当前位置:文档之家› 声学基础

声学基础

声学基础
声学基础

噪声测试讲义

第一章声学基础知识

第一节声音的产生与传播

一、声音的产生

首先我们看几个例子:敲鼓时听到了鼓声,同时能摸到鼓面的振动;人能讲话是由于喉咙声带的振动;汽笛声、喷气飞机的轰鸣声,是因为排气时气体振动而产生的。通过观察实践人们发现一切发声的物体都在振动,振动停止发声也停止。因此,人们得出声音是由于物体的振动产生的结论。

二、声源及噪声源

发声的物体叫声源,包括一切固体、液体和气体。

产生噪声的发声体叫噪声源。

三、声音的传播

声音的传播需要借助物体的,传声的物体也叫介质,因此,声音靠介质传播,没有介质声音是无法传播的,真空不能传声,在真空中我们听不到声音。

声音的传播形式(以大气为例)是以疏密相间的波的形式向远处传播的,因此也叫声波。当声振动在空气中传播时空气质点并不被带走,它只是在原来位置附近来回振动,所以声音的传播是指振动的传递。

四、声速

声音的传播是需要一定时间的,传播的快慢我们用声速来表示。

声速定义:每秒声音传播的距离,单位:M/s。在空气中声速是340 m/s,水中声速为 1450m/s ,而在铜中则为 5000m/s。可见,声音在液体和固体中的传播速度一般要比在空气中快得多,另外,声速还和温度有关。

第二节人是怎样听到声音的

一、人耳的构造

人耳是由外耳、中耳和内耳三部分组成,各部分具有不同的作用共同来完成人的听觉。

耳朵三部分组成结构见彩图。

外耳,包括耳壳和外耳道,它只起着收集声音的作用。

中耳,包括鼓膜、鼓室、咽鼓管等部分。由耳壳经过外耳道可通到鼓膜,这里便进人中耳了。

鼓膜俗称耳膜,呈椭圆形,只有它才是接受声音信号的,它能随着外界空气的振动而振动,再把这振动传给后面的器官。

鼓室位于鼓膜的后面,是一个不规则的气腔。有一个管道使鼓室和口腔相通,这个管道叫咽鼓管。咽鼓管的作用是让空气从口腔进人中耳的鼓室,使鼓膜内外两侧的空气压力相等,这样鼓膜才能自由振动。

鼓室里最重要的器官是听小骨。听小骨由锤骨、砧骨和镫骨组成,锤骨直接与鼓膜相依附,砧骨居中,镫骨在最里面,它们的构造和分布就象一具极尽天工的杠杆,杠杆的前头连着鼓膜,后头连着内耳。它们能把鼓膜的振幅变小而压力扩大后传给内耳。

内耳的基本功用是感受由鼓膜送来的振动。内耳由不管听觉的三个半规管和专管听觉的螺旋状骨组织──耳蜗组成。半规管与听觉没有关系,是一种平衡器官。负责听觉的耳蜗,内部有一张薄膜,膜上布有听觉神经末梢──23500根神经纤维,它们通过听觉神经与脑髓膜相联系。耳蜗内部充满了胶质的液体,从鼓膜传来的振动由耳蜗内部的胶质液体传递给薄膜上的神经纤维,

引起听觉神经末梢的兴奋,并由听神经及大脑皮层的有关部位进行加工分析,这样就产生了听觉。

二、人听到声音的过程

上面我们讲了声音在空气中是以疏密相间的波的形式向远处传播的,实际上这种疏密相间的传播过程也是声压高低的传播过程,密部压强大,疏部压强小,这种变动的压力传人人耳,就会引起耳膜震动。因此,外界传来的声音能引起鼓膜振动,这种振动经听小骨及其他组织传给听觉神经,听觉神经把信号传给大脑,人就听到了声音。

三、耳聋

耳聋分两类,一是传导性耳聋,它是由于人耳的传导部分出现了障碍引起的,鼓膜损坏,听小骨损伤,这类耳聋可治疗。另一种是神经性耳聋,它是由于听觉神经系统受到损伤,这类耳聋不可治愈。

第三节声音的特征

一、音调和频率

1、音调:指声音的高低或粗细,与频率有关。

2、频率:物体每秒振动的次数叫做频率,它的单位是赫兹,符号Hz,频率是用来描述物体振动快慢的物理量。

3、音调与频率的关系:音调的高低是由发声体振动的频率决定的。振动频率越高,音调越高,人们听到的声音越尖细;振动频率越小,音调越低,人们听到的声音越粗钝。不同物体的振动频率不同,同一物体的振动频率也可以调节。

二、响度和振幅

1、响度:指声音的强弱或大小,由振幅决定。

2、振幅:物体振动的幅度,发声体振动时,偏离原来位置的最大距离叫振幅。

3、影响响度大小的因素

⑴响度与振幅有关:振幅越大,声音的响度就越大。

⑵响度还与距离发声体的远近有关。距发声体越近,响度越大;距发声体越远,声音越发散,人耳感觉到的声音响度越小。

(3)另外人听到声音响不响还和发声体的频率有关。

我们平时所说的声音“大小”是指响度,而声音“高低”一般是指音调。

三、音色

音色也叫音品:反映了声音的品质与特色,音色由发声体的材料、结构决定。不同发声体的材料不同、结构不同,发出的声音的音色也就不同。我们能分辨出不同的人,不同的乐器就是根据它们的音色而分辨出来的。

四、人的听觉范围

人能否听到声音和两个因素有关,一个是和发声体的频率有关,一个是和声波的强度有关。

1、频率范围

对于人耳,只有20—20000Hz的振动才能产生声音的感觉。低于20Hz或高于20000Hz的振动人耳是听不到的。如:蝴蝶飞行时翅膀震动发出的声音人耳听不到,因为蝴蝶每10s振翅30次低于20Hz.人能听到声音的频率范围为20—20000Hz。

2、压强范围

虽然人能听到声音的频率范围为20—20000Hz,但这一范围内任一频率的声波必须在它的声压超过最小值(听阈压)时才能引起人耳的听觉,不同频率的声波有不同的听阈压,医学上把1000 Hz纯音,人刚能听的声音的声压2X10-5Pa定义为听阈压。同样,当声压超过某一最大值(痛阈压)时就会引起人耳的痛觉,不同频率的声波的痛阈压却相差不大,医学上把1000 Hz纯音,引起人耳的痛觉声音的声压20Pa定义为痛阈压。

3、超声波与次声波

人们把频率低于20Hz的声音称为次声波,频率高于

20000Hz的声音为超声波。它们都超出了人类听觉的范围,所以人类听不见超声波和次声波。

能产生次声波的声源有:火山爆发、地震、风暴、核爆炸、导弹发射等。次声波有极大的破坏力,能使机械设备破裂、建筑物遭到破坏等。有些动物不但能听到部分次声波,还能听到超声

波,蝙蝠,海豚, 鲸都能发出超声波;另外,通电的晶体可以高频振荡,产生超声波。

第四节、噪声及噪声的物理参数

当今社会有四大污染:水污染、大气污染、固体废弃物污染及噪声污染。

一、噪声

1、从物理角度看,发声体做无规则振动时发出的声音叫噪声。从环保角度看,凡是妨碍人们正常休息、学习和工作的声音,以及对人们要听到的声音产生干扰的声音,都属于噪声。

因此,一句话来概括:人们不需要的声音叫噪声

2、噪声的来源:⑴工业噪声;⑵交通噪声;⑶居民噪声。

二、噪声的物理参数

1、声压和声压级

1)压强:是单位面积上受到的压力叫压强;公式:p=F/S;压强的单位是帕斯卡,简称帕(即牛顿/平方米)。

2)声压:是声音产生的压强,就是在垂直于声波的传播方向上,单位面积上引起的大气压的变化。声波是疏密波,在空气中传播时,它使空气时而变密——压强增高;时而变稀——压强降低,这种在大气压上起伏的部分就是声压。声压是衡量声音强弱的一个物理量,通常用P来表示.单位是帕。声音越强,声压就越大;反之,声压就越小。

3)有效声压:在一定时间间隔中,瞬时声压对时间取均方根值称为有效声压,日常我们所说的声压和电子仪表所测的声压都是有效声压。

4)声压级:是表示声音强弱的一种方法,就是把声压的有效值取对数来表示声音的强弱方法,这个对数值就是声压级。

定义:声压级就是指该点的声压与参考声压的比值取常用对数再乘以20的值,度量它的单位是分贝,符号为dB。参考声压是P0=2×10-5帕,相当于1000Hz纯音的听阈压。

