当前位置:文档之家› 模拟量输入输出讲解

模拟量输入输出讲解

模拟量输入输出讲解
模拟量输入输出讲解

对输入、输出模拟量的PLC 编程的探讨及编程实例解析

对于初学PLC 编程的人来说,模拟量输入、输出模块的编程要比用位变量进 行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转 换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块 进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定 是错误的。比如有3个温度传感变送器:

(1) 、测温范围为0~200 ,变送器输出信号为4?20ma

(2) 、测温范围为0~200 ,变送器输出信号为0?5V

(3) 、测温范围为 —100 ~500 ,变送器输出信号为4?20ma

(1)和(2) 二个温度传感变送器,测温范围一样,但输出信号不同,( 1) 和(3)传感变送器输出信号一样,但测温范围不同,这 3个传感变送器既使选用 相同的模拟量输入模块,其转换公式也是各不相同。

一、转换公式的推导

下面选用S7-200的模拟量输入输出模块EM235勺参数为依据对上述的3个 温度传感器进行转换公式的推导:

对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为 0?20ma 电流 信号,20ma 对应数子量=32000, 4 ma 对应数字量=6400;

对于(2)传感变送器用的模块,其模拟量输入设置为 0?5V 电压信号,5V 对应数字量=32000, 0V 对应数字量=0;

这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助, 请见下图: 时,输出电流ITma,模块转AIW=C400H T 与AlWffi 关系曲线如上左图所示,恨 据三角形相粽定理可5lb LABM

屮 按可引h — =

..... (1-1) 由團外h 屮 CT DM AB=200 CI>=h BM=32000—6400 DM=AI^—6400 带入(1*1)式,可得;

“咤边….(…

(32000-6400) |

(2;传感藩测温T=20€°时,输出电压V=5V,模块转换数字話f 『」U

AIW

T AlWx ⑴传感鉄诜珞跆

T

戋糸图 (3満惑越7AIW 戋齐因 (1)偉感器测淳7-200°时,输出电療1-2Dim,模块转换数宇量AIW-3200Dj 测温T-D 0*

T 』时,输出电压TW 模块转换数宇S AIW-O. T 与MW 的关系曲统如上中图所示,

視据三阳形相说走理可知=KABO-ACDO 心

⑶传感器测温"5时时*输出电流TUg ?模块转换鐵宁篁阳WT 如叫测 温丁?加卩时,输出电流1-4换,模块特换数宇SAIW-640O fl F 与AIW 的关系曲绞如 上右图乐示,根据三角册^畑理可知:AABM-ACDM 』 故可列=空=空£

.. (1_对 由图知;*

CD DM AB=500+100=600 CD=7;+10& 32000-6400 M=AIW K '64OO 带入 <1~3> 式:

可得:亠

上面推导出的(2-1 )、(2-2 )、(2-3 )三式就是对应(1)、(2)、(3) 三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。 编程 者依据正确的转换公式进行编程,就会获得满意的效果。

二、变送器与模块的连接

通常输出4?20ma 电流信号的传感变送器,对外输出只有 +、-二根连线, 它需要外接24V 电源电压才能工作,如将它的+、-二根连线分别与24V 电源的 正负极相连,在被测量正常变化范围内,此回路将产生4?20ma 电流,见下左图。 下右图粉色虚线框内为EM235模块第一路模拟输入的框图,它有 3个输入端, 其A+与 A-为A/D 转换器的+ -输入端,RA 与A-之间并接250Q 标准电阻。A/D 转换器是正逻辑电路,它的输入是 0?5V 电压信号,A-为公共端,与PLC 的24V 电源的负极相连。

AB BO

DO AE=200 CD=T K

BM=3200CI 5喙

..... (1-R 由图知:4 BJrAIWz 带入(1-2)式,可最

..... <2-2)屮

&沁⑷齡-液Q (32000^6400)

-100 CD

和ng

那么24V电源、传感变送器、模块的输入口三者应如何连接才是正确的?正确的连线是这样的:将左图电源负极与传感器输出的负极连线断开,将电源的负

极接模块的A-端,将传感器输出负极接RA端,RA端与A+端并接一起,这样由传感器负极输出的4?20ma电流由RA流入250Q标准电阻产生0?5V电压并加在A+与A-输入端。

切记:不可从左图的24V正极处断开,去接模块的信号输入端,如这样连接,模块是不会正常工作的。

对第(2)种电压输出的传感変送器,模块的输入应设置为0?5V电压模式,连线时,变送器输出只连A+、A-,RA端空悬即可。

三、按转换公式编程:

根据转换后变量的精度要求,对转换公式编程有二种形式:1、整数运算,2、实数运算。

请见下面梯形图:

(A)、整数运算的梯形图:

耐第1

空鑿运宦|A+ 手一

RA 4*—g

C

输入*

AD转换器

输入-

[I;厂九

SMdO MGV,W

EN EHO 1 1---------------

A1W他OUT

LPi

------------- E H EN0

+

\AOO-円5JT -VD2O0

该梯形图是第(1)种温度传感变送器(测温:0?200,输出:4?20ma 按公式(2-1 )以整数运算编写的转换程序,它可作为一个子程序进行调用。

(B)实数运算的梯形图:

该梯形图是对一个真空压力变送器(量程:0?O.IMpa,输出:4?20ma按公式(2-

1 )以实数运算编写的转换程序,可作为一个子程序进行调用。

四、编程实例及解析

某设备装有4种传感器:

