当前位置:文档之家› 数学物理方法1课件——第四章 留数定理及应用

数学物理方法1课件——第四章 留数定理及应用

使用留数定理计算实积分

用留数定理计算实积分 一:教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时 计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区 间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算? π20 d )sin ,(cos R θ θθ型积分 令θi e =z ,则θc o s 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21sin ,21cos 2 2 -= += θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 2 2π20 d i 1 )i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分? π20 d )sin ,(cos R θ θθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点, 在 上无奇点,故由留数定理

用留数定理计算实积分的再讨论分析

毕业论文 (2014届) 题目用留数定理计算实积分的再讨论 学院数计学院 专业数学与应用数学(师范) 年级2010级(2)班 学生学号12010244185 学生姓名刘艳 指导教师汪文帅 2014年5月8日 用留数定理计算实积分的再讨论

数学计算机学院数学与应用数学师范专业2014届刘艳 摘要:正确运用留数定理计算实积分就是要理解它的实质并且在计算实积分的过程中构造容易求解的积分路径,然而大量教材或者相关文献长期或者有意无意的按照既定思维对某些实积分计算问题选择基本固定不变的积分路径进行求解,在一定程度上给学生造成思维定势. 本文用例证的方法讨论了用留数定理计算实积分的过程中积分曲线的选择方法,从不同的角度体现了求解过程中选择积分路径的核心思想.这为进一步开拓思维,更为深刻理解留数定理有积极的意义. 关键词:留数定理;实积分;积分曲线 中图分类号:O174 Further discussion of Calculation on real integral by the residue theorem Abstract: The correct use of the residue theorem to calculate real integration means to understand its essence and to construct easy-solved integral path, but a lot of materials or the relevant studies always select the same integral path to solve the similar problem, which give the students wrong understanding when most teachers did not pay attention to the ideological inspiration in teaching. T o some extent, this limits students’ thinking. In this paper, the selection method of integral curve is given with examples in view of the different integral path and the core idea of the residue theorem is shown in calculating process, which has a positive significance for further development of thinking and more understanding of the residue theorem. Key words: real integral;residue theorem;integral curve

数学物理方法学习心得

竭诚为您提供优质文档/双击可除数学物理方法学习心得 篇一:数学物理方程的感想 数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程

不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解 释说明。数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的 数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发 展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:

使用留数定理计算实积分

用留数定理计算实积分 一:教学容(包括基本容、重点、难点): 基本容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算?π 20d )sin ,(cos R θθθ型积分 令θi e =z ,则θcos 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21 sin ,21cos 22-= +=θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 22π20 d i 1)i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分?π20 d )sin ,(cos R θθθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 , 仅以 为一级极点, 在 上无奇点,故由留数定理

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数 定积分跟复变函数回路积分联系起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则 1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+? ??; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ?就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是 证明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限 个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至 图1

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分0 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数定积分跟复变函数回路积分联系 起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+?? ? ; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ? 就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是证 明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞) ;复变函数()f z 在实轴上有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至少 高于()x ?两次. 图1

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

留数定理与几类积分的计算

留数定理与几类积分的计算 中文摘要 本文主要总结几类可用留数定理计算的积分的特征并给出对应的用留数定理算积分的步骤以及可行性说明。其中类型3是对文献1中给出的结论的推广,类型3中的引理2是笔者对文献1的一道习题的推广并给出了证明。接着笔者补充了参考文献2中多值函数积分部分4个引理的证明并给出相应的应用例子,类型7笔者根据个人理解将分成瑕积分和黎曼积分两类给出计算方法。 关键词:留数定理,积分计算,单值函数,多值函数 …… 正文 (一)单值函数 类型1:形如20(sint,cost)dt I R π =?的实积分,其中(x,y)R 是有理函数,并且在圆 周22{(x,y):x y 1}+=上分母不为零。 解决技巧:令it z e =,将实积分转化为单位圆周上的复积分。 由sin ,cost ,22 it it it it it e e e e t dz ie dt i ---+= ==可得: 22221 111111 (,)2Re ((,),z )22222n k C k z z z z I R dz i s R iz z iz iz z i =-+-+==π∑?① 其中,12,,...,n z z z 是22111 (,)22z z R iz z zi -+在单位圆周的所有孤立奇点,22111 (,)22z z R iz z zi -+在单位闭圆盘除去12,,...,n z z z 外的其他点都解析。 例子: 类型2:形如(x)dx I R +∞ -∞ =? 的实反常积分,其中(x)R 是有理函数,在实轴上分 母不为零,并且分母的次数至少比分子次数高2。计算公式为 1 2Re (R(z),z )n k k I i s ==π∑(其中12,,...,n z z z 为R(z)在上半平面的所有孤立奇点,R(z ) 在上半平面除去这些点外的其他点解析)