公式:Lp=20lg(P/P0)dB。

为什么人们又引出声压级这个物理参数呢,这里说明一下:一方面是因为人耳刚刚能听到的微弱声音到难以忍受的强烈噪声,声压相差数百万倍,而且仅是一个大气压的几十亿分之一到几千分之几,显然,用声压作单位来衡量声音的大小是很不方便的。为了实用方便,人们考虑到对如此广阔的能量范围使用对数标度的可能性。

另一方面.从声音的接收来看,人耳有一个很奇怪的特性,即当耳朵接收到声振动以后,主观上产生的响度感觉,不是正比于声压的绝对值,而是近似地与声压的对数成正比,而且,人耳受到声音的损伤程度也和声压的对数比较接近。

因此,声学上普遍使用对数标度来度量声压,称之为声压级,其定义是声压平方和l000Hz纯音的听阈压平方的比值的对数,单位是B(贝尔)。B是一个很大的单位,用起来不方便。因此,

人们又把贝尔分成10份,取1份作常用单位,这就是分贝,记作“dB”。

听阈压2X10-5Pa相当于0dB,痛阈压20Pa相当于120dB。20分贝以下的声音,一般来说,我们认为它是安静的,当然,一般来说15分贝以下的我们就可以认为它属于"死寂"的了。20-40分贝大约是情侣耳边的喃喃细语。40-60分贝属于我们正常的交谈声音。60分贝以上就属于吵闹范围了,70分贝我们就可以认为它是很吵的,而且开始损害听力神经,90分贝以上就会使听力受损,而呆在100-120分贝的空间内,如无意外,一分钟人类就得暂时性失聪(致聋)。其中汽车噪音介乎80-100分贝,以一辆汽车发出90分贝的噪音为例,在一百米处,仍然可以听到81分贝的噪音

2、声强和声强级

1)、声功率

声功率是指单位时间内声源向外辐射的总的声能量,用W表示,单位为瓦(W)。

2)、声强

声强即是声音强度的简称,它代表声音能量的多少。声学中,声强是指单位时间内,声音通过垂直于声音传播方向的单位面积上的声能量,声强用I表示,它的单位是W/m2。

声强和声压一样都是表示声音强度的物理量,只是描述的角度不同,因此,对人耳来说声强也有一个上下限:人耳可闻阈

的强度10-12瓦/米2;痛觉阈的强度1瓦/米2,可见声强变化范围也是很大的。

3)、声强级

同声压级一样,为了简化表示,通常用声强级来表示声强。

听觉系统能够感觉到的声音强度变化范围极大,从刚刚能引起人耳听阈的强度到最大可耐受的强度用能量计算可相差一万亿倍,如此大的数字,计算起来相当的不便利。为了计算简便,声音的强度用对数(指数学里以10为底的对数,又称常用对数)关系表达比较方便。人对声音强弱的感觉并不是与声强成正比,而是与其对数成正比的。由此引出另一个概念——声强级。

定义:某一处的声强级,是指该处的声强与参考声强的比值取常用对数的值再乘以10的值,单位为分贝,符号为dB。参考声强是I0=10-12瓦/米2。

公式:LI=10lg(I/I0)dB。

一般人对强度相差十分之一贝尔的两个声音便可区别出来,因此用贝尔的十分之一来作为声强的单位则更为方便,这个单位称为分贝尔(decibel),简称分贝(dB)。

为了直观对比,人们把声压、声强、声功率对级的换算列一张表,对同一个声音而言,声压级和声强级二者值是相等的(在声速和空气密度不变的情况下)。

第五节噪声评价参数

一、噪声评价及任务

噪声评价就是指对不同强度的噪声及其频谱特性等对人的心理和生理所产生的危害与干扰程度的量度。噪声对人的心理和生理的影响是非常复杂的,是多方面的(如烦恼、语言干扰、行为妨害等),有时噪声的客观量不能正确反映人对噪声的主观感觉,而且因人而异。因而人们需要用一些统计上能正确反映主观感觉的评价量,并把这些主观评价量同噪声的客观物理量建立起联系,这是噪声主观评价的任务。在噪声主观评价的研究发展史上,曾提出过许多评价量,但近年来人们趋向用A声级来评价噪声,原因是A声级较好地反映了噪声对语言的干扰和引起的烦扰,用A声级来估计噪声性听力损失也很合适,而且A声级容易测量。

二、响度级和响度

声音给人耳的感觉,主要是响的感觉。人耳对声音响度的感觉不仅和声压有关还和频率有关。对某两种声音来说,如果它们的频率和声压级不同.人们就感到它们不一样响;如果它们的频率不同,即使声压级相同,人耳感觉的响亮程度也不同。空压机和电锯,同样发出10dB声压级的噪声,可是听起来电锯声要比空压机声响得多,就是因为空压机辐射的是低频噪声,而电锯声属于高频噪声。那么,人耳对于某一声音响亮程度的感觉究竟与其声压级和频率有什么关系呢?为了定量地确定这种关系,人们引人响度级和响度这两个物理量。

响度级和响度是从人的听觉感官出发来判断声音强弱大小的物理量,与人对声音的感觉成正比,比较贴近人的真实感受,是主观音响感觉量。

1、响度级(L N)

根据人耳对声音的感觉特性,依据声压和频率定出人对声音的主观响度量,采用两个声音的主观比较的方法来标度响度称为响度级。具体规定是:以 1000Hz纯音声压级的分贝值为响度级的数值,任何其他频率的声音,当调节1000Hz纯音的强度使之与这声音一样响时,则这时的1000Hz纯音的声压级分贝值就定为这一声音的响度级值,响度级的单位是“方”。也可以这样理解:以 1000Hz纯音为基准,其他噪声听起来与该纯音一样响,那么不管这些噪声的频率是多少,这些噪声的响度级就是该纯音的声压级。我们不难看出:对1000Hz 的纯音,其以分贝计的声压级和以方计的响度级在数值上是相等的,该纯音的响度级就是它本身的声压级。

利用与基准声音比较的方法,人们做了很多实验以测定响度级与频率及声压级的关系,从大量测量的统计结果中,得到一般人对不同额率的纯音感觉为同样响的响度级与频率的关系曲线,这就是等响曲线,曲线通过1000赫的声压级的“分贝”数,称为这条曲线响度级的“方”数。从等响曲线可以看出:人耳对1000Hz的声音最敏感,而且对高频声比对低频声的灵敏性要好。根据这个道理,汽车喇叭声和救火车的警笛声的频率一般都设计在l000一5000Hz范围内。

2、响度(N)

响度是人耳判别声音由轻到响的强度等级概念,在一般情况下,声压级每增加10dB,正常人耳感觉响1倍,为了直接表示人耳对声音强弱的感觉,声学上引入响度的概念。响度的单位是宋,定义为声压级为40dB,频率为1000Hz的纯音响度为1宋,如果另一个声音听起来比这个大n倍,即另一个声音的响度为n宋。

3、响度与响度级的关系

根据大量实验得到响度级每改变10方,响度加倍或减半。例如,响度级30方时响度为0.5宋;响度级40方时响度为1宋;响度级为50方时响度为2宋,以此类推,它们的关系可用下列数学式表示:N=2(Ln-40)/10或L N=40+33lgN

响度级的合成不能直接相加,而响度可以相加。例如:两个不同频率而都具有60方的声音,合成后的响度级不是60+60=120(方),而是先将响度级换算成响度进行合成,然后再换算成响度级。本例中60方相当于响度4宋,所以两个声音响度合成为4+4=8(宋),而8宋按数学计算可知为70方,因此两个响度级为60方的声音合成后的总响度级为70方。

三、声级及A声级

1、声级

在声场中某点的声级是相应于在可听频率范围内的按特定

频率计权合成的声压级值,频率计权的方法有A、B、C计权,用声级计的A、B、C计权网络分别测出的声压级即为 A声级、B声

级、C声级。表示计权声级的数值必须标明所用计权网络的名称。如A计权声级为80分贝,则记作LA=80 dB(A)

2、A声级

在20世纪30年代,人们为了用仪器直接测出反映人对噪声的响度感觉,便从等响曲线中选取了40方、70方、100方这三条曲线,按这三条曲线的反曲线设计了由电阻、电容等电子器件组成的计权网络,设置在声级计上,使声级计分别具有A、B、C计权特性。人们总结具有A、B、C计权特性的声级计近 40年的实际使用经验,发现 A声级能较好地反映人对噪声的主观感觉,因而在噪声测量中,A 声级被用作噪声评价的主要指标。B声级已基本不用,C声级有时用作代替可听声范围内的总声压级。三者的主要差别是对噪声低频成分的衰减程度,A计权声级对低频衰减最多,B次之,C最少。A计权声级由于其特性曲线接近于人耳的听感特性,因此是目前世界上噪声测量中应用最广泛的一种,B、C已逐渐不用。