1、真空压力传感器,量程为:0?O.IMpa ;输出给PLC的信号为4?20ma。

2、蒸汽压力传感器,量程为:0?1.0Mpa ;输出给PLC的信号为4?20ma。

3、温度传感器,量程为:0?200度;输出给PLC的信号为4?20ma。

4、电机转速,量程为:0?50转/秒;输出给PLC的信号为4?20ma。

该设备用蒸汽对其罐体加热,并对温度要求按设定的温度值进行温度控制。

控制方式采用自动调整电动阀开门角度的大小来改变加热管道的蒸汽的流量。电动阀的控制信号为4?20ma,即输入4ma时,电动阀关门,输入20ma时,电动阀门全开。

为此选用了含有4路模拟输入和一路模拟输出的模块EM235其4路模拟量输入信号皆设定为0?20ma电流输入模式,一路模拟量输出信号设定为4?20ma 电流输出模式要求用触摸屏显示这4种信号的时时状态值,并在触摸屏上设置控制的温度参数,传给PLC使PLC按此值进行温度控制。由于本文重点是讲述有关模拟量的输入与输出的编程设计,对触摸屏的编程设计不予讲述,只提供触摸屏与PLC 的通讯变量:

VD0 :为真空压力显示区,由PLC传送给触摸屏。

VD4 :为蒸汽压力值显示区,由PLC 传送给触摸屏。 VW8 :为蒸汽温度值显示区,由PLC 传送给触摸屏。

VW10 :为电机转速值显示区,由PLC 传送给触摸屏。

VW12 :设定温度值区,由触摸屏传送给 PLC.

一、硬件电路的配置:

(一)、硬件设置 除上述4种传感器外,选用:

1、 S 7-200PLC 一台,型号为:CPU222 CN 。

2、 选用EM235模拟量输入模块一块(输入设置:0~20 ma 工作模式;输 出设置:

4 ?20ma 。

3、 变频器一台,型号为PI8100,由PLC 控制启停,手动调速。

4、 西门子触摸屏一块。型号:Smart 700

硬件电路图

(二)、对传感器输出的4~20ma 转换为显示量程的公式推导:

EM235模拟量输入输出模块,当输入信号为20ma 时,对应的数字量=32000, 故: 输入=4ma 时,对应的数字量=6400,对应显示量程值=0。输入20ma 时,对 应的数字量 =32000,对应显示量程值最大值=Hm ,其输出量与模块的数字量的变化关系曲 线如图一所

F

4

2 - nrwMi

5 3卜

植详二説汰ong

CPU 222 CN EM235 CN

STI ■嗾犀功ife : k 墨示遁董 匝办 克空压办tsMRl

这4个转换公式,前二种为实数运算,后二种为整数运算,为简化程序,自定义二个功 能块分别用于实数与整数运算, 而每个功能块在程序运行中又都调用二次, 分别计算不同的

物理量。为此功能块设有二个数字输入与一个计算结果输出三个口,

以适用于多次调用去计 算不同物理量的值。请见下面编程:

(三)、实数运算功能块(SBR_O ):

示:

sjongkont

雌三角羽相似逸沁亠"备磊

整理得:DE = SC 'AD

AB DE = H ⑷磯-ZOO ) _ * (32000-6400) 这是一个通式,将4个大值带入式中, 可得囚下4个公式I “

K 真空压力转换公式,Fm ⑷恥丁4期 (32000-6^100)

单位.MPa.

N 蒸汽压力转换公式; 单位:MPa x 缶蒸汽温度转换企式;

单位;度

4、冃机转谨转换公式亍

心。〈蠶益9

Arw

(四)、整数运算功能快(SBR_1 ):

对输入、输出模拟量的PLC编程的探讨及编程实例解析

对输入、输出模拟量的PLC编程的探讨及编程实例解析

————————————————————————————————作者: ————————————————————————————————日期:

对输入、输出模拟量的PLC编程的探讨及编程实例解析 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。比如有3个温度传感变送器: (1)、测温范围为0~200,变送器输出信号为4~20ma (2)、测温范围为0~200,变送器输出信号为0~5V (3)、测温范围为-100 ~500,变送器输出信号为4~20ma (1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号,20ma 对应数子量=32000,4 ma对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V 对应数字量=32000,0V对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:

模拟输入输出接口原理及其应用 第三版习题参考答案

第7章模拟输入输出系统设计 本章习题 7-1基于嵌入式处理器的模拟输入输出系统是怎么构成的?各部分的主要功能是什么?两个系统的主要区别是什么? 答:基于嵌入式处理器的模拟输入输出系统与普通模拟输入输出系统不同之处在于嵌入式处理器内部已经大都集成了A/D转换器、D/A转换器。其它同普通模拟输入输出系统。如图所示。 传感器感知或采集工程过程中的相关参数、如温度、压力、流量等,信号调理电路把传感器送来的信号进行调整处理使采集的信号在A/D的有效范围,A/D变换器将模拟信号转换为数字信号,处理器对变换后的数字信号根据系统需求进行数字处理或运算,D/A变换器将数字信号变换成模拟信号,功能放大把模拟信号进行功率放大,使之足以推动后面的执行机构,执行机构将电能变换为机械能或其它能量以控制工业过程。 7-2传感器的作用是什么?有哪些常用传感器? 答:传感器的作用就是感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 按输入量可将传感器分为:位移传感器、速度传感器、温度传感器、压力传感器等;按照按工作原理分类:应变式、电容式、电感式、压电式、热电式等;按物理现象分类:结构型传感器、特性型传感器; 按能量关系分类:能量转换型传感器、能量控制传感器;按输出信号分类:模拟式传感器、数字式传感器。 主要传感器有:流量传感器、压力传感器、温度传感器、物位传感器、位移传感器、称重传感器、气敏传感器、磁敏传感器、红外光电传感器、机器人传感器等。 7-3传感器与变送器有什么区别?常用变送器有哪些? 答:变送器是将物理测量信号或普通电信号转换为标准电信号输出或能够以通讯协议方式输出的设备。与传感器的主要区别是除了感知还包括了以某种协议输出检测的结果。由于现代传感器通常增加了协议输出,因此也基本具备了变送器的功能。变送器主要有:温度/湿度变送器,压力变送器,差压变送器,液位变送器,电流变送器,电量变送器,流量变送器,重量变送器等。 7-4在模拟输入通道中,经常要使用信号调理电路,其主要功能和任务是什么?对于片上有ADC的嵌入式模拟输入通道,其调理电路的主要形式有哪些? 答:信号调理电路主要功能和任务就是放大、滤波、隔离以及激励与变换等,使其符合模/数转换器(ADC)输入的要求。 片上有ADC的调理电路主要形式包括:

