据通信原理及统计方面的知识,可以知道在通信系统中所遇到的信号和噪声,大多数均可视为平稳的随机过程[15]。又有“高斯过程又称正态随机过程,它是一种普遍存在和重要的随机过程,在通信信道中的噪声,通常是一种高斯过程,故又称高斯噪声。因此,在大多数的情况下,我们可以把造成图像失真的噪声可视为广义平稳高斯过程。

本文针对图像信号中混入的随机噪声,在怎样把现有的滤波算法应用到实际的图像复原中去的问题上提出了解决方法,并且应用Matlab 软件编程对图像进行处理。

1.2研究目标及现状

1.2.1图像复原技术的目标

为了从含有噪声的数据中提取我们所感兴趣的、接近规定质量的图像,我们需要设计一个系统满足:当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制,即最佳滤波器。

1.2.2图像复原技术的研究现状

目前的图像复原技术,即去噪的滤波技术可以分为两大类:传统滤波和现代滤波。传统滤波技术是建立在已知有用信号和干扰噪声的统计特性(自相关函数或功率谱)的基础上的噪声去除;现代滤波技术则是不需要知道图像的先验知识,只是根据观测数据,即可对噪声进行有效滤除。

早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

几个分形的matlab实现

几个分形得matlab实现 摘要:给出几个分形得实例,并用matlab编程实现方便更好得理解分形,欣赏其带来得数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间得三分之一部分用一个等边三角形得两边代替,形成山丘形图形如下 ?图1 在新得图形中,又将图中每一直线段中间得三分之一部分都用一个等边三角形得两条边代替,再次形成新得图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)得过程。图1中,设与分别为原始直线段得两个端点,现需要在直线段得中间依次插入三个点,,。显然位于线段三分之一处,位于线段三分 之二处,点得位置可瞧成就是由点以点为轴心,逆时针旋转600而得。旋转由正交矩阵 实现。 算法根据初始数据(与点得坐标),产生图1中5个结点得坐标、结点得坐标数组形成一个矩阵,矩阵得第一行为得坐标,第二行为得坐标……,第五行为得坐标。矩阵得第一列元素分别为5个结点得坐标,第二列元素分别为5个结点得坐标。 进一步考虑Koch曲线形成过程中结点数目得变化规律。设第次迭代产生得结点数为,第次迭代产生得结点数为,则与中间得递推关系为。 三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点得坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) —sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点得坐标之差,得到相邻两点确定得向量 %则d就计算出每个向量长度得三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n—1,:); %以原点为起点,前n—1个点得坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上得点得坐标为迭代前得相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上得点得坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上得点得坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上得点得坐标 n=m; %迭代后新得结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点得连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分得程序,可得到如下得Koch分形曲线:

matlab滤波器设计

长安大学 数字信号处理综合设 计 专业_______电子信息工程_______ 班级__24030602___________ 姓名_______张舒_______ 学号2403060203 指导教师陈玲 日期_______2008-12-27________