设置计权网络的原意是:对55分贝以下的声级用A计权(相应于40方等响曲线)计量;对55~85分贝的声级用B计权(相应于70方等响曲线)计量;对85分贝以上的声级用C计权(相应于100方等响曲线)计量。但后来不少学者开始探讨使用 A声级作为噪声评价的主要指标。如1967年J.H.博茨福德研究了 580个工厂噪声的测量资料,提出了A声级可以代替倍频带声压级评价噪声的结论,并发现用 A声级来计量噪声和噪声的语言干扰级

及烦恼度有较大的相应性。与此同时,有人分析研究了噪声暴露和听力损失的关系,发现用A声级来估计噪声引起的听力损失与噪声评价曲线(NR)同样可靠。这样,A声级已为国际标准化组织和绝大多数国家用作对噪声进行主观评价的主要指标。而设置A 计权网络的原意,却很少应用。

对稳定不变的噪声,用A声级来评价是非常方便的。但当噪声随时间变动时,用一个A声级值就不能概括其特性了。这样就引出了等效声级。

3、等效声级

等效声级就是以A声级为基础建立起来的关于不稳定噪声的评价量。它是以A声级的稳态噪声代替变动的噪声,也就是在相同的暴露时间内给人以等数量的声能量,是一种声能量的等效代换,那么这个稳态声级就是该变动声级的等效声级。

定义:即在声场中的某一点,用某一段时间内的A声级按能量的平均的方法将间隔暴露的几个不同的A声级以一个不变的A 声级表示该段时间内噪声强度的大小,这个不变的A声级值称为声场这段时间的等效连续A声级,简称等效声级或平均声级。如果噪声是稳态的,等效声级就是该噪声的A计权声级。

等效声级是衡量人的噪声暴露量的一个重要物理量。国际标准化组织已采用等效声级的评价方法,许多国家的环境噪声标准也以等效声级为评价指标。

四、评价标准

按每天工作8小时计算,一天连续接触噪声的分贝值不能超过85dB(A);分贝值每增加3 dB(A),连续接触噪声工作时间减半;最高不能超过115 dB(A)。

一、定义及表示方法式中Leq为等效A声级,dB;t1,t2计算Leq的起止时刻;L (t)作为时间函数的非稳态A声级,dB。若t1,t2表示典型工作日的起止时刻,则上式表示的是一个工作日的等效声级。二、等效A声级的测量(一)使用积分声级计或声剂量仪应按本标准第三章规定的测点,测量日等效A声级。(二)在没有积分声级计或噪声剂量仪的情况下,可使用普通声级计按以下方法测量并计算等效A声级:

1 一般对于无规噪声的等效声级测量,应按等时采样的方法,在典型生产过程中使用声级计慢档每隔5秒钟读取一个瞬时AA声级,连续取100个数据,记入附表2.1;并按附表2.1所列程序处理数据。

2 附表2.1使用要求:(1)采样测量的结果应登记在“声级等时采样记录”格内;每读取一个数据,在其相应声级Lj的左侧划一直线,一个声级累积出现5次则以5条直线 标记,以便于统计其出现的总次数:(2)计算10;

(3)计算部分暴露指数nj ;(4)计算合成暴露指数Σnj ;(5)按下式计算等效A声级;式中j表示测量中出现的不同声级自小至大顺序排队的序号;nj表示声级Lj出现的频数。3 对于有规律的变化噪声的等效A声级的测量,亦可采用采样的办法。采样时间间隔τ的选定,应使测量时间(100τ)等于噪声变化周期T的整数倍,可按下式计算:若噪声变化周期较短(在数秒至1分钟之内),则可按下式确定采样间隔。4 对于间歇噪声,可采用稳态噪声测量方法,测量并记录间歇噪声的A声级及其作用时间,将间歇噪声的声级区分为有限个整数并将A声级及其相应的累积作用时间列入附表2.2。等效A声级,可按附2.5公式计算。

第六节噪声的危害、控制和利用

一、噪声的危害

1、噪声会影响人们休息,工作和学习,干扰语言交流。

2、噪声可以引起耳部的不适,如耳鸣、耳痛,甚至使人的听力受到损伤。

3、噪声对人的心理和生理都会造成危害。轻则分散注意力,影响情绪,重则可能伤害身体,甚至会危及生命。

4、噪声还会引起心血管系统和中枢神经系统的疾病,发生心律不齐、血压升高、消化不良等症状。

5、噪声还能降低劳动生产率,使人烦躁、容易疲劳、反应迟钝。

6、噪声对设备也会带来影响,对建筑物也会造成损坏。

二、噪声控制

一般来说减弱噪声有三个途径:防止噪声产生、阻断噪声的传播、防止噪声进入耳朵。即在声源处减弱、在传播过程中减弱、在人耳处减弱。

1、在声源处减弱。采取改造声源结构、减少声源强度、加防护罩、安装消声器等办法。

2、在传播过程中减弱。设置隔声室、铺设吸声材料、垒砌墙体、种植树木等办法把声源与外界隔开。

3、在人耳处减弱,如佩戴防护耳罩。

三、声的利用

1、声与信息

声波可以传递信息,人类能通过声波来传递和获得信息。如人们说话交流就是传递信息。

2、回声定位:声音在传播过程中遇到障碍物会反射回来,根据回声到来的方位和时间可以确定障碍物的位置和距离。这种测距离的方法叫回声定位。蝙蝠、声呐就是利用的回声定位。

3、B超原理:医生向病人体内发射超声波,同时接收体内脏器的反射波反射波将年携带的信息通过处理后显示在屏幕上,这就是平常年说的“B超”。

4、利用次声波能预报破坏性大的地震、海啸、台风,甚至可以探知几千米外的核武器实验和导弹发射。

人能通过声音获取信息的原因:⑴声音在产生时可以携带一定的信息;⑵声音的音调、音色、响度也可以传递一些信息;⑶声波被反射时,回声可以传递信息。

5、声波传递能量的应用。

⑴利用超声波清洗钟表等精细的物体;

⑵外科医生利用超声波除去人体内的结石;

⑶超声波除尘。

第二章噪声测试技术

第一节噪声测试概述

一、噪声测试依据标准

测试依据:中华人民共和国卫生部在96年下发了《作业场所噪声测量规范》,标准号:WS/T69-1996。在2007年下发了GBZ/T 189.8-2007 《工作场所物理因素测量噪声》。

卫生标准:《工业企业设计卫生标准》(GBZ1-2002)。按照标准要求,工作场所操作人员每天连续接触噪声8小时,噪声声级卫生限值为85dB(A)。对于操作人员每天接触噪声不足8小时的场

合,可根据实际接触噪声的时间,按接触时间减半,噪声声级卫生限值增加3dB(A)的原则,确定其噪声声级限值。但最高限值不得超过115dB(A)。工作地点噪声声级的卫生限值

日接触时间(h)接触限值[dB(A)]

8 85

4 88

2 91

1 94

0.5 97

二、噪声分类

根据声源类别,可把噪声分为工业噪声、交通噪声、施工噪声和生活噪声。

按照噪声产生的形态特征,可把噪声分为空气动力噪声(鼓风机、引风机)、机械噪声。

按照噪声时间分布特点,可把噪声分为稳态噪声和非稳态噪声,非稳态噪声又包括起伏噪声、间歇噪声(机加工车间)和脉冲噪声。

三、噪声测试意义

通过对噪声环境污染水平监测和噪声源监测,能够准确掌握噪声污染现状、污染程度及规律特点,以便为噪声管理、治理、控制和评价提供可靠数据,以达到保护人群身心健康的目的。

四、噪声测试内容

噪声监测主要包括基础资料的收集与整理、噪声测量与分析、噪声评价三部分内容。

1、资料的收集与整理

属于前期准备阶段,采取现场调查、会议听取汇报等方式。主要了解企业的工业布局、生产工艺、声源分布和型号、声源特点、作业场所作业特点、人员密度、已采取的防护措施等。这部分工作为确定选点、确定测量方法、确定测量时间等制定测量计划提供依据。

2、噪声测量与分析

属于现场测试部分,在前期准备工作基础上制定测量计划,按照计划对工作休息场所和声源设备进行布点测试并做好测量记录。

对稳态噪声直接测量A声级,用慢挡;对非稳态噪声测量连续A声级;对脉冲噪声用峰值挡测量峰值。

3、噪声评价

属于出示报告结果的部分,通过对监测数据的统计分析和资料分析,选用合适评价标准,对工作场所噪声污染水平和对工人身体健康的影响程度的做出报告,并为企业提出自己的防护控制建议等。