模拟量输入输出

第六章模拟量输入输出 *模拟通道的组成 调理电路,模拟开关MUX(多路复用)sample/holder S/H 采样保持器SHA (sample/holder—S/H )* 转换接口电路 简单I/O 扩展:输入缓冲/输出锁存,同步转换(R f G d) 基准地(Reference Ground)电压基准源(Reference Voltage Source)(g )*ADC/DAC 线性转换关系X Di it l A l x-x 0X-X 0= 微机系统与接口X:Digital,x:Analog x 1-x 0X 1-X 0

应用: 生产过程微机控制系统结构 I /O 通道信号调理 连续模拟信号 过 程 传感器检测/控制 操作台I/O 接口A/D 输入调理模拟量对 象变送器微I/O 接口D/A V/I 变换打印机⌒被执行机构机主数字量控对 象 传感器执行机构机电平变换功放驱动I/O 接口I/O 接口DI DO 显示器∪ 传感执行 频率、其他微机系统与接口 传感、执行I/O 接口变换信号处理

模拟量I/O 接口 模拟量的概念(信号连续量):DC-V(mv)/mA(V)典型:信号采样/复原-信号处理 控制、监控-自动化系统 转换输入:V/F(P389:AD650)?计数器;输出:计数器?F/V(LM331);PWM 调宽(时间):易于光电隔离 F/V 模 T/C 8253/脉冲 频率 V/F 拟 信 8254MPU 号 ADC/DAC 微机系统与接口V/I 数字量

模拟量转换与I/O 通道 1.模数转换--ADC 数模转换--DAC Analog to Digital Converter/Digital to Analog Converter 22. 模入与模出通道的组成:输入通道: (高精度测量,1%~0.05%,可分时采样,同步采样) Vref 调理放大MUX S/H ADC 数字量 (MPU) 传感器Multiplexer :(6.4)多路转换器(开关,(模拟)多路(电子)开关 1-N,N-1,N 选一):N 路入一路输出:巡回扫描/分时转换;S l /H ld (65)Sample/Holder :(6.5)捕捉后保持信号(电容)Voltage reference:电压基准源 输出通道:(精度,同步输出,输出保持--动态扫描) 复习:运算放大器放大执行DAC V/I 调理数字量 (MPU)微机系统与接口驱动机构 Vref MUX, S/H

模拟量两线制与四线制接法

模拟量两线制与四线制接法(个人经验总结)发上来,供大家参考。 概述:两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 接法:传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma正,-为4-20ma负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。

(以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。 (资料素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

对输入、输出模拟量的PLC编程实例解析汇报

对输入、输出模拟量的PLC编程的探讨及编程实例解析 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。比如有3个温度传感变送器: (1)、测温围为0~200,变送器输出信号为4~20ma (2)、测温围为0~200,变送器输出信号为0~5V (3)、测温围为-100 ~500,变送器输出信号为4~20ma (1)和(2)二个温度传感变送器,测温围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号,20ma 对应数子量=32000,4 ma对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V对应数字量=32000,0V对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:

上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。编程者依据正确的转换公式进行编程,就会获得满意的效果。 二、变送器与模块的连接

eDAM-6406R 4路模拟量输出手册

ehc e h c 用户手册 eDAM-6406R 华创至诚

ehc e h c 郑重承诺:凡北京华创至诚科技有限公司产品从购买即 日起一年内无任何材料性缺损。 承诺 凡使用本系列产品除产品质量所造成的损害,北京华创至诚科技有限公司不承担任何法律责任。北京华创至诚科技有限公司有义务提供本系列产品可靠而详尽资料,但保留修订权利,且不承担使用者非法利用资料对第三方所造成侵害构成的法律责任。 免责申明

ehc e h c 目录 1 概述 1.1特性 ………………………………………………………………………………51.2引脚定义 ………………………………………………………………………51.3 IO结构图 ………………………………………………………………………51.4 接线说明 ………………………………………………………………………6附录A eDAM6000寄存器地址分配表 附录B 波特率代码表

ehc e h c 1 概述 eDAM-6000R 系列模块是基于工业现场总线(RS-485)的远程分布式数据采集和控制产品,包括模拟量输入、模拟量输出、数字量输入/输出、测频/计数、交流电量采集、无线通信等功能。 考虑到工业现场复杂、苛刻的工作条件,DAM-e6000R 系列模块进行了严格的可靠性分析设计: 电源使用开关稳压集成电路作为系统的供电器件不仅可以提高稳压电源的工作效率,减少能源损耗,减少对电路的热损害,而且可减少外部交流电压大幅波动对电路的干扰,同时可降低经电源窜入的高频干扰,这对保障电路的安全和可靠运行能起到事半功倍的作用; 通信总线采用高性能数字隔离器件(磁耦)进行隔离,使通信速度、环境温度、使用等方面具有更高的性能; 系统运行状态采用看门狗电路监控,当系统出现由工业环境中窄脉冲造成干扰的“死机”故障时,则看门狗产生复位信号,引导单片机程序重新进入正常运行; 采集、控制信号的输入输出经过隔离和保护处理,使的模块的运行更加 可靠。