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内各孤立 奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可 以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点. 11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有

数学物理方法教学大纲

《数学物理方法》课程简介 课程编号:L2112113 英文名称:Methods of Mathematical Physics 学分:4 学时:64 授课对象:光电子技术科学专业 课程目标: 《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。 课程内容: 复变函数(18学时),付氏变换(20学时),数理方程(26学时) 预修课程: 大学物理学、高等数学。 教材: 《数学物理方法》,科学出版社,邵惠民编著。 主要教学参考书: 《数学物理方法》,高教出版社,梁昆淼主编。 《数学物理方法》,高教出版社,郭敦仁主编。 《数学物理方法》,吴崇试主编 《数学物理方法》,中国科技大学出版社,严镇军编著。 《特殊函数概论》,北京大学出版社,王竹溪、郭敦仁编著。 《数学物理方法解题指导》,高等教育出版社,胡嗣柱、徐建军编。 "Mathematics of Classical and Quantum Physics" F.W. Byron & R.W. Fuller,

《数学物理方法》课程教学大纲 (Methods of Mathematical Physics) 一、基本信息 课程编号:L2112113 课程类别:学科基础课必修课 适用层次:本科 适用专业:光电子技术科学专业 开课学期:4 总学分:4 总学时:64学时 考核方式:考试 二、课程教育目标 《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学数学方法和工具。因此本课程应受到相关专业学生和教师的重视。 对实际的工程、技术、科学问题,通常需要转换为物理问题,然后利用物理原理进一步翻译为数学问题,进一步求解该数学问题,再将得到的数学结果翻译成物理问题,即讨论所得结果的物理意义。因此,数学是物理的语言之一,《数学物理方法》是联系数学和物理类及光电子类专业课程的纽带。本课程的主要任务就是告诉学生如何将各种物理问题翻译成数学的定解问题,并了解、掌握求定解问题的若干方法,如行波法、分离变数法、付里叶级数法、幂级数解法、积分变换法、保角变换法、格林函数法、电像法等。 三、教学内容与要求 教学内容: 1复变函数部分 复变函数基本知识、复变函数积分、复变幂级数、留数定理及应用、拉普拉斯变换简介。 2付氏变换部分

论文留数定理及其应用

石河子大学 本科毕业论文(设计) 留数定理及其应用 院系师范学院 专业数学与应用数学 姓名向必旭 指导老师曹月波 职称讲师 摘要 留数,也称残数,是指函数在其孤立奇点处的积分。综观复分析理论的早期发展,这一概念的提出对认识孤立奇点的分类及各类奇点之间的关系具有十分重要的意义。同时,它将求解定积分的值的方法推进到一个新的阶段,通过函数的选取,积分路径的选取等等,求解出了许多被积函数的原函数解不出来的情况,为积分理论的发展奠定了充分的基础。 1825 年,柯西在其《关于积分限为虚数的定积分的报告》中,基于与计算实积分问题的情形的类比,处理了复积分的相关问题,并给出了关于留数的定义。随后,柯西进一步发展和完善留数的概念,形成了定义。 柯西所给的这一定义一直沿用到了现在,推广到了微分方程,级数理论