第二节噪声测试设备

声学基础试题

一、 名词解释(3分×4=12分) 自由振动――系统只在弹性力作用下的振动。 临界入射――入射角等于临界角时的声波斜入射。 声功率――单位时间内通过垂直于声传播方向的面积S 的平均声能量。 体应变――在外力作用下,介质体积的变化率。 二、 填空(1分×23=23分) 1、 对于强迫振动系统而言,当外力频率__等于___系统固有频率时,系统的 振动速度出现__共振现象__。 2、自由振动系统的固有频率 。 3、由于阻尼力的作用,使得衰减振动系统的固有频率__低于__自由振动系统的固有频率。 4、声波在两种流体分界面上产生反射、折射时,应满足边界条件。即分界面两侧介质内声场的__声压_________、____质点振动速度____在分界面上____连续_______。 5、声波在两种流体分界面上产生反射、折射时,声功率的反射系数与折射系数之和___1_____。 6、声波在两种流体分界面上产生临界斜入射的条件是___入射波速度v1小于折射波速度v2__,临界入射角为___12arcsin()v v θ=___。 7、一维情况下理想流体媒质中的三个基本方程分别为__运动方程_、 ____连续性方程__、____物态方程_____。 8、媒质的特性阻抗(即波阻抗)等于_媒质声波速度与媒质密度的乘积。 9、两个同相小球源的指向特性__sin(2)()2sin() k D k θ?=?__。 10、辐射声波波长为λ,间距为l 的n 个同相小球源组成的声柱的主声束的角宽度_2arcsin()nl λ θ=__。

11、均匀各向同性线弹性介质的正应力与正应变的关系___2ii ii T λθμε=+_;切应力与切应变的关系__jj jj T με=_。 12、根据质点振动特点,薄板中的兰姆波可分为___对称型_和____非对称型两类。 13、根据瑞利波和兰姆波的周期方程可知,瑞利波的速度与频率___无关__,是无频散波;而兰姆波相速度与频率___有关__,是__频散波_。 三、 判断并改错(2分×7=14分) 1、 在无限大介质中传播的波称为瑞利波。错误 沿无限大自由表面传播的波称为瑞利波。 2、 当考虑弹簧质量时,自由振动系统的固有频率增大。错误 当考虑弹簧质量时,自由振动系统的固有频率降低。 3、 对于强迫振动系统而言,当外力频率等于系统固有频率时,系统的振 动位移出现共振现象。 错误 对于强迫振动系统而言,当外力频率等于系统固有频率时,系统的振 动速度出现共振现象。 4、 衰减振动的衰减系数δ与系统所受的阻力系数Rm 、振子质量Mm 成反 比。错误 衰减振动的衰减系数δ与系统所受的阻力系数成正比,与振子质量成反比。 5、 声场对小球源的反作用力与小球源的辐射阻抗、表面质点振动速度的 关系为 r r F Z u =- 正确 6、 声波在两种流体分界面上发生反射、折射时,声强的反射系数与折射 系数之和等于1。 错误 声波在两种流体分界面上发生反射、折射时,声功率的反射系数与折射系数之和等于1。 或 声波在两种流体分界面上发生反射、折射时,声强的反射系数与折射系数之和不一定等于1。

声学基础及其原理

2 声学基础及其原理[13] 在我们的生活环境中会遇到声强从弱到强范围很宽的各种声音[5]。如此广阔范围的能量变化直接使用声功率和声压的数值很不方便,而用对数标度以突出其数量级的变化则相对明了些;另一方面人耳对声音的接收,并不是正比与强度的变化值,而更近于正比与其对数值,由于这两个原因,在声学中普遍使用对数标度来度量声压、声强、声功率,分别称为声压级、声强级和声功率级,单位用分贝(dB )来表示[1]。 2.1声压级 将待测声压的有效值P e 与参考声压P o 的比值取以10为底数的常用对数,再乘以20。即: L p =20lg o e P P (dB ) (2.1) 在空气中,参考声压P 0规定为2?10-5帕,这个数值是正常人耳对1000Hz 声音刚能够觉察到的最低声压值。式(2.1)也可以写为: L p =20lgp+94 (dB ) (2.2) 式中p 是指声压的有效值P e ,由于声学中所指的声压一般都是指其有效值,所以都用p 来表示声压有效值P e 。 人耳的感觉特性,从可听域的2?10-5帕的声压到痛域的20帕,两者相差100万倍,而用声压级表示则变化为0-120分贝的范围,使声音的量度大为简明。 2.2 声强级: 为待测声强I 与参考声强I 0的比值取以常用对数再乘以10,即: L I =10lg 0 I I (dB ) (2.3) 在空气中,参考声强I 0取以10-12W/m 2这样公式可以写为:

L I =10lg I+120 (dB ) (2.4) 2.3声功率 可以用“级”来表示,即声功率L W ,为: L W =10lg 0 W W (dB ) (2.5) 这里W 是指声功率的平均值W ,对于空气媒质参考声功率W 0=10-12W ,这样式子可以写为: L W =10lg W +120 (dB ) (2.6) 由声强与声功率的关系I=W/S ,S 为垂直声传播方向的面积,以及空气中 声强级近似的等于声压级,可得: L p =L I =10lg ????? ??01I S W =10lg ????????S I W W W 1000 (2.7) 将W 0=10-12W ,I 0=10-12W/m 2代入,可得: S L L L W I p lg 10-== (dB ) (2.8) 这就是空气中声强级、声压级与声功率级之间的关系,但应用条件必须是自由声场,即除了有源发声外,其它声源的声音和反射声的影响均可以忽略。在自由场和半自由场测量机器噪声声功率的方法的原理就是如此。 声压级、声强级、声功率级的定义中,在后两者对数前面都好似乘以常数10,而声压级对数前面乘以常数为20,这是因为声能量正比于声强和声功率的一次方,而对声压是平方的关系。如声压增加一倍,声压级和声强级增加6分贝,而声强增加一倍,声压级和声强级增加3分贝[5]。 对于一定的声源,其声功率级是不变的,而声压级和声强级都是随着测点的不同而变化的。 专门的研究表明,人耳对于不同频率的声音的主观感觉是不一样的,人耳对于声的响应不单纯是物理上的问题了。为了使人耳对频率的响应与客观声压级联系起来,采用响度级来定量的描述这种关系,它是以1000Hz 纯音作为基准,对听觉正常的人进行大量比较试听的方法来定出声音的响度级的,

驻波在乐器中的应用研究剖析

驻波在乐器中的应用研究 摘要:本文先从声学的基本理论研究开始,以弦振动为主体对驻波的产生、传播及引起的声学规律进行研究,再把这些原理应用到弦乐器中进行分析,从物理学的角度以吉他为例讨论了驻波在弦乐器中的应用。 关键字:声学;驻波;弦乐器;音乐 1.引言 声学是近代科学中发展最早、内容最丰富的学科之一,它是物理学的一个分支,是一门既古老又迅速发展着的学科。在19世纪末已发展成熟,对声学的研究达到高潮,其应用渗透到几乎所有重要的自然科学,与各门学科相互交叉,从而具有边缘学科的特点[1]。从历史上讲,声学的发展离不开音乐,我国如此在国外也是如此。我国古代曾侯乙编钟就是一组杰出的声学仪器,外国的亥姆霍兹发展声学也是与乐器联系在一起的。物理学的发展,在理论上、方法上或技术上都会用到音乐上,比如非线性理论、瞬态分析等。 乐器是什么?从物理的角度来看,它就是一种仪器,一种人造的为人们所用产生音乐声的仪器[2]。那么对于音乐从物理的角度来看,它的实质就是一种声波,要产生声波还得有相应的振动[3]。比如乐器吉他、二胡的弦振动都是利用了驻波的传播而发声,然而声学在物理学中“外在性”最强,所以具体事物要具体分析。 从古至今踊跃出许多的音乐家、乐器演奏家,现时的音乐已经深入到我们生活的许多方面,琴声、歌唱声、说话声,电话、电铃的响声……其中,音乐声占了很大的比重。由此可见,音乐是每个人、每个家庭生活不可缺少的一部分。可以想象,如果生活中没有了音乐,世界将会变成怎样!然而不是任何一种声音都可以叫做音乐,必须是一定音调的声音才可以算得上是音乐。那影响音调的因素又有哪些,它们又有什么样的规律?那么本文将以吉他来研究,从根本上说明其发声的物理本质。 2.弦乐器的发声 在声学中我们知道,声音是一种波,是由物体的振动产生的,声波使它附近

声学基础知识

由气体振动而产生。气体的压力产生突变,会产生涡流扰动,从而引起噪声。如空气压缩机、电风扇的噪声。 机械噪声 由固体振动产生。金属板、齿轮、轴承等,在设备运行时受到撞击、摩擦及各种突变机械力的作用,会产生振动,再通过空气传播,形成噪声。 液体流动噪声 液体流动过程中,由于液体内部的摩擦、液体与管壁的摩擦、或者流体的冲击,会引起流体和管壁的振动,并引起噪声。电磁噪声 各种电器设备,由于交变电磁力的作用,引起铁芯和绕组线圈的振动,引起的噪声通常叫做交流声。 燃烧噪声 燃料燃烧时,向周围的空气介质传递了热量,使它的温度和压力产生变化,形成湍流和振动,产生噪声。