实验4模拟输入输出接口

实验四模拟输入输出接口 一、实验目的 1. 学习模拟输入输出接口的原理 2. 掌握接口程序实现的基本方法 二、实验设备 标准硬件。 三、实验内容 在实验箱的CPU板上运行程序,拨动相应开关,与它对应的LED灯显示电平的高低,同时,LCD上显示相应的数据值。 四、实验原理 使用一片缓冲芯片74LS244来把CPU外面的输入数据写入CPU的并行总线上,之后,并行总线上的数据被一片数据锁存芯片74LS273保留,CPU通过选中锁存芯片,并读取预先设给锁存器地址内的内容,就可以把数据读出,来确定外面的数据的高低。本实验的输入是用8个拨动开关两种工作状态来表示输入接口的高低状态,然后,再通过8个LED灯亮和灭两种工作状态,以及LCD上用数据值来清楚的反映各状态的输出显示,从而完成模拟的输入输出接口的实现。 在C程序中的实现,如下程序所示: while(1) { for(i=0;i<1000;i++);//延时 rrr = (*(volatile unsigned char*)0x20000016);//CPU把值写入并行数据总线 d0 = rrr>>7&1; d1 = rrr>>6&1; d2 = rrr>>5&1; d3 = rrr>>4&1; d4 = rrr>>3&1;

d5 = rrr>>2&1; d6 = rrr>>1&1; d7 = rrr>>0&1;//将数据按位赋值 data = (d7<<7|d6<<6|d5<<5|d4<<4|d3<<3|d2<<2|d1<<1|d0); (*(volatile unsigned char*)0x20000000) = data;//CPU把总线值写入锁存器 for(i=0;i<1000;i++); if (data != data_pre) //data_pre为上一个数据,若当前数据与上一个相同则不处理 { Set_Color(GUI_YELLOW); Set_Font(&GUI_Font8x16); Disp_BinAt(data,170,120,8);//显示二进制数据 Disp_HexAt(data,170,140,4);//显示十六进制数据 Disp_DecAt(data,170,160,3);//显示十进制数据 data_pre = data; //保存数据 } } 五、实验步骤 1.打开LCD电源开关。 2.打开ADS1.2开发环境,打开\基础实验 \实验八\IO_SIM.mcp项目文件,然后进行compile和make生成*.axf文件。 3.编译通过后,进入ADS1.2调试界面,加载基础实验\实验八 \IO_SIM_Data\Debug中的映象文件IO_SIM.axf。 4.在ADS调试环境下全速运行映象文件。LCD上有图形显示后,将拨码开关0-7全部拨到ON,拨动LED灯下方的开关K1-k8,拨到L为0,H为1,0时LED亮。观察开关上方的8个LED灯的亮灭情况,以及LCD上的显示情况。每个开关代表1个数字位,遵循二进制规则。

PIC单片机模拟量输入与输出

第6章模拟量输入与输出 6.1 A/D转换的应用 例6.1 A/D转换初始化程序 //A/D转换初始化子程序 void adinitial( ) { ADCON0 = 0x51;//选择A/D通道为RA2,打开A/D转换器 //在工作状态,且使AD转换时钟为8t osc ADCON1 = 0X80;//转换结果右移,及ADRESH寄存器的高6位为"0" //且把RA2口设置为模拟量输入方式PIE1 = 0X00; PIE2 = 0X00; ADIE = 1;//A/D转换中断允许 PEIE = 1;//外围中断允许 TRISA2=1;//设置RA2为输入方式 } 6.1.2 程序清单 下面给出一个调试通过的例程,可作为读者编制程序的参考。 117

该程序中用共用体的方式把A/D转换的10位结果组合在一起。有关共用体的详细资料请参考本书相关章节。 # include union adres {int y1; unsigned char adre[2]; }adresult;//定义一个共用体,用于存放A/D转换的结果 unsigned char i; unsigned int j; //系统各I/O口初始化子程序 void initial() { TRISD=0X00;//D口为输出 i=0x00; } //A/D转化初始化子程序 void adinitial() { ADCON0=0x51;//选择A/D通道为RA2,打开A/D转换 118

//在工作状态,且使A/D转换时钟为8t osc ADCON1=0X80;//转换结果右移,及ADRESH寄存器的高6位为"0" //且把RA2口设置为模拟量输入方式PIE1=0X00; PIE2=0X00; ADIE=1;//A/D转换中断允许 PEIE=1;//外围中断允许 TRISA2=1;//设置RA2为输入方式 } //延时子程序 void delay() { for(j=5535;--j;) continue; } //报警子程序 void alarm() { i=i^0xFF;//通过异或方式每次把i的各位值取 119