一、课程设计目的: 1. 进一步理解数字信号处理的基本概念、基本理论和基本方法; 2.熟悉在Windows环境下语音信号采集的方法; 3.学会用MATLAB软件对信号进行分析和处理; 4.综合运用数字信号处理理论知识,掌握用MATLAB软件设计FIR和IIR数字滤波器的方法; 5. 提高依据所学知识及查阅的课外资料来分析问题解决问题的能力。 二、课程设计内容: 1.语音信号的采集 利用windows下的录音机录制一段自己的话音,时间控制在1秒左右;并对语音信号进行采样,理解采样频率、采样位数等概念。 2.语音信号的频谱分析 利用函数fft对采样后语音信号进行快速傅里叶变换,得到信号的频谱特性。 3.设计数字滤波器 采用窗函数法和双线性变换法设计下列要求的三种滤波器,根据语音信号的特点给出有关滤波器的性能指标: 1)低通滤波器性能指标,fp=1000Hz,fc=1200Hz, As=100dB,Ap=1dB; 2)高通滤波器性能指标,fc=4800Hz,fp=5000Hz ,As=100dB,Ap=1dB; 3)带通滤波器性能指标,fp1=1200Hz,fp2=3000Hz,fc1=1000Hz,fc2=3200Hz,As=100dB,Ap=1dB。 4.对语音信号进行滤波 比较用两种方法设计的各滤波器的性能,然后用性能好的滤波器分别对采集的语音信号进行滤波;并比较滤波前后语音信号的波形及频谱,分析信号的变化。 5.回放语音信号,感觉滤波前后的声音变化。 三、实验原理 (一)基于双线性Z变换法的IIR数字滤波器设计 由于的频率映射关系是根据推导的,所以使jΩ轴每隔2π/Ts便映射到单位圆上一周,利用冲激响应不变法设计数字滤波器时可能会导致上述的频域混叠现象。为了克服这一问题,需要找到由s平面到z平面的另外的映射关系,这种关系应保证: 1) s平面的整个jΩ轴仅映射为z平面单位圆上的一周; 2) 若G(s)是稳定的,由G(s)映射得到的H(z)也应该是稳定的; 3) 这种映射是可逆的,既能由G(s)得到H(z),也能由H(z)得到G(s); 4) 如果G(j0)=1,那么。 双线性Z变换满足以上4个条件的映射关系,其变换公式为

Matlab实验报告:分形迭代

数学实验报告:分形迭代 练习1 1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代。 4.实验步骤: (1)Koch曲线 function koch(p,q,n) % p、q分别为koch曲线的始末复坐标,n为迭代次数 if (n==0) plot([real(p);real(q)],[imag(p);imag(q)]); hold on; axis equal else a=(2*p+q)/3; % 求出从p 到q 的1/3 处端点a b=(p+2*q)/3; % 求出从p 到q 的2/3 处端点b c=a+(b-a)*exp(pi*i/3);% koch(p, a, n-1); % 对pa 线段做下一回合 koch(a, c, n-1); % 对ac 线段做下一回合 koch(c, b, n-1); % 对cb 线段做下一回合 koch(b, q, n-1); % 对bq 线段做下一回合 end (2)Sierpinski三角形 function sierpinski(a,b,c,n) % a、b、c为三角形顶点,n为迭代次数 if (n==0) fill([real(a) real(b) real(c)],[imag(a) imag(b) imag(c)],'b');% 填充三角形abc hold on; axis equal else a1=(b+c)/2; b1=(a+c)/2; c1=(a+b)/2; sierpinski(a,b1,c1,n-1); sierpinski(a1,b,c1,n-1); sierpinski(a1,b1,c,n-1); end (3)树木花草 function grasstree(p,q,n) % p、q分别为树木花草始末复坐标,n为迭代次数

各类滤波器的MATLAB程序清单

各类滤波器的MATLAB程序 一、理想低通滤波器 IA=imread(''); [f1,f2]=freqspace(size(IA),'meshgrid'); Hd=ones(size(IA)); r=sqrt(f1.^2+f2.^2); Hd(r>=0; Y=fft2(double(IA)); Y=fftshift(Y); Ya=Y.*Hd; Ya=ifftshift(Ya); Ia=ifft2(Ya); figure subplot(2,2,1),imshow(uint8(IA)); subplot(2,2,2),imshow(uint8(Ia)); figure surf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); 二、理想高通滤波器 IA=imread(''); [f1,f2]=freqspace(size(IA),'meshgrid'); Hd=ones(size(IA)); r=sqrt(f1.^2+f2.^2); Hd(r<=0; Y=fft2(double(IA));

Y=fftshift(Y); Ya=Y.*Hd; Ya=ifftshift(Ya); Ia=real(ifft2(Ya)); figure subplot(2,2,1),imshow(uint8(IA)); subplot(2,2,2),imshow(uint8(Ia)); figure surf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); 三、B utterworth低通滤波器 IA=imread(''); [f1,f2]=freqspace(size(IA),'meshgrid'); D=; r=f1.^2+f2.^2; n=4; for i=1:size(IA,1) for j=1:size(IA,2) t=r(i,j)/(D*D); Hd(i,j)=1/(t^n+1); end end Y=fft2(double(IA)); Y=fftshift(Y); Ya=Y.*Hd; Ya=ifftshift(Ya); Ia=real(ifft2(Ya));