声波和声速 声波 质点或物体在弹性媒质中振动,产生机械波向四周传播,就形成声波(声波是纵波)。可听声波的频率为20~20000Hz,高于20KHz 的属超声波,低于20Hz 的属次声波。 点声源附近的声波为球面波,离声源足够远处的声波视为平面波,特殊情况(线声源)可形成柱面波。 声频( f )声速( c )和波长( λ ) λ= c / f 声速与媒质材料和环境有关: 空气中,c =+或t c +=27305.20 (m /s) 在水中声速约为1500 m /s t —摄氏温度 传播方向上单位长度的波长数,等于波长的倒数,即1/λ。有时也规定2π/λ为波数,用符号K 表示。 质点速度 质点因声音通过而引起的相对于整个媒质的振动速度。声波传播不是把质点传走而是把它的振动能量传走。

声场 有声波存在的区域称为声场。声场大致可以分为自由场、扩散场(混响场)、半扩散场(半自由场)。 自由场 在均匀各向同性的媒质中,边界影响可忽略不计的声场称为自由场。在自由场中任何一点,只有直达声,没有反射声。 消声室是人为的自由场,是由吸声材料和吸声结构做成的密闭空间,静谧无风的高空或旷野可近似为自由场。 扩散场 声能量均匀分布,并在各个传播方向作无规则传播的声场,称为扩散场,或混响场。声波在扩散场内呈全反射。 人为设计的混响室是典型的扩散场。无论声源处于混响室内任何位置,室内各处声压接近相等,声能密度处处均匀。 自由场扩散场(混响场)

音响基础知识之绝对基础

新音响基础知识之绝对基础 一、声学基础 1、人耳能听到的频率范围是20—20KHZ。 2、把声能转换成电能的设备是传声器。 3、把电能转换成声能的设备是扬声器。 4、声频系统出现声反馈啸叫,通常调节均衡器。 5、房间混响时间过长,会出现声音混浊。 6、房间混响时间过短,会出现声音发干。 7、唱歌感觉声音太干,当调节混响器。 8、讲话时出现声音混浊,可能原因是加了混响效果。 9、声音三要素是指音强、音高、音色。 10、音强对应的客观评价尺度是振幅。 11、音高对应的客观评价尺度是频率。 12、音色对应的客观评价尺度是频谱。 13、人耳感受到声剌激的响度与声振动的频率有关。 14、人耳对高声压级声音感觉的响度与频率的关系不大。 15、人耳对中频段的声音最为灵敏。 16、人耳对高频和低频段的声音感觉较迟钝。 17、人耳对低声压级声音感觉的响度与频率的关系很大。 18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。 19、等响曲线中,每条曲线上标注的数字是表示响度级。 20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。 21、响度级的单位为phon。 22、声级计测出的dB值,表示计权声压级。 23、音色是由所发声音的波形所确定的。 24、声音信号由稳态下降60dB所需的时间,称为混响时间。 25、乐音的基本要素是指旋律、节奏、和声。 26、声波的最大瞬时值称为振幅。 27、一秒内振动的次数称为频率。 28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。 29、人耳对1~3KHZ的声音最为灵敏。 30、人耳对100Hz以下,8K以上的声音感觉较迟钝。 31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用。 32、观众席后侧的反射声对原发声起回声作用,属有害反射作用。 33、声音在空气中传播速度约为340m/s。 34、要使体育场距离主音箱约34m的观众听不出两个声音,应当对观众附近的补声音箱加0.1s延时。 35、反射系数小的材料称为吸声材料。 36、透射系数小的材料称为隔声材料。 37、透射系数大的材料,称为透声材料。 38、全吸声材料是指吸声系数α=1。 39、全反射材料是指吸声系数α=0。 40、岩棉、玻璃棉等材料主要吸收高频和中频。 41、聚氨酯吸声泡沫塑料主要吸收高频和中频。 42、薄板加空腔主要吸收低频。

声学基础知识

噪声产生原因 空气动力噪声 由气体振动而产生。气体的压力产生突变,会产生涡流扰动,从而引起噪声。如空气压缩机、电风扇的噪声。 机械噪声 由固体振动产生。金属板、齿轮、轴承等,在设备运行时受到撞击、摩擦及各种突变机械力的作用,会产生振动,再通过空气传播,形成噪声。液体流动噪声 液体流动过程中,由于液体内部的摩擦、液体与管壁的摩擦、或者流体的冲击,会引起流体和管壁的振动,并引起噪声。 电磁噪声 各种电器设备,由于交变电磁力的作用,引起铁芯和绕组线圈的振动,引起的噪声通常叫做交流声。 燃烧噪声 燃料燃烧时,向周围的空气介质传递了热量,使它的温度和压力产生变化,形成湍流和振动,产生噪声。

声波和声速 声波 质点或物体在弹性媒质中振动,产生机械波向四周传播,就形成声波(声波是纵波)。可听声波的频率为20~20000Hz,高于20KHz 的属超声波,低于20Hz 的属次声波。 点声源附近的声波为球面波,离声源足够远处的声波视为平面波,特殊情况(线声源)可形成柱面波。 声频( f )声速( c )和波长( λ ) λ= c / f 声速与媒质材料和环境有关: 空气中,c =331.6+0.6t 或t c +=27305.20 (m /s) 在水中声速约为1500 m /s t —摄氏温度 传播方向上单位长度的波长数,等于波长的倒数,即1/λ。有时也规定2π/λ为波数,用符号K 表示。 质点速度 质点因声音通过而引起的相对于整个媒质的振动速度。声波传播不是把质点传走而是把它的振动能量传走。

声场 有声波存在的区域称为声场。声场大致可以分为自由场、扩散场(混响场)、半扩散场(半自由场)。 自由场 在均匀各向同性的媒质中,边界影响可忽略不计的声场称为自由场。在自由场中任何一点,只有直达声,没有反射声。 消声室是人为的自由场,是由吸声材料和吸声结构做成的密闭空间,静谧无风的高空或旷野可近似为自由场。 扩散场 声能量均匀分布,并在各个传播方向作无规则传播的声场,称为扩散场,或混响场。声波在扩散场内呈全反射。 人为设计的混响室是典型的扩散场。无论声源处于混响室内任何位置,室内各处声压接近相等,声能密度处处均匀。 自由场扩散场(混响场)

声学基础资料-专业名词解释

波长 声波振动一次所传播的距离,用声波的速度除以声波的频率就可以计算出该频率声波的波长,声波的波长范围为17米至1.7厘米,在室内声学中,波长的计算对于声场的分析有着十分重要的意义,要充分重视波长的作用。例如只有障碍物在尺寸大于一个声波波长的情况下,声波才会正常反射,否则绕射、散射等现象加重,声影区域变小,声学特性截然不同;再比如大于2倍波长的声场称为远场,小于2倍波长的声场称为近场,远场和近场的声场分布和声音传播规律存在很大的差异;此外在较小尺寸的房间内(与波长相比),低音无法良好再现,这是因为低音的波长较长的缘故,故在一般家庭中,如果听音室容积不足够大,低音效果很难达到理想状态。 很多现场调音师都没有理会到音频与波长的关系,其实这是很重要的:音频及波长与声音的速度是有直接的关系。在海拔空气压力下,21摄氏温度时,声音速度为344m/s,而我接触国内的调音师,他们常用的声音速度是34Om/s,这个是在15摄氏度的温度时声音的速度,但大家最主要记得就是声音的速度会随着空气温度及空气压力而改变的,温度越低,空气里的分子密度就会增高,所以声音的速度就会下降,而如果在高海拔的地方做现场音响,因为空气压力减少,空气内的分子变得稀少,声音速度就会增加。音频及波长与声音的关系是:波长=声音速度/频率;λ=v/f,如果假定音速是344 m/s时,100Hz的音频的波长就是3.44 m,1000hz(即lkHz)的波长就是34.4 cm,而一个20kHz的音频波长为1.7cm。 动态范围 音响设备的最大声压级与可辨最小声压级之差。设备的最大声压级受信号失真、过热或损坏等因素限制,故为系统所能发出的最大不失真声音。声压级的下限取决于环境噪声、热噪声、电噪声等背景条件,故为可以听到的最小声音。动态范围越大,强声音信号就越不会发生过荷失真,就可以保证强声音有足够的震撼力,表现雷电交加等大幅度强烈变化的声音效果时能益发逼真,与此同时,弱信号声音也不会被各种噪声淹没,使纤弱的细节表现得淋漓尽致。一般来说,高保真音响系统的动态范围应该大于90分贝,太小时还原的音乐力度效果不良,感染力不足。在专业音响系统的调整过程中,音响师在调音时要主意以下两方面问题:一是调音台的的输入增益量不要调的过小,否则微弱的声音会被调音台的设