第六章模拟量输入输出与数据采集卡

第六章模拟量输入输出与数据采集卡 通过本章的学习,使考生掌握D/A,A/D转换的原理和典型芯片,在此基础上了解工业控制计算机常用模板的组成和应用。 要求: (1)了解D/A转换的工作原理和8位,12位D/A转换芯片;D/A转换器与总线的连接和应用方法。 (2)了解A/D转换器的工作原理和指标,熟悉A/D转换的典型芯片和多路转换器,采样保持器的工作原理。 (3)了解数据采集卡的组成和指标及其应用方法,了解工控机配套模板的概况。 一、重点提示 本章重点是D/A,A/D转换器的工作原理,与总线的连接方法。 二、难点提示 本章难点是利用这些芯片和多路开关、采样保持器组成数据采集卡的应用方法。 考核目的:考核学生对微型计算机的模拟通道的构成及工作原理的掌握。 1.数模转换器D/A (1)D/A转换的指标和工作原理 / (2)典型D/A转换器芯片 (3)D/A转换器与总线的连接 2.模数转换器A/D (1)A/D转换器的工作原理(双积分和逐次逼近型A/D转换),A/D转换器主要指标 (2)典型A/D转换器芯片(ADC0809及.12位A/D芯片)的功能和组成,与总线的连接 3.多路开关 (1)数据采集系统对多路开关的要求 (2)几种多路开关芯片 (3)几种多路开关的主要技术参数 4.采样保持器 (1)采样保持器的工作原理 (2)常用的采样保持器芯片 5.数据采集卡的组成及其应用 本章知识结构如下: (一)D/A转换接口 D/A转换器的作用是将二进制的数字量转换为相应的模拟量。D/A转换器的主要部件是电阻开关网络,其主要网络形式有权电阻网络和R-2R梯形电阻网络。 集成D/A芯片类型很多,按生产工艺分有双极型、MOS型等;按字长分有8位、10位、

模拟量输入输出讲解

对输入、输出模拟量的PLC 编程的探讨及编程实例解析 对于初学PLC 编程的人来说,模拟量输入、输出模块的编程要比用位变量进 行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转 换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块 进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定 是错误的。比如有3个温度传感变送器: (1) 、测温范围为0~200 ,变送器输出信号为4?20ma (2) 、测温范围为0~200 ,变送器输出信号为0?5V (3) 、测温范围为 —100 ~500 ,变送器输出信号为4?20ma (1)和(2) 二个温度传感变送器,测温范围一样,但输出信号不同,( 1) 和(3)传感变送器输出信号一样,但测温范围不同,这 3个传感变送器既使选用 相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235勺参数为依据对上述的3个 温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为 0?20ma 电流 信号,20ma 对应数子量=32000, 4 ma 对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为 0?5V 电压信号,5V 对应数字量=32000, 0V 对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助, 请见下图: 时,输出电流ITma,模块转AIW=C400H T 与AlWffi 关系曲线如上左图所示,恨 据三角形相粽定理可5lb LABM 屮 按可引h — = ..... (1-1) 由團外h 屮 CT DM AB=200 CI>=h BM=32000—6400 DM=AI^—6400 带入(1*1)式,可得; 十 “咤边….(… (32000-6400) | (2;传感藩测温T=20€°时,输出电压V=5V,模块转换数字話f 『」U AIW T AlWx ⑴传感鉄诜珞跆 T 戋糸图 (3満惑越7AIW 戋齐因 (1)偉感器测淳7-200°时,输出电療1-2Dim,模块转换数宇量AIW-3200Dj 测温T-D 0*

PLC模拟量输入输出模块

PLC模拟量输入、输出模块低成本扩展的一种方法 1 引言 可编程控制器(以下简称PLC)由于其高可靠性、编程简单、通用性强、体积小、结构紧凑、安装维护方便等特点,而在工业控制中得到了广泛应用。PLC的模块一般分为以下几大类:开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块。在工业控制中特别是过程控制领域中需要采集和控制的模拟量比较多,因而对PLC的模拟量输入、输出模块需要的较多,而模拟量输入、输出模块比较贵,增加模拟量输入、输出模块就增加了成本,降低了整个系统的性价比,限制了PLC的应用。本文提出了一种基于通讯的模拟量输入、输出模块的扩展方法力图解决这一问题。 2 基于通讯的模拟量输入、输出模块的扩展方法 (1) 模拟量输入模块扩展 这里以一路12位模拟量输入为例,模拟信号以0~5V标准电压的形式送入信号输入端,应用12位A/D转换芯片MAX187实现模数转换。MAX187是12位串行A/D,具有较高的转换速度,采样频率是75kHz,适用于较高精度的过程控制。考虑到实际工业现场中的高频干扰,在采样信号送MAX187之前还使用了低通滤波器滤波,如图1所示。

图1 低通滤波、放大器及A/D转换 MAX187具有内部参考电压,既4#管脚(REF)为4.096V,因此,A/D 转换的全量程为4.096V。而输入信号是0~5V,因此,要加一级运放把0~5V转换成0~4.096V后送入MAX187。AT89C52的P1.3和MAX187的片选端(CS)相连、AT89C52的P1.4和MAX187的串行时钟信号端(SCLK)相连、AT89C52的P1.5和MAX187的串行数据输出端(DOUT)相连。模拟量采样的值存入单片机的内存中,再由单片机的串行口传送给PLC。A/D转换的C51程序如下: #include #include sbit IC4_S = P1^4; /* AD输入端口设置*/ sbit IC4_D = P1^5; sbit IC4_C = P1^3;