及其他一些学科,并在相关学科中产生了深远影响,成为一个极其重要的概念。因而很自然地产生了这样一个问题:柯西为什么要定义这一概念或者说,什么因素促使柯西提出了留数的定义显然这一问题对于全面再现柯西的数学思想,揭示柯西积分理论乃至整个复分析研究的深层动机等具有极为重要的理论意义和历史意义。随着留数的发展,复积分的相关问题得到了极大的进步,并解决了一些广义积分和特殊定积分的计算问题。 关键字:留数;留数定理;积分 目录 摘要··············································· 1. 引言············································· 2. 留数············································· 2.1 留数的定义及留数定理························ 2.2 留数的求法·································· 2.3 函数在无穷远处的留数························ 3. 用留数定理计算实积分 3.1 计算形如∫f (cos x ,sin x )dx 2π 0的积分············ 3.2 计算形如∫f (x )+∞ ?∞dx 的积分···················· 3.3 计算形如∫P (x ) Q (X )+∞?∞e imx dx 的积分················ 3.4 计算形如∫P (x )Q (x ) +∞?∞ cos mxdx 和∫P (x ) Q (x ) +∞?∞sin mxdx 的积分 3.5 计算积分路径上有奇点的积分···················· 参考文献 1. 引言

数学物理方法

数学物理方法 Mathematical Methods in Physics 课程编号:22189906 总学时:72学分:4 课程性质:专业必修课 课程内容:数学是物理学的表述语言。复变函数论和数学物理方程是学习理论物理课程的重要的数学基础。该课程包括复变函数论和数学物理方程两部分。复变函数论部分 介绍复变函数的微积分,级数展开,留数及其应用以及积分变换等内容。数学物 理方程部分包括物理学中常用的几种数学物理方程的导入、解数学物理方程的分 离变量法、作为勒让德方程的解的勒让德多项式和作为贝塞尔方程的解的贝塞尔 函数及其性质以及格林函数的基本知识。该课程有着逻辑推理抽象严谨的特点, 同时与物理以及工程又有着紧密的联系,是理工科学生必备的数学基础知识。我 们将把抽象的数学知识和在物理学中的应用结合起来,使学生不但能学习数学本 身,同时还能提高学生运用所学数学知识解决实际问题的能力。 先修课程:高等数学 参考书目:《数学物理方法》(陆全康、赵蕙芬编),第二版高等教育出版社《数学物理方法》(吴崇试)第二版,北京大学出版社 力学和热学 (1)与(2) Mechanics and Thermal Physics (1) and (2) 课程编号:22189936、22189937 总学时:28、72 学分:2、4 课程性质:专业必修课 课程内容:本课程由力学和热学两大部分组成。力学和热学都是大学物理的基础部分,是物理学各门课程的重要基础课程。力学的主要内容包括三方面:在牛顿力学方面, 主要学习牛顿定律、动量定理和动量守恒定律、动能原理及机械能守恒定律;在 刚体定轴转动方面,主要学习转动定律和角动量守恒;在振动和波方面,主要学 习简谐振动和平面简谐波。热学的主要内容包括分子物理学和热力学,主要学习 温度,热力学第一定律、第二定律,热机效率及熵增加;气体分子运动论的基本 方法,气体压强公式,分子平均动能,气体分子的麦克斯韦速率分布律,能量均 分定理。 先修课程:高等数学A(1) 参考书目:《力学》,漆安慎、杜婵英,高等教育出版社,1997年;《热学教程》(第二版),黄淑清、聂宜如、申先甲编,高等教育出版社,1994年

留数定理及其在积分中的运用

江西师范大学数学与信息科学学院 学士学位论文 留数定理及其在积分中的运用 (Residue theorem and the use in the Calculus) 姓名:刘燕 学号: 0507010122 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:易才凤(教授) 完成时间:2009年*月*日

留数定理及其在积分中的应用 【摘要】本文首先在预备知识中介绍了复函数积分,并介绍了留数的计算 方法等。在此基础上,我们叙述并证明了本文的主要内容--留数定理,并得到留数定理的推广。然后利用留数定理探讨分析学中的积分计算问题,并利用积分技巧得到它们的一般计算方法和公式,进而更简捷的解决了分析学中积分的计算问题. 【关键词】解析孤立奇点留数留数定理