声学基础

主观音质评价 与客观测量的相关性

一.什么叫音质评价?assessment of sound quality 二.为什么要进行音质评价? 三、实施手段: 四、主观音质评价的特点: 五、谁能作出正确评价? 六、如何去评价,评价哪些方面? 七、常用音质测试设备和A/B比较听音方法 八、音质评价术语的含义及与客观物理参数之间的关系 主观音质评价与客观测量的相关性

◆什么叫音质评价? assessment of sound quality 通过听觉判断声音(原声或重放声)的质量水平。目前,对于语言主要从语言清晰度,而对音乐则从与作品类型和风格相吻合的音乐的可听性和欣赏价值来判断其声音质量水平的高低。

◆为什么要进行音质评价? 因为现有的客观测试还不能完全揭示音质的所有特性的本质,音质评价术语还没有一一对应的物理指标。甚至有时客观指标与主观感受有许多不一致的地方,有待人们进一步去研究、揭示,所以,客观测试不能代替主观评价。我们制作音响产品的最终目标是满足人们听觉享受,因此,有必要对我们开发的音响产品进行主观评定。

◆实施手段: 1、听音测试listening test 让一定数量的、经过训练的听音员,在规定声学特性的房间(也有人叫试听室、听音室或审听室等)内,按照共同规定的听音试验方法,对音响设备、节目源、乐音或乐器音等的音质进行主观感觉的评定,最后用数理统计或其他方法对评定数据进行计算,评定出结果的试验。有人也叫试听试验。

◆主观音质评价的特点: 1.声音质量评价的模糊性blur of sound quality assessment 2、评价尺度---多维尺度法multi-dimensional scaling 3. 哪些因素导致主观音质评价的差异 4、室内声学---为什么需要试音室? 5、国内关于听音室的标准

声压法和声强法在车身隔声性能测量中的应用和对比

2012年2月噪声与振动控制第1期文章编号:1006-1355(2012)01-0174-03 声压法和声强法在车身隔声性能测量中的 应用和对比 程志伟1,叶子文2,刘雯3,叶志刚1 (1.广州汽车集团股份有限公司汽车工程研究院NVH中心,广州510640; 2.重庆大学数理学院,重庆401331; 3.华南理工大学机械与汽车工程学院,广州510640) 摘要:在汽车车身的隔声性能试验中,对声压和声强的两种测量法,进行了比较分析。结果表明,这两种测量方法各有其特点,对汽车车身隔声量的改进及降噪圴有较好的指导作用。 关键词:声学;汽车车身;隔声;声压法;声强法 中国分类号:TB95文献标识码:A DOI编码:10.3969/j.issn.1006-1355-2012.01.041 Comparison of Sound Pressure Method and Sound Intensity Method in Application to the Measurement of Sound Insulation Preformance of Vehicle’s Body CHENG Zhi-wei1,YE Zi-wen2,LIU Wen3,YE Zhi-gang1 (1.NVH Center Guangzhou Automotive Engineering Institute,Guangzhou510640,China; 2.College of Mathematics and Physics,Chongqing University,Chongqing401331,China; 3.College of Mechanics and Auto,South China University of Technology, Guangzhou510640,China) Abstract:In this paper,two measurement methods,sound pressure method and sound intensity method,for the measurement of sound insulation performance of vehicle’s body are compared and discussed.It shows that the two methods have their own characteristics,and both of them play instructive role in improvement of sound insulation effect and noise reduction. Key word:acoustics;vehicle body;sound insulation;sound pressure method;sound intensity method. 为了改善汽车的车内噪声,需要对汽车车身的隔声量进行分析。只有车身的前围(或称防火墙)、顶棚、后盖、车门、地板、前后风挡玻璃等各面的隔声量提高后,车身各面才能有效地阻隔发动机和车外其他噪声进入车内。利用声压测量法或声强测量法都可以得到车身各面关键部位的声压衰减频谱图和总的隔声量,经过数据分析后我们就可以采取对应措施改进隔声薄弱部位。 收稿日期:2011-03-10;修改日期:2011-04-29 作者简介:程志伟(1979-),男,湖北天门人,工程师,目前主要从事汽车噪声、振动工程。 E-mail:chengzw79@126.con 1隔声量的定义和测量评价 1.1隔声量的定义 根据文[2]关于隔声定义的描述,隔声材料(隔声构件或隔声结构)一侧的入射声能与另一侧的透射声能相差的分贝数就是该隔声材料的隔声量,以符号R(dB)表示。 R=10lg(I i I t )=20lg(P i P t )(1) 式(1)中I i 和P i 分别为隔声材料前的声强和声压,I t 和P t 分别为经过隔声材料衰减后的声强和声压。如下图1所示表示方法。 可见隔声量表示隔声材料本身固有的隔声能力。

声学基础课后答案

习题1 1-1 有一动圈传声器的振膜可当作质点振动系统来对待,其固有频率为f ,质量为m ,求它的弹性系数。 解:由公式m m o M K f π 21= 得: m f K m 2)2(π= 1-2 设有一质量m M 用长为l 的细绳铅直悬挂着,绳子一端固定构成一单摆,如图所示,假设绳子的质量和弹性均可忽略。试问: (1) 当这一质点被拉离平衡位置ξ时,它所受到的恢复平衡的力由何产生?并应怎样表示? (2) 当外力去掉后,质点m M 在此力作用下在平衡位置附近产生振动,它的振动频率应如何表示? (答:l g f π21 0= ,g 为重力加速度) 图 习题1-2 解:(1)如右图所示,对m M 作受力分析:它受重力m M g ,方向竖直向下;受沿绳方向的拉力T ,这两 力的合力F 就是小球摆动时的恢复力,方向沿小球摆动轨迹的切线方向。 设绳子摆动后与竖直方向夹角为θ,则sin l ξ θ= 受力分析可得:sin m m F M g M g l ξ θ== (2)外力去掉后(上述拉力去掉后),小球在F 作用下在平衡位置附近产生摆动,加速度的方向与位 移的方向相反。由牛顿定律可知:22d d m F M t ξ =- 则 22d d m m M M g t l ξξ-= 即 22d 0,d g t l ξξ+=

∴ 2 0g l ω= 即 01 ,2πg f l = 这就是小球产生的振动频率。 1-3 有一长为l 的细绳,以张力T 固定在两端,设在位置0x 处,挂着一质量m M ,如图所示,试问: (1) 当质量被垂直拉离平衡位置ξ时,它所受到的恢复平衡的 力由何产生?并应怎样表示? (2) 当外力去掉后,质量m M 在此恢复力作用下产生振动,它 的振动频率应如何表示? (3) 当质量置于哪一位置时,振动频率最低? 解:首先对m M 进行受力分析,见右图, 0)(2 2 02 2 00=+-+--=ε ε x x T x l x l T F x (0x ??ε ,2 022020220)()(,x l x l x x -≈+-≈+∴εε 。) 2 2 2 2 0)(ε ε ε ε +++-=x T x l T F y x T x l T ε ε +-≈ ε) (00x l x Tl -= 可见质量m M 受力可等效为一个质点振动系统,质量m M M =,弹性系数) (00x l x Tl k -= 。 (1)恢复平衡的力由两根绳子拉力的合力产生,大小为ε) (00x l x Tl F -= ,方向为竖直向下。 (2)振动频率为m M x l x Tl M K )(00-== ω。 (3)对ω分析可得,当2 0l x = 时,系统的振动频率最低。 1-4 设有一长为l 的细绳,它以张力T 固定在两端,如图所示。设在绳的0x 位置处悬有一质量为M 的重物。求该系统的固有频率。提示:当悬有M 时,绳子向下产生静位移0ξ以保持力的平衡,并假定M 离平衡位置0ξ的振动ξ位移很小,满足0ξξ<<条件。 图 习题1-3

声学基础知识

噪声产生原因空气动力噪声 由气体振动而产生。气体的压力产生突变,会产生涡流扰动,从而引起噪声。如空气压缩机、电风扇的噪声。机械噪声 由固体振动产生。金属板、齿轮、轴承等,在设备运行时受到撞击、摩擦及各种突变机械力的作用,会产生振动,再通过空气传播,形成噪声。 液体流动噪声 液体流动过程中,由于液体内部的摩擦、液体与管壁的摩擦、或者流体的冲击,会引起流体和管壁的振动,并引起噪声。 电磁噪声 各种电器设备,由于交变电磁力的作用,引起铁芯和绕组线圈的振动,引起的噪声通常叫做交流声。 燃烧噪声 燃料燃烧时,向周围的空气介质传递了热量,使它的温度和压力产生变化,形成湍流和振动,产生噪声。