4通道模拟量采集模块详解

4通道模拟量采集模块详解: 模拟量采集模块可采集4路差分模拟信号;模块采用高性能16位AD芯片,采集测量精度±0.1%。适用于采集工业现场的各种电压和电流信号。采用光电隔离技术,有效保障数据采集可靠及安全。所谓模拟量信号是指连续的,任何时刻可为任意一个数值的信号,例如我们常见的温度、压力、流量等信号。对于工业控制现场常见的模拟量信号,可以通过传感器获取其值的变化,为获取传感器的输出值就需要采用模拟量输入模块。采用先进的高精度集成数模转换器,分辨率高达16位,测量精度优于0.1%(典型值)。能满足测量要求较高的工业现场及安防、智能楼宇、智能家居、电力监控、过程控制等场合。产品针对工业应用设计:通过DC-DC 变换,实现测量电路和主控电路电源隔离;同时控制单元与信号采集单元采用光电隔离技术实现电气隔离,有效保障数据采集可靠及安全。模块配有瞬态抑制电路,能有效抑制各种浪涌脉冲,保护模块在恶劣的环境下可靠工作。 模拟量采集模块参数: 隔离耐压:DC2500V ESD保护:±15KV 供电范围:DC+8~+36V 功耗:小于1W 工作温度:-40℃~+80℃ 工业级V0级防火塑料外壳保障产品应用各类环境安全 安装方式:标准DIN35导轨安装 输入通道数:4路差分输入 输入范围:±20mA,±100mV,±1V,±2.5V,±5V,±10V 转换速率:20次/秒(全通道) 支持RS485/RS232 AD转换分辨率:16位 测量精度:±0.1%(典型值) 输入端过压保护,过流保护,并有低通滤波 常模抑制(NMR):60dB

共模抑制(CMR):120dB 型号信号输入类型通道数通讯接口 DAM-7011模拟量1AI RS485和RS232 DAM-7021模拟量2AI RS485和RS232 DAM-7041模拟量4AI RS485和RS232 DAM-7082模拟量8AI RS485和RS232 模拟量采集模块接线 DAM-7041模拟输入为差分输入,每个模拟输入通道都有两个接线端口,分别为模拟输入正(INn+)与模拟输入负(INn-)。电压信号与电流信号可以直接接入模块检测,采集电流需要注意的是在定货时需告知模块用于采集电流信号,这样模块在出厂时会在模块内部放置高精度电流检测电阻且出厂时用标准电流信号校准。 模拟量采集模块接口 DAM-7041配置有1路RS232与1路RS485;RS232可以直接与电脑连接;RS485可以单个与PLC 或其它主机连接,也可以多个模块组网后与PLC或其它主机连接。 RS232连接 DAM系统模块RS232接口为标准RS232接口,符合相关规范,可以直接与电脑或其它标准RS232接口连接,其连接方式为交叉连接法,即模块TX与电脑RS232的RX连接,模块RX与电脑RS232的TX连接

第四讲 模拟量的输入输出通道

第四讲 模拟量的输入输出通道 过程控制 前向通道和后向通道是过程控制系统的重要组成部分 1、前向通道 数字信号处理 1.1 A/D 转换 1.1.1 硬件电路设计 (1)分辨率的选择 分辨率用位表示,n 位的A/D 转换器表示可以把输入信号分为2n 份,每一份为全量程1/2n ,称为1个LSB 。例如,本例程中采用8位A/D 温度范围为20℃~100℃,则 C 5.0C 3125.02 20 100LSB 18 ?

片选RD WR ADC0804 WR RD INTR DB 0~DB 7CS A/D 转换的时序图 1.1.2 软件的编制 查询法和中断法 (1)查询法

Extern unsigned char convert_ad(void) { Char xdata *dptr; Dptr=0x8000; *dptr=0; While(int0); Return(*dptr); } 1.1.3 测试 可以用LCB直接显示转换结果(3位整数),描点画线检查A/D转换的线性度。 A/D 万用表测出 的输入电压 1.2 数字滤波器 1.2.1 问题定义 来自传感器或变送器的有用信号中,往往混杂了各种频率的干扰信号。为了抑制这些干扰信号,通常在信号入口引入滤波器。常用的RC 滤波器能抑制高频干扰信号,但对低频干扰信号的滤波效果较差。而数字滤波器可以对极低频干扰信号进行滤波,以弥补RC 滤波器的不足。另外,它还具有某些特殊的滤波功能。 所谓数字滤波,就是在计算机中用某种计算方法对输入的信号进行数学处理,以便减少干扰在有用信号中的比重,提高信号的真实性。这种滤波方法不需要增加硬件设备,只需根据预定的滤波算法编制相应的程序即可达到信号滤波的目的。 1.2.2 常用的滤波算法 (1)限幅滤波 限幅滤波的作用是把两次相邻的采样值相减,求出其增量(以绝对值表示),然后与两次采样允许的最大差值(由被控对象的实际情况决定)Δy进行比较,若小于或等于Δy,则取本次采样值;若大于Δy,则仍取上次采样值作为本次采样值 当| y(n)- y(n -1)|≤Δy时,则取y(n)= y(n) 当| y(n)- y(n -1)| >Δy时,则取y(n)= y(n -1)

16第四章模拟量输入输出通道

第四章模拟量输入输出通道 一、授课时间: 年 月 日 第 16 次 二、教学目的: 1、掌握输入信号的处理 2、掌握多路开关的种类、连接方式 三、教学的重点及难点: 重点:输入信号的处理。 难点:多路开关的种类、连接方式。 四、教学内容及过程: 复习上节课内容 1、步进电机工作原理 2、步进电机控制系统原理 讲解作业,导入新课 4.1 模拟量输入通道 模拟量输入通道根据应用的不同,可以有不同的结构形式。 图4-1 模拟量输入通道的一般组成框图 通常,人们把过程工艺参数转换为电量的设备称为传感器或一次仪表。传感器的主要任务是检测,在过程控制中,为了接口过 程 参 数检测信号处理 信号处理信号处理 多路开关 放大 S/H 微处理机控制 输入通道A/D