滤波器设计MATLAB

数字信号处理

第一章概述 《数字信号处理》课程是通信专业的一门重要专业基础课,是信息的数字化处理、存储和应用的基础。通过该课程的课程设计实践,使我们对信号与信息的采集、处理、传输、显示、存储、分析和应用等有一个系统的掌握和理解,巩固和运用在《数字信号处理》课程中所学的理论知识和实验技能,掌握数字信号处理的基础理论和处理方法,提高分析和解决信号与信息处理相关问题的能力,为以后的工作和学习打下基础。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。 其中,设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用

最广泛的是双线性变换法。 我们在课本中学到基本设计过程是: ①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; ②设计过渡模拟滤波器; ③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。 而MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。 第二章总体方案设计 首先我将所给信号用MATLAB作图分析,然后通过观察st的幅频特性曲线,确定用高通滤波器作为处理信号的滤波器。选取滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 为参数。 然后通过编程序调用MATLAB滤波器设计函数ellipord和ellip设计椭圆滤波器;通过编程序调用函数cheb1ord和cheby1设计切比雪夫滤波器,并绘图显示其幅频响应特性曲线。最后使用用滤波器实现函数filter,用两个滤波器分别对信号st进行滤波后绘图显示时域波形,观察滤波效果。 实验程序框图如图所示:

关于滤波器设计的matlab函数简表

关于滤波器设计、实现的Matlab函数分类函数名功能说明 滤波器分析 (求幅频、相频响应)abs求模值 angle求相角 freqs模拟滤波器的频率响应freqz数字滤波器的频率响应grpdelay群延迟 impz脉冲响应(离散的)zplane画出零极点图 fvtool滤波器可视化工具 滤波器实现(求输入信号通过滤波器的响应)conv/conv2卷积/二维卷积 filter求信号通过滤波器的响应 IIR滤波器阶数估算buttord巴特沃斯滤波器阶数估算 cheb1ord切比雪夫Ⅰ型滤波器阶数估算 cheb2ord切比雪夫Ⅱ型滤波器阶数估算 ellopord椭圆滤波器阶数估算 IIR数字滤波器设计(求系统函数H(z))butter cheby1 cheby2 ellip 模拟低通滤波器原型(归一化的)buttap模拟低通巴特沃斯滤波器原型cheb1ap模拟低通切比雪夫Ⅰ型滤波器原型cheb2ap模拟低通切比雪夫Ⅱ型滤波器原型ellipap模拟低通椭圆滤波器原型besselap模拟低通贝塞尔滤波器原型 模拟低通滤波器设计(求系统函数H(s))butter巴特沃斯滤波器设计cheby1切比雪夫Ⅰ型滤波器设计cheby2切比雪夫Ⅱ型滤波器设计ellip椭圆滤波器设计besself贝塞尔滤波器设计 模拟滤波器频带变换lp2bp低通→带通 lp2bs低通→带阻 lp2hp低通→高通 lp2lp低通→低通 滤波器离散化(由模拟滤波器得到数字滤波器)bilinear脉冲响应不变法impinvar双线性变换法 FIR滤波器设计fir1基于窗函数的FIR滤波器设计 fir2基于窗函数的任意响应FIR滤波器设 计 窗函数boxcar矩形窗 rectwin矩形窗 bartlett三角窗

数字滤波器的MATLAB设计与DSP上的实现

数字滤波器的MAT LAB设计与 DSP上的实现 数字滤波器的MATLAB 设计与DSP上的实现 公文易文秘资源网佚名2007-11-15 11:56:42我要投稿添加到百度搜藏 摘要:以窗函数法设计线性相位FIR数字滤波器为例,介绍用MATLAB工具软件设计数字滤波器的方法和在定点DSP上的实现。实现时,先在CCS5000仿真开发,然后将程序加载到TMS320VC5409评估板上实时运行,结果实现了目标要求。文中还讨论了定标、误差、循环寻址等在DSP上实现的关键问题。关键词 摘要:以窗函数法设计线性相位 FIR数字滤波器为例,介绍用 MATLAB工具软件设计数字滤波器的方法和在定点DSP上的实现。实现时,先在 CCS5000仿真开发,然后将程序加载到 TMS320VC5 409评估板上实时运行,结果实现了目标要求。文中还讨论了定标、误差、循环寻址等在DSP上实 现的关键问题。 关键词:数字滤波器MATLAB DSP 引言 随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应