声波和声速 声波 质点或物体在弹性媒质中振动,产生机械波向四周传播,就形成声波(声波是纵波)。可听声波的频率为20~20000Hz,高于20KHz 的属超声波,低于20Hz 的属次声波。 点声源附近的声波为球面波,离声源足够远处的声波视为平面波,特殊情况(线声源)可形成柱面波。 声频( f )声速( c )和波长( λ ) λ= c / f 声速与媒质材料和环境有关: 空气中, c =331.6+0.6t 或t c +=27305.20 (m /s) 在水中声速约为1500 m /s t —摄氏温度 传播方向上单位长度的波长数,等于波长的倒数,即1/λ。有时也规定2π/λ为波数,用符号K 表示。 质点速度 质点因声音通过而引起的相对于整个媒质的振动速度。声波传播不是把质点传走而是把它的振动能量传走。

声场 有声波存在的区域称为声场。声场大致可以分为自由场、扩散场(混响场)、半扩散场(半自由场)。 自由场 在均匀各向同性的媒质中,边界影响可忽略不计的声场称为自由场。在自由场中任何一点,只有直达声,没有反射声。 消声室是人为的自由场,是由吸声材料和吸声结构做成的密闭空间,静谧无风的高空或旷野可近似为自由场。扩散场 声能量均匀分布,并在各个传播方向作无规则传播的声场,称为扩散场,或混响场。声波在扩散场内呈全反射。人为设计的混响室是典型的扩散场。无论声源处于混响室内任何位置,室内各处声压接近相等,声能密度处处均匀。 自由场扩散场(混响场)

弹性波及其应用

《弹性波理论及其应用》教学大纲 编写人:陆铭慧审核人:卢超 学时:48 学分:3 第一部分大纲说明 1.课程说明:09004 2.课程类型:非学位课 3.课程性质:专业选修课 4.学时/学分:48/3 5.课程目标:通过学习超声的产生、接收和在媒质中的传播规律,超声的各种效应,以及超声在基础研究和国民经济各部门的应用等内容,使学习者对超声的性质有比较清楚的理解,能够处理工业应用中的一般超声问题。 6. 教学方式:课堂讲授、自学与讨论相结合 7. 考核方式:考查 8.预修课程:数学物理方法,弹性力学基础,声学基础,声学检测技术 10、教材及教学参考资料: 参考资料: 1、《超声学》,应崇福主编,北京:科学出版社, 1990年12月出版。 2、《固体中的声场和波》,(美)B.A. 奥尔特,北京:科学出版社,孙承平译,1982年12月出版。 3、《超声手册》,冯若主编,南京:南京大学出版社,1999年10月出版。 4、《压电换能器和换能器阵》,栾桂冬等编著,北京:北京大学出版社,2005年7月出版。 5、《固体中的超声波》,(美)J.L.罗斯,北京:科学出版社,何存富等译。 6、《声波导》,(英)M.R.雷特伍特著,上海:上海科学技术出版社,严仁博译,1965年7月出版。 第二部分教学内容和教学要求 由于固体的特性和声波形式的多样型,使得声波在固体介质中传播具有复杂的特性。在

弹性固体中传播的不仅有纵波,还有横波以及与介质形状有关的导波等。了解和掌握固体中各种波型的激发和传播规律,对无损检测、压电换能器设计、声成像等研究具有指导意义。 第1章引言 教学内容: 1.1 弹性波研究的早期重要工作 1.2 弹性波研究的近、现代发展状况 1.3 超声波及其特点 教学要求: 了解弹性波研究的历史,超声波的特点。 教学建议: 1. 教学重点:超声波的特点。 2.教学方法:讲解与自学结合。 第2章无限大弹性介质中的波 教学内容: 2.1 弹性介质中的应力、应变、弹性常数 2.2 弹性介质中的波动方程及其解-体波 2.3 表面波 2.4 声波的传播特性 2.4 声波的散射 教学要求: 了解和掌握弹性介质中的波动方程及其解、声波在弹性介质中的传播特性、波型转换。教学建议: 1. 重点与难点:平面波动方程及其解。 2. 教学中应注意:体波与表面波的概念。 3.教学方法:讲解与讨论结合。 第3章波导介质中的波 教学内容: 3.1 引言 3.2 固体板中的连续波 3.3 固体板中的脉冲波 3.4 管中的声波 教学要求: 了解导波的产生条件和频散特性。 教学建议: 1. 重点与难点:导波的频散特性、相速度和群速度的概念。 2. 教学中应注意:相速度和群速度的表述。 3.教学方法:讲解与讨论结合。 第4章声波的产生与接收 教学内容: 4.1 产生和接收超声的方法

声学基础_声级

声学基础_声级 1. 对数标度 ? 日常生活中声音强度的变化范围特别宽。 ? 以声功率为例,人们正常说话的声功率约为5 10W -,而强力火箭发射时的声功 率高达9 10W ,两者相差1410数量级。 ? 以声压为例,对于1000Hz 纯音,人耳刚好能够感觉到的声压为5 210Pa -?,称 为“听阈声压”,人耳难以忍受的声压为20Pa ,称为“痛阈声压”,两者相 差6 10数量级。 ? 同时,人耳对声音的感觉不是与强度的绝对值成线性关系,而是与其对数近似成正比。 ? 基于此,在声学中普通使用对数标度。 2. 分贝 ? 由于对数的宗量是无量纲的,因此用对数标度时必须先选定基准量(或称参考量), 然后对被量度量与基准量的比值求对数,这个对数值被称为被量度量的“级”。 ? 如果所取的对数是以10为底,则级的单位为贝尔(B)。 ? 由于贝尔的单位过大,故常将1贝尔分为10档,每一档的单位称为分贝(decibel ,简 写为dB)。 ? 如果所取的对数是以 2.71828e =为底,则级的单位为奈培(Np)。 ? 奈培与分贝的关系是: 18.686Np dB = Tips : ? “分”(deci-) 指十分之一,个位是“贝”或“贝尔”(bel ,是为了纪念发明家亚历山 大·格拉汉姆·贝尔,而以其名字进行命名的)。 ? 在实际应用中,我们更多的使用“分贝”这个单位。 3. 声压级 ? 声压级常用p L 来表示,定义为: 220010lg 20lg p p p L p p == 式中, p —被量度的声压的有效值; 0p —基准声压 ? 在空气中规定020p Pa μ= ,即为人耳刚好能够感觉到的声压。 Tips :

噪声控制工程自学考试大纲

湖北省高等教育自学考试大纲 课程名称:物理污染控制技术课程代码:06613 第一部分课程性质与目标 一、课程性质与特点 本课程是环境工程与管理专业的必修课。 课程主要论述与人类生活密切相关的噪声、振动、放射性、电磁、光、热等物理性污染的基础理论知识和基本控制原理与技术。通过本课程的学习,使学生了解物理性污染的危害及其评价方法和标准,理解和掌握物理性污染的基本规律、测试和监测方法、控制方法和技术等,具备解决环境物理性污染问题的实际能力。 二、课程目标与基本要求 通过本课程的学习,使学生系统地掌握有关物理性污染的成因、传播规律、评价指标、评价标准和方法、基本控制技术等,并初步具倍分析和解决一些环境噪声控制、电磁污染控制、放射性防治、振动防治等方面实际问题的能力。提高学生分析问题和解决问题的能力,为从事专业工作、科学研究和环境管理等打下良好的基础。具体要求如下: 1. 了解物理性污染的危害、特征。 2.了解热污染、光污染的评价方法及防治技术。 3.理解和掌握声学基础知识和噪声测量方法,熟悉噪声和振动控制有关规范、标准的基本内容,掌握噪声和振动控制的基本原理和技术。 4.理解和掌握电磁辐射基础知识,熟悉电磁辐射防护标准,了解电磁辐射污染防治技术。 5.了解放射性废物的来源和特点,理解和掌握辐射剂量学的基础知识,了解放射性废物处理技术。 三、与本专业其他课程的关系 该课程为环境工程与管理的专业主干课程,与本课程平行进行的课程有水污染控制工程、大气污染控制工程、固体废弃物处理与处置等,分别从环境各不同要素介绍污染控制的原理和工艺。