避免低电平模拟信号传输带来的麻烦,经常将测量元件的输出信号经过温度变送器、压力变送器和流量变送器等进行变换。它们将温度、压力和流量的电信号变换成0~10 mA(DDZ-Ⅱ型仪表)或4~20 mA(DDZ-Ⅲ型仪表)的统一信号,这一部分不属于模拟量输入通道,而常归属于工程检测技术和自动化仪表;但现在的计算机控制系统中许多模拟输入通道中包含了变送器部分的功能。 4.1.1 输入信号的处理 1.信号滤波 由于工业现场干扰因素多,来自工业现场的模拟信号中常混杂有干扰信号,应该通过滤波削弱或消除干扰信号。滤波方法有硬件法和软件法之分,硬件方法常用RC滤波器和有源滤波器来滤除高于有用信号频率的那部分干扰,也有称之为模拟预滤波;用软件方法可以滤除与有用信号频率重合的那部分干扰,如卡尔曼滤波等。 2.统一信号电平 输入信号可能是毫伏级电压或毫安级电流信号,应变成统一的信号电平。 图4-2 I/V变换网络 3.非线性补偿 大多数传感器的输出信号与被测参数之间呈非线性关系,例如:铂铑—铂热电偶在0~1000℃间电势与温度关系的非线

8-6模拟信号的输入与输出

模拟信号的输入与输出

模数(A/D)转换和数模(D/A)转换 ?计算机应用系统,比如数据采集系统、实时控制系统等,常常会遇 到一些随时间连续变化的参数,如温度、压力、位移、速度等。这些都是模拟量,一般需要先通过传感器将其转换成电流或电压,然后再将其转换成数字量,再输入到计算机中进行处理。 ?对于控制系统来说,其最终目的是对控制对象进行控制。如果控制 对象的参数是模拟量,则需要把计算机输出的数字量转换为模拟量。上述过程中,从模拟量到数字量的过程称为模数(A/D)转换,从数字量到模拟量的过程称为数模(D/A)转换。相应的有,ADC为A/D 转换器,DAC为D/A转换器。

A/D转换及其接口 A/D转换的基本步骤为:采样、保持、量化和编码。

采样-保持电路 t 0时刻S 闭合,C H 被迅速充电,电路处于采样阶段,此时u o =u i ;t 1时刻采样阶段结束,S 断开,电路处于保持阶段。若A 2的输入阻抗为无穷大,S 为理想开关,则C H 没有放电回路,两端保持充电时的最终电压值不变,从而保证电路输出端的电压u o 维持不变。 - - + + u i u o C H S A 1 A 2 u C u o , u i u o u i 0 (a) 电路图 (b) 波形图 t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 采样脉冲(f S ) 开关驱 动电路

量化 ?把离散信号转变为数字信号的过程,称为量化过程。 ?量化就是把输入模拟信号f(t)的变化范围划分成若干 层,每一层都由一个数字来代表,采样值落到哪一层,就由哪一层的数字来代表。这样,所有的采样值经过“量化”后,就化为了对应的数字量,成为了整数值。 ?精度:当量化单位R取得愈小时,误差越小。

模拟量输入输出模块

模拟量输入输出模块 1、FX1N-2AD-BD模拟量输入板 用在FX1S或者FX1N系列的plc上,提供2路的模拟量输入。 2、FX1N-2DA-BD 用在FX1S或者FX1N系列的plc上,提供2路的模拟量输入。 3、FX1N-8AV-BD/FX2N-8A V-BD模拟量调节器 用在FX1S或者FX1N或FX2N系列的plc上,用作模拟定时器调整器的旋钮开关

1):示例:利用模拟量改变定时器的设定值 把八个电位器中的0号电位器的模拟量(0~255)读取进来放在D0中D0的变化值是0~~255 2)、利用模拟量调整器设计一个具有11档的旋转开关。 读取1号电位器,把读取的值放在D1中,然后对其进行译码DECO指令是把D0的前四位进行解码,把对应的结果放在M中D1的变化值是0~~10

4、 FX0N-3A 模拟量输入和输出模块 功能:(能同时把模拟量转化成数字量,也能把数字量转化成模拟量) 1)提供8位分辨率精度(转化精度比较低) 2)配备2路模拟量输入(0--10V 直流或4—20mA 交流)通道和1路模拟输出通道 模拟量输入: 公共项目:

接线: 与plc 的连接情况: FX0N 系列plc:可连接FX0N-3A 模块8个 FX1N 系列plc:可连接FX0N-3A 模块5个 FX2N 系列plc:可连接FX0N-3A 模块8个 FX0NC 系列plc:可连接FX0N-3A 模块4个 输入/输出特性曲线: 输入特性:(模块不允许两个通道有不同的输入特性) 即不允许电流和电压同时输入或不同量程的电压输入

输出特性: 缓冲存储器(BFM)的分配 注:BFM#17: b0=0选择模拟输入通道1 b0=1选择模拟输入通道2 b1=0—>1,起动A/D转换处理 b2=0—>1,起动D/A转换处理 例:把外部输入的模拟量转化成数字量 TO:是把数据写到特殊模块的BFM中。上例即是当M0接通时,把H0的值写到外部扩展模块0的位置中的BFM#17开始的一个字(16位)中 FROM:上例即是当M0接通时,把外部扩展模块0的位置中的BFM#0开始的一个字(16位)的数据写到D0中 H0的值写到外部扩展模块0的位置中的BFM#17开始的一个字(16位)中