用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。 1数字滤波器的设计 1.1数字滤波器设计的基本步骤 数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR )滤波器和有限长冲激响应(FIR )滤波器。IIR滤波器的特征是,具有无限持续时间冲激响应。种滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。FIR滤波器的冲激响应只能延续一定时间, 在工程实际中可以采用递归的方式实现,也可以采用非递归的方式实现。数字滤波器的设计方法有多种,如双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等。随着 MATLAB软件尤 其是MATLAB的信号处理工作箱的不断完善,不仅数字滤波器的计算机辅助设计有了可能,而且还可以使设计达到最优化。 数字滤波器设计的基本步骤如下: (1确定指标 在设计一个滤波器之前,必须首先根据工程实际的需要确定滤波器的技术指标。在很多实际应用中,数字滤波器常常被用来实现选频操作。因此,指标的形式一般在频域中给岀幅度和相位响应。幅度指标主要以两种方式给岀。第一种是绝对指标。它提供对幅度响应函数的要求,一般应用于FI R滤波器的设计。第二种指标是相对指标。它以分贝值的形式给岀要求。在工程实际中,这种指标最受欢迎。对于相位响应指标形式,通常希望系统在通频带中人有线性相位。运用线性相位响应指标进行滤波器设计具有如下优点:①只包含实数算法,不涉及复数运算;②不存在延迟失真,只有固定数量的延迟;③长度为N的滤波器(阶数为N-1),计算量为N/2数量级。因此,本文中滤波器的设计就以线性相位FIR滤波器的设计为例。 (2)逼近

分形树__Matlab

%这是一个生成树的主函数,它的输入分别为每叉树枝的缩短比、树枝的偏角、生长次数. %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %%小提示:若用做函数,请将虚线框内语句删去。 function f=tree(w,dtheata,NN) %%%--------------------虚线框--------------------%%% clear;clc;clf;w=0.8;dtheata=pi/6;NN=8;%建议生长次数NN不要超过10 %%%--------------------虚线框--------------------%%% n=2^NN;%从主枝算起,共需生成2^NN个树枝 for NNK=1:n x1=0; y1=0; r1=1; theata1=pi/2; dataway=ten2twoN(NNK,NN); %把每一个树枝的编号转化为一个NN位的二进制数 for NNL=1:NN if dataway(NNL)==0 [x2,y2,r2,theata2]=antmoveleft(x1,y1,r1,theata1,w,dtheata);%若路径数组上对应的数字为0,则向左生长 x1=x2; y1=y2; r1=r2; theata1=theata2; hold on %pause(eps) else [x2,y2,r2,theata2]=antmoveright(x1,y1,r1,theata1,w,dtheata);%否则,数字为1,向右生长 x1=x2; y1=y2; r1=r2; theata1=theata2; hold on %pause(eps) end end end hold off %--------------------------------------------------------------------------