第二部分考核内容与考核目标 第一章绪论 (一)学习目的与要求 了解物理性污染的概念及基本危害,了解物理性污染控制的研究内容。(二)课程内容 第一节物理环境与环境物理学 物理环境、环境物理学的产生和发展、环境物理学的学科体系、环境物理学的研究特点。 第二节物理性污染及其研究内容 物理性污染及其特点、物理性污染的研究内容。 (三)考核知识点 1、物理性污染及其特点 2、物理性污染的研究内容 (四)考核要求 1、物理环境与环境物理学 ⑴识记:物理环境的定义 ⑵理解:无 ⑶应用:无 2、物理性污染及其特点 ⑴识记:物理性污染的概念及特点 ⑵理解:物理性污染的概念 ⑶应用:无 第二章噪声污染及其控制 (一)学习目的与要求 了解噪声的概念、危害,理解和掌握声学基础知识和声波的传播规律,掌握噪声测量技术和评价方法,熟悉噪声控制有关规范、标准的基本内容,掌握噪声控制的基本原理和技术。 (二)课程内容

《多媒体技术与应用》课程考试大纲

《多媒体技术与应用》课程考试大纲 第一部分考试说明 一、考试性质 《多媒体技术原理及应用》是计算机相关专业的必选课。本课程综合讲述了多媒体技术的基本原理、关键技术及其开发和应用。是一门有一定的理论性,但实践性和实用性都很强的课程。本课程使学生掌握多媒体技术的基本概念、基本原理、主要方法和实用技术, 为今后从事多媒体相关领域的工作打下良好的基础。 二、考试目标 通过考试,检测学生对多媒体技术的基本概念、基本原理和多媒体相关的处理技术等内容的掌握情况。另外,也督促了学生以有效的时间,系统的掌握相关内容,并理论联系实际,使学生具备一定的应用技术知识。重点考察学生对多媒体基本概念、原理的掌握,同时也考察了学生学习文本、图像、音频和视频媒体的制作方法和工具的能力。 三、考试形式与试卷结构 (一)答题方式 闭卷,笔试。 答案必须全部答在答题纸上,答在试卷上无效。(如有答题卡,请注明选择题的答案必须答在答题卡上,非选择题的答案答在答题纸上。) (二)答题时间 90分钟。 (三)基本题型 基本题型有四种:单项选择题、填空题、名词解释、问答题。 第二部分考查的知识范围与要求 第一章多媒体技术综述 熟练掌握媒体的分类,多媒体的概念、多媒体技术的基本概念和特点、超文本、超

媒体、CSCW、虚拟现实等一些基本的思想方法, 了解基于内容的检索过程,了解多媒体技术的发展、组成以及所包含的基本元素。 第二章多媒体数据压缩技术 要求了解数据压缩的必要性;熟练掌握数据冗余的分类及概念、压缩编码的分类和评价标准;了解有关量化操作的基本原理方法;熟练掌握预测编码的基本思想、变换编码的基本原理、Huffman编码的基本原理和算术编码的基本原理;了解Huffman编码步骤及如何编码;了解算术编码的编码过程。 第三章数字图像技术 要求了解数字图像技术的起源与应用现状;熟练掌握颜色的基本概念、计算机中的颜色模式及几种典型的彩色空间;掌握常用的数字图像文件格式,重点区分与其他多媒体信息类型文件的不同之处;了解JPEG的压缩原理;了解不经过压缩图像文件的数据量的求解。了解常用数字图像格式的文件结构,了解图层、通道、滤镜等基本概念,掌握Photoshop中处理图形图像的基本方法。 第四章数字音频技术 要求熟练掌握数字音频技术的声学基础、常见音频格式和MIDI的基本概念,了解虚拟环绕声技术原理,了解音频压缩编码原理,会计算不经过压缩的音频文件的数据量;熟练掌握语音识别的相关概念,并了解其基本原理和关键技术;掌握Cool Edit中处理音频所使用的基本方法。 第五章数字视频技术 了解模拟与数字电视技术,掌握几种典型彩色电视制式的基本原理,并加以区分;了解视频压缩编码技术的基本原理;了解常见数字视频文件格式,了解MPEG和JPEG 的区别,MPEG系列标准各自适用的范围;了解ITU编码标准;掌握Premiere中处理视频文件所使用的基本方法。 第六章数字动画技术 掌握动画的基本概念、基本原理及其分类。了解数字动画常见的格式;了解数字动画制作软件;区分二维三维动画,了解帧、图层等概念,掌握flash中制作动画的几种基本动画类型:运动补间动画、形状补间动画、引导线动画、遮罩动画的基本原理及使用方法。能够使用flash进行简单的动画制作。

声学基础

一.声音基础知识 二.手机电声器件基本参数 三.手机音腔设计 四.音腔设计常见问题及解决办法 五.音频设计的一般规则S h e n g L o n g C o n f i d e n t i a

1.声音是什么?声音是一种因为物体振动而产生的弹性纵 波,它能通过空气.水.钢铁等媒质传播 S h e n g L o n g C o n f i d e n t i a

音量(Volume ):声音振幅大小(Amplitude),通常表示的单位dB (Decibel 的缩写)它是以正常人听1000Hz 频率之纯音,所能听到的最弱声音,其音压为0.0002微巴(u bar)当作0dB 。 音调(Pitch ):声音频率(Frequency)高低,单位CPPS (Cycle Per Second)。 音色(Tone):是由声音的谐波(Harmonic Wave)造成,即由声波的频谱和波形决定,但究竟哪些谐波组成的声波,会造成人所受感受的特色,以及特色如何?不能作实质存在的说明,也无法去衡量,完全由人心里感受,凭经验去体会,是个人相当主观的见解 声音三要素中的音调与音量,是声波的频率与振幅,由人感受后的结果,由其实质的存在,也有确实的衡量标准,而人也可由人身的组织,作较为客观的认识,像这种由人的生理,予以客观认识的声音,称为“生理之音”,而音色在声波而言如上述(音色)内容,是心里感受所引发的想象,这种感觉往往会左右人的情绪,心里感受越深,音色越清晰,感受越浅,音色越模糊,这种感受的声音称之为“生理之音”.虽然那些谐波怎样组成声波,会造成人所感受的特色,以及特色如何?建议可在喇叭之总谐音失真(Total Harmonic Distortion)中得到失真愈小其音色表现愈真实S h e n g L o n g C o n f i d e n t i a

材料力学教程单祖辉答案

材料力学教程单祖辉答案

材料力学教程单祖辉答案 【篇一:寒旱所考试科目参考书】 s=txt>2006年招收硕士学位研究生考试科目参考书 中国科学院寒区旱区环境与工程研究所2006年招收硕士学位研究生考试科目参考书 【篇二:上海交大考博参考书目】 txt>010船舶海洋与建筑工程学院 2201流体力学《水动力学基础》,刘岳元等,上海交大出版社2202声学理论《声学基础理论》,何祚庸,国防工业出版社 2203高等工程力学(理力、材力、流力、数学物理方法)(四部分任选二部分做)《理论力学》,刘延柱等,高等教育出版社;《材料力学》,单祖辉,北京航空航天大学出版社;《流体力学》,吴望一,北京大学出版社;《数学物理方法》,梁昆淼,高等教育出版社2204结构力学《结构力学教程》,龙驭球,高等教育出版社 3301船舶原理《船舶静力学》,盛振邦,上海交大出版社;《船舶推进》,王国强等,上海交大出版社;《船舶耐波性》,陶尧森,上海交大出版社;《船舶阻力》,邵世明,上海交大出版社 3302振动理论(i)《机械振动与噪声学》,赵玫等,科技出版社2004 3303海洋、河口、海岸动力学《河口海岸动力学》,赵公声等,人民交通出版社2000 3304高等流体力学《流体力学》,吴望一,北京大学出版社

3305弹性力学《弹性力学》上、下册(第二版),徐芝纶,高等教育出版社 3306振动理论(Ⅱ)《振动理论》,刘延柱等,高等教育出版社2002 3307钢筋混凝土结构《高等钢筋混凝土结构学》,赵国藩编,中国电力出版社 3308地基基础《土工原理与计算》(第二版),钱家欢、殷宗泽,水利电力出版社 020机械与动力工程学院 2205计算方法《计算方法》,李信真,西北工业大学出版社 2206核反应堆工程《核反应堆工程设计》,邬国伟 3309工程热力学《工程热力学》(第三版),沈维道;《工程热力学学习辅导及习题解答》,童钧耕 3310传热学《传热学》(第三版),杨世铭 3311机械控制工程《现代控制理论》,刘豹;《现代控制理论》,于长官 3312机械振动《机械振动》,季文美 3313生产计划与控制《生产计划与控制》,潘尔顺,上海交通大学出版社 3314机械制造技术基础《机械制造技术基础》,翁世修等,上海交通大学出版社1999;《现代制造技术导论》,蔡建国等,上海交通大学出版社2000 3315现代机械设计《高等机械原理》,高等教育出版社1990 030电子信息与电气工程学院 2207信号与系统《信号与系统》,胡光锐,上海交大出版社

相关主题
文本预览
相关文档 最新文档