Residue theorem and the use in the Calculus 【Abstract】This paper, we first introduce the prior knowledge of complex function Calculus,and introduce the method of calculating the residue, etc.On this basis,We described and proved the main contents of this article--the Residue theorem,and the promotion of the Residue theorem . This paper discussed the calculating problems of intgral in analysis with the theorem of residue, got the general computating method and formula by using analysical skills, and then made it easier to resolve the calculating problems. 【Key words】Analysis Isolated singular point Residue Residue theorem

论文留数定理及其应用

论文留数定理及其应用 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

石河子大学 本科毕业论文(设计) 留数定理及其应用 院系师范学院 专业数学与应用数学 姓名向必旭 指导老师曹月波 职称讲师 摘要 留数,也称残数,是指函数在其孤立奇点处的积分。综观复分析理论的早期发展,这一概念的提出对认识孤立奇点的分类及各类奇点之间的关系具有十分重要的意义。同时,它将求解定积分的值的方法推进到一个新的阶段,通过函数的选取,积分路径的选取等等,求解出了许多被积函数的原函数解不出来的情况,为积分理论的发展奠定了充分的基础。 1825 年,柯西在其《关于积分限为虚数的定积分的报告》中,基于与计算实积分问题的情形的类比,处理了复积分的相关问题,并给出了关于留数的定义。随后,柯西进一步发展和完善留数的概念,形成了定义。

柯西所给的这一定义一直沿用到了现在,推广到了微分方程,级数理论及其他一些学科,并在相关学科中产生了深远影响,成为一个极其重要的概念。因而很自然地产生了这样一个问题:柯西为什么要定义这一概念或者说,什么因素促使柯西提出了留数的定义显然这一问题对于全面再现柯西的数学思想,揭示柯西积分理论乃至整个复分析研究的深层动机等具有极为重要的理论意义和历史意义。随着留数的发展,复积分的相关问题得到了极大的进步,并解决了一些广义积分和特殊定积分的计算问题。 关键字:留数;留数定理;积分 目录 摘要··············································· 1.引 言············································· 2.留 数············································· 2.1留数的定义及留数定 理························ 2.2留数的求 法···························· ······ 2.3函数在无穷远处的留

留数定理在定积分中的应用

留数定理在定积分中的应用 1. 留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1 形如 ()20 cos ,sin f x x dx π ?型的积分 这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。当满足这两个特点之后,我们可设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21cos 22ix ix e e z x z -++== 得 ()222 10 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ???? ?

留数定理及应用

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内 各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数, 因此我们只关心该奇点处罗朗 留数理论是复积分和复级数 理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点.

11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1 ()()() , ∞ ∞ -===+-∑∑-n n n n n n f z c z a c z a 称()n=1 ∞ -∑-n n c z a 为()f z 在点a 的主要部分,称 () ∞ =-∑n n n z a c 为()f z 在点a 的正则部分, 当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为 (1)11 (0)()()------+++≠---L m m m m m c c c c z a z a z a 称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点. 二. 留数的概念及留数定理 1. 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域 0z a R

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): 2.(定理6.2):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论6.3):设a为f(z)的一阶极点, 则 4.(推论6.4):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: 即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式:

. §2.用留数定理计算实积分 一.型积分→引入 注:注意偶函数 二.型积分 1.(引理6.1 大弧引理):上 则 2.(定理6.7)设为有理分式,其中 为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周,充分大 上连续,且 在上一致成立。则 4.(定理6.8):设,其中P(z)及Q(z)为互质多项式,且符合条件:

(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成: 及 四.计算积分路径上有奇点的积分 5.(引理 6.3 小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理6.4):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且(2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理6.9 对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

用留数定理计算实积分

§2. 用留数定理计算实积分 一、教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 二、教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:4-7 §2. 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样 左端可应用留数定理,如果容易求出,则问题就解决了,下面具体

介绍几个类型的实变定积分. 1. 计算?π 20d )sin ,(cos R θθθ型积分 令θi e =z ,则θcos 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21 sin ,21cos 22-= +=θθ 同时,由于θi e =z ,所以 1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 22π20 d i 1)i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分?π20 d )sin ,(cos R θθθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点, 在 上无奇点,故由留数定理 当 时,在 内 仅以 为一级极点,在 上无奇点,

相关主题
文本预览
相关文档 最新文档