基于matlab-的巴特沃斯低通滤波器的实现

基于matlab 的巴特沃斯低通滤波器的实现 一、课程设计的目的 运用MATLAB实现巴特沃斯低通滤波器的设计以及相应结果的显示,另外还对多种低通滤波窗口进行了比较。 二、课程设计的基本要求 1)熟悉和掌握MATLAB 的基本应用技巧。 2)学习和熟悉MATLAB相关函数的调用和应用。 3)学会运用MATLAB实现低通滤波器的设计并进行结果显示。 三、双线性变换实现巴特沃斯低通滤波器的技术指标: 1.采样频率10Hz。 2.通带截止频率fp=0.2*pi Hz。 3.阻带截止频率fs=0.3*pi Hz。 4.通带衰减小于1dB,阻带衰减大于20dB 四、使用双线性变换法由模拟滤波器原型设计数字滤波器 程序代码: T=0.1; FS=1/T; fp=0.2*pi;fs=0.3*pi; wp=fp/FS*2*pi; ws=fs/FS*2*pi; Rp = 1; % 通带衰减 As = 15; % 阻带衰减 OmegaP = (2/T)*tan(wp/2); % 频率预计 OmegaS = (2/T)*tan(ws/2); % 频率预计 %设计巴特沃斯低通滤波器原型

N = ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS))); OmegaC = OmegaP/((10^(Rp/10)-1)^(1/(2*N))); [z,p,k] = buttap(N); %获取零极点参数 p = p * OmegaC ; k = k*OmegaC^N; B = real(poly(z)); b0 = k; cs = k*B; ds = real(poly(p)); [b,a] = bilinear(cs,ds,FS);% 双线性变换 figure(1);% 绘制结果 freqz(b,a,512,FS);%进行滤波验证 figure(2); % 绘制结果 f1=50; f2=250; n=0:63; x=sin(2*pi*f1*n)+sin(2*pi*f2*n); subplot(2,2,1);stem(x,'.'); title ('输入信号'); y=filter(b,a,x); subplot(2,2,2);stem(y,'.') ; title('滤波之后的信号'); figure(3) ; stem(y,'.') title('输出的信号'))

基于matlab的FIR数字滤波器设计(多通带,窗函数法)

数字信号处理 课程设计报告 设计名称:基于matlab的FIR数字滤波器设计 彪

一、课程设计的目的 1、通过课程设计把自己在大学中所学的知识应用到实践当中。 2、深入了解利用Matlab设计FIR数字滤波器的基本方法。 3、在课程设计的过程中掌握程序编译及软件设计的基本方法。 4、提高自己对于新知识的学习能力及进行实际操作的能力。 5、锻炼自己通过网络及各种资料解决实际问题的能力。 二、主要设计内容 利用窗函数法设计FIR滤波器,绘制出滤波器的特性图。利用所设计的滤波器对多个频带叠加的正弦信号进行处理,对比滤波前后的信号时域和频域图,验证滤波器的效果。 三、设计原理 FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。 目前 FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求高的时候是比较灵活方便的。 如果 FIR 滤波器的 h(n)为实数, 而且满足以下任意条件,滤波器就具有准确的线性相位: 第一种:偶对称,h(n)=h(N-1-n),φ (ω)=-(N-1)ω/2 第二种:奇对称,h(n)=-h(N-1-n), φ(ω)=-(N-1)ω/2+pi/2 对称中心在n=(N-1)/2处 四、设计步骤 1.设计滤波器 2.所设计的滤波器对多个频带叠加的正弦信号进行处理 3.比较滤波前后信号的波形及频谱 五、用窗函数设FIR 滤波器的基本方法 基本思路:从时域出发设计 h(n)逼近理想 hd(n)。设理想滤波器的单位响应在时域表达为hd(n),则Hd(n) 一般是无限长的,且是非因果的,不能

FIR低通滤波器+matlab编程+滤波前后图形

Matlab实现振动信号低通滤波 附件txt中的数字是一个实测振动信号,采样频率为5000Hz,试设计一个长度为M=32的FIR低通滤波器,截止频率为600Hz,用此滤波器对此信号进行滤波。要求: (1)计算数字截止频率; (2)给出滤波器系数; (3)绘出原信号波形; (4)绘出滤波后的信号波形; 解答过程: 第一部分:数字截止频率的计算 =600/5000/2=0.24 数字截止频率等于截止频率除以采样频率的一半,即 n 第二部分:滤波器系数的确定 在matlab中输入如下程序,即可得到滤波器系数: n=32 Wn=0.24 b=fir1(n,Wn) 得到的滤波器系数b为 Columns 1 through 9 -0.0008 -0.0018 -0.0024 -0.0014 0.0021 0.0075 0.0110 0.0077 -0.0054 Columns 10 through 18 -0.0242 -0.0374 -0.0299 0.0087 0.0756 0.1537 0.2166 0.2407 0.2166 Columns 19 through 27 0.1537 0.0756 0.0087 -0.0299 -0.0374 -0.0242 -0.0054 0.0077 0.0110 Columns 28 through 33 0.0075 0.0021 -0.0014 -0.0024 -0.0018 -0.0008 第三部分:原信号波形 将附件4中的dat文件利用识别软件读取其中的数据,共1024个点,存在TXT 文档中,取名bv.txt,并复制到matlab的work文件夹。 在matlab中编写如下程序: x0=load('zhendong.txt'); %找到信号数据地址并加载数据。 t=0:1/5000:1023/5000; %将数据的1024个点对应时间加载

matlab数字滤波器设计程序

%要求设计一butterworth低通数字滤波器,wp=30hz,ws=40hz,rp=0.5,rs=40,fs=100hz。>>wp=30;ws=40;rp=0.5;rs=40;fs=100; >>wp=30*2*pi;ws=40*2*pi; >> [n,wn]=buttord(wp,ws,rp,rs,'s'); >> [z,p,k]=buttap(n); >> [num,den]=zp2tf(z,p,k); >> [num1,den1]=impinvar(num,den); Warning: The output is not correct/robust. Coeffs of B(s)/A(s) are real, but B(z)/A(z) has complex coeffs. Probable cause is rooting of high-order repeated poles in A(s). > In impinvar at 124 >> [num2,den2]=bilinear(num,den,100); >> [h,w]=freqz(num1,den1); >> [h1,w1]=freqz(num2,den2); >>subplot(1,2,1); >>plot(w*fs/(2*pi),abs(h)); >>subplot(1,2,2); >>plot(w1*fs/(2*pi),abs(h1)); >>figure(1); >>subplot(1,2,1); >>zplane(num1,den1); >>subplot(1,2,2); >>zplane(num2,den2);

Newton分形的原理及Matlab实现

龙源期刊网 https://www.doczj.com/doc/622289895.html, Newton分形的原理及Matlab实现 作者:张健徐聪全付勇智 来源:《电脑知识与技术》2009年第24期 摘要:详细推导了复平面上Newton迭代法的原理和计算公式,用MATLAB编制程序实现了Newton迭代算法,得到了一些奇异、绚丽的分形图形。对《数学实验》课程有一定的参考价值。 关键词:Newton迭代法;分形;Matlab;数学实验 中图分类号:TP312文献标识码:A文章编号:1009-3044(2009)24-6997-03 The Principles of Newton Fractal and it's Realization Using MATLAB ZHANG Jian, XU Cong-quan, FU Yong-zhi (Department of Basic Courses, Southwest Forestry College, Kunming 650224, China) Abstract: The Principles and formulas of Newton fractal was explained,fractal graphics of Newton iteration was created using Matlab. Key words: newton iteration; fractal; Matlab; mathematical experimental 分形是非线性科学的一个重要分支,应用于自然科学和社会科学的众多领域。其中,分形图形以其奇异、绚丽多彩的特点,广泛应用于纺织印染、广告设计、装潢设计、计算机美术教学 等领域[1]。 很多分形图形都是用迭代的方式实现的,Newton迭代法就是其中的一种。由Newton迭代 法产生的分形图形称为Newton分形[2]。很多文献都对Newton分形进行了介绍,但都没有详细的计算公式和算法说明,读者很难编制相应程序。本文详细介绍了复平面上Newton迭代法的原理和计算公式,设计了相应的实现算法,并用Matlab编制程序实现了Newton分形的绘制,生成了一些奇异、瑰丽的分形图形。

基于MATLAB的巴特沃斯滤波器

数字信号处理课程设计 2015年 6 月25 日

目录 一.设计目的: (3) 二.设计要求: (3) 三.设计内容: (4) 3.1选择巴特涡斯低通数据滤波器及双线性变换法的原因 (4) 3.2巴特沃思低通滤波器的基本原理 (4) 3.3双线性变换法原理 (5) 3.4数字滤波器设计流程图 (7) 3.5数字滤波器的设计步骤 (7) 四.用matlab实现巴特沃斯低通数字滤波器的仿真并分析 (9) 4.1巴特沃斯低通数字滤波器技术指标的设置 (9) 4.2用matlab实现巴特沃斯低通数字滤波器的仿真 (9) 4.3波形图分析: (12) 五.总结与体会 (13) 六.附录参考文献 (14) 2

一.设计目的: 该课程设计是测控技术与仪器专业的必修课,开设课程设计的目的使学生掌握数字信号处理的基本概念和基本理论,能够利用辅助工具进行FIR和IIR数字滤波器的设计,进行一维信号的频谱分析,并进行仿真验证。加强实践教学环节,加强学生独立分析、解决问题的能力,培养学生动手能力和解决实际问题的能力,实现宽口径教育。 (1)理解低通滤波器的过滤方法。 (2)进一步熟悉低通滤波器的基本应用。 (3)用仿真工具matlab软件对设计的滤波器进行软件和硬件仿真。 (6)将对仿真结果进行比较,从而检验滤波器滤波性能的准确性。 二.设计要求: 地震发生时,除了会产生地震波,还会由地层岩石在断裂、碰撞过程中所发生的震动产生次声波。它的频率大约在每秒十赫兹到二十赫兹之间(可以用11Hz和15Hz的两个信号的和进行仿真,幅度可以分别设定为1、2)。大气对次声波的吸收系数很小,因此它可以传播的很远,而且穿透性很强。通过监测次声波信号可以监测地震的发生、强度等信息,因为自然界中广泛存在着各种次声波,这就对地震产生的次声波产生了干扰(可以用白噪声模拟,方差为5),需要采取一定的处理方法,才能检测到该信号,要求设计检测方案;并处理方法给出具体的软件(可以以51系列单片机、STM32F407、TMS320F28335或TMS320F6745为例)。 假设地震次声波信号为x,输入x=sin(2*π*11*t)+2*sin(2*π*15*t)和伴有白噪声的合成信号,经过滤波器后滤除15Hz以上的分量,即只保留x=sin(2*π*11*t)+2*sin(2*π*15*t)的分量信号,来验证设计的滤波器是否达到了设计要求。 3

基于MATLAB的滤波器设计

基于MATLAB 的滤波器设计 摘 要:利用MA TLAB 设计滤波器,可以按照设计要求非常方便地调整设计参数,极大地减轻了设计的工作量,有利于滤波器设计的最优化。Matlab 因其强大的数据处理功能被广泛应用于工程计算,其丰富的工具箱为工程计算提供了便利,利用Matlab 信号处理工具箱可以快速有效地设计各种数字滤波器,设计简单方便。本文介绍了在MATLAB R2011a 环境下滤波器设计的方法和步骤。 关键词:滤波器,matlab ,FIR ,IIR Abstract :By using MATLAB , we can design filters and modify the filters’parameters conveniently according to our demands. This relieves greatly design work loads and makes for optimization of filter designing. Matlab can be widely used in engineering calculations because of its powerful functions of data processing. Its rich toolbox makes the calculations easy. With Matlab signal processing toolbox, various digital filters can be designed effectively in simple way. This article introduce the methods and processes in the circumstance of MATLAB R2011a. Keywords :filter ,matlab ,fdatool 1.滤波器的原理 凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器,相当于频率“筛子”。 滤波器的功能就是允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路。 滤波器中,把信号能够通过的频率范围,称为通频带或通带;反之,信号受到很大衰减或完全被抑制的频率范围称为阻带;通带和阻带之间的分界频率称为截止频率;理想滤波器在通带内的电压增益为常数,在阻带内的电压增益为零;实际滤波器的通带和阻带之间存在一定频率范围的过渡带。 a .理想滤波器的频率特性 理想滤波器:使通带内信号的幅值和相位都不失真,阻喧内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。 如理想低通滤波器的频率响应函数为 0()()jw t C H jw A l W W Ω-=≤ 或 ()0()C H jw W W =>理想滤波器实际上并不存在。 b .实际滤波器 实际滤波器的特性需要以下参数描述: 1)恒部平均值A0:描述通带内的幅频特性;波纹幅度:d 。 2)上、下截止频率:以幅频特性值为A0/2时的相应频率值WC1,WC2作为带通滤波器的上、下截止频率。带宽21C C B W W =-。

基于MATLAB的数字滤波器设计

基于matlab的数字滤波器设计 摘要:本文介绍的是数字滤波器在MATLAB环境下的设计方法。数字滤波是数字信号处理的重要内容,在实际应用中有非常大的作用。我们研究的数字滤波器可分为IIR和FIR两大类。对于IIR数字滤波器的设计,我们需要借助模拟原型滤波器,然后再将模拟滤波器转化为数字滤波器,文中采用的设计方法是脉冲响应不变法、双向性变换法和完全函数设计法;对于FIR数字滤波器的设计,可以根据所给定的频率特性直接设计,文中采用的设计方法是窗函数法。根据IIR 滤波器和FIR滤波器的特点,本文在MATLAB坏境下分别用双线性变换法设计IIR和用窗函数设计FIR数字滤波器,并让这两种滤波器对采集的语音信号进行分析和比较,经过分析,最后给出了IIR和FIR对语音滤波的效果,并总结这两种滤波器在MATLAB环境下设计方法的优缺点。 关键词:数字滤波器;IIR ;FIR ;MATLAB

The Design of Digital Filter based on MATLAB Abstract:This article describes a digital filter in the MATLAB environment design. Digital filtering is an important part of digital signal processing which is playing a very big role in practice .The digital filter we studied can be divided into two categories——IIR and FIR. For the IIR digital filter design, we will need the help of simulation prototype filter, analog filters and then converted it into digital filter For the IIR digital filter design .The design methods used in the text is the same impulse response method, bi-sexual transformation and full function design ;We can based on the frequency characteristics of the given direct design, design method used in the text is the window function for FIR digital filter design. Based on the characteristics of IIR filter and FIR filters ,the bad paper in the MATLAB environment under the bilinear transformation method were used to design IIR and FIR with window function digital filter design and filters to capture both the voice signal analysis and compare. Through analysis of IIR and FIR Finally, the effect of filtering on the speech, and concluded the advantages and disadvantages in the two filter design methods in the MATLAB environment. Key words: Digital Filter ;IIR;FIR;MATLAB

几个分形matlab实现

几个分形的matlab实现 摘要:给出几个分形的实例,并用matlab编程实现方便更好的理解分形,欣赏其带来的数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下 图1 在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)的过程。图1中,设 1 P和 5 P分别为 原始直线段的两个端点,现需要在直线段的中间依次插入三个点 2 P, 3 P, 4 P。显然 2 P位 于线段三分之一处, 4 P位于线段三分之二处, 3 P点的位置可看成是由 4 P点以 2 P点为轴心,逆时针旋转600而得。旋转由正交矩阵 ?? ? ? ? ? ? ? - = ) 3 cos( ) 3 sin( ) 3 sin( ) 3 cos( π π π π A 实现。 算法根据初始数据( 1 P和 5 P点的坐标),产生图1中5个结点的坐标。结点的坐标数组形成一个2 5?矩阵,矩阵的第一行为 1 P的坐标,第二行为 2 P的坐标……,第五行为 5 P的坐标。矩阵的第一列元素分别为5个结点的x坐标,第二列元素分别为5个结点的y坐标。 进一步考虑Koch曲线形成过程中结点数目的变化规律。设第k次迭代产生的结点数为k n,第1 + k次迭代产生的结点数为 1+ k n,则 k n和 1+ k n中间的递推关系为3 4 1 - = +k k n n。

三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量 %则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标 n=m; %迭代后新的结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点的连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分的程序,可得到如下的Koch分形曲线: 图2 五、注记: 1.参照实验方法,可绘制如下生成元的Koch 分形曲线:

相关主题
文本预览
相关文档 最新文档