S7-300_PLC模拟量输入输出量程转换教程

S7-300/400 PLC模拟量输入/输出的量程转换 SLC A&D CS March, 2005

1模拟量输入/输出量程转换的概念 (3) 2S7-300/400 PLC模拟量输入/输出模板 (3) 2.1需要使用的模板 (3) 2.2涉及的信号类型 (3) 3STEP 7中模拟量输入/输出的编程 (3) 3.1FC105/FC106在哪里 (3) 3.2FC105/FC106功能描述 (5) 3.2.1FC105功能描述 (5) 3.2.2FC106功能描述 (5) 3.3FC105/FC106参数定义 (6) 3.3.1FC105 的参数定义 (6) 3.3.2FC106的参数定义 (6) 3.4例子程序 (7) 3.4.1FC105例子程序 (7) 3.4.2FC106例子程序 (8)

1模拟量输入/输出量程转换的概念 实际的工程量,如压力、温度、流量、物位等要采用各种类型传感器进行测量。传感器将输出标准电压、电流、温度、或电阻信号供PLC采集,PLC的模拟量输入模板将该电压、电流、温度、或电阻信号等模拟量转换成数字量——整形数(INTEGER)。在PLC程序内部要对相应的信号进行比较、运算时,常需将该信号转换成实际物理值(对应于传感器的量程)。而经程序运算后得到的结果要先转换成与实际工程量对应的整形数,再经模拟量输出模板转换成电压、电流信号去控制现场执行机构。这样就需要在程序中调用功能块完成量程转换。 如一个压力调节回路中,压力变送器输出4-20mA DC信号到SM331模拟量输入模板, SM331模板将该信号转换成0-27648的整形数,然后在程序中要调用FC105将该值转换成0-10.0(MPa)的工程量(实数),经PID运算后得到的结果仍为实数,要用FC106转换为对应阀门开度0-100%的整形数0-27648后,经SM332模拟量输出模板输出4-20mA DC信号到调节阀的执行机构。 本文主要讨论S7-300/400 PLC编程中模拟量的量程转换。 2S7-300/400 PLC模拟量输入/输出模板 2.1需要使用的模板 使用西门子S7-300/400 PLC进行模拟量输入/输出需要使用的模板: S7-300系列PLC:SM331系列模拟量输入模板;SM332系列模拟量输出模板;SM334/335系列模拟量输入/输出模板。 S7-400系列PLC:SM431系列模拟量输入模板;SM432模拟量输出模板。 目前常用的模板规格型号参见模板手册,请链接到如下网址下载模板手册: S7-300: https://www.doczj.com/doc/6214330738.html,/WW/view/en/8859629 S7-400: https://www.doczj.com/doc/6214330738.html,/WW/view/en/1117740 2.2涉及的信号类型 电压,电流,温度,电阻。 3STEP 7中模拟量输入/输出的编程 3.1FC105/FC106在哪里 在编程界面下,在Program elements中的Libraries下的Standard Library下的TI-S7 Converting Blocks中就可以找到,见下图:

模拟量输出电路

文件编号:INVT0_013_0005_CBB_01 CBB规范 模拟量输出电路 (VER:V1.0) 拟制:华时间:2009-05-26 批准:时间: 文件评优级别:□A优秀□B良好□C一般

1 功能介绍 目前许多单片机本身都不具备模拟量输出(DAC)功能,但可以输出PWM信号,本电路实现了将频率为10K,幅值为5V的PWM信号转换成0~10V电压或者0~20mA电流的模拟量信号输出。 2 详细原理图 工作原理说明: (1)输入频率为10K,幅值为5V的PWM信号,经过元件R1、C1、R2、C3二阶低通滤波后转换成0~5V的电压信号; (2)运放U1A是一个同相放大器,对输入信号放大(1+R6/R5)倍,所以输出电压Uout 对应0~10V; (3)虚线框内部分构成了一个恒流源,电流大小就是Iout=Uout*R7/R8/R13; (4)通过短接片跳线可以选择输出电流或者电压信号。 3 器件功能 ?电阻R1、R2及电容C1、C3构成二阶RC低通滤波器,将输入PWM信号转换成对应电压。?U1A为同相输入运算放大器; ?U1B构成了一个恒流源; ?二极管D1,对端子信号进行电压钳位,防止电压过高或者过低,起保护作用; ?电容C2、C4为芯片TL082的滤波电容; ?C5、C6,输出电压滤波,减少电压纹波作用;

? Q1、Q2三极管,增加电流驱动能力; ? R9、R11,三极管基极限流电阻。 4 参数计算 4.1 运算放大器: 选择常用TL082。 4.2 电阻R1、电容C1、电阻R2、电容C3: 构成二阶低通滤波电路,必须满足截止频率远远小于输入的PWM 频率,这里电阻我们选用22K ,兼顾到响应速度,电容C1选用0.1uF 电容,为了更好地稳定运算输入端电压,电容C3这里选用1uF 电容。滤波积分时间常数为: 3121C C R R ???=μμ1.012222???K K =7mS 符合使用要求。 4.3 电容C2、C4: 芯片电源滤波电容,选择常用的0.1uF 电容。 4.4 电容C5、 滤波作用,直接与外端输出端子相连,一方面减少输出电压纹波,另一方面也可以抑制外部输入的干扰信号。这里选用0.1uF/100V 电容。 4.5 电容C6: 滤波电容,抑制电压纹波,选择1uF/50V 电容。 4.6 电阻R5、R6的选取: 0~5V 的信号通过同相放大器放大到0~10V 输出,放大倍数为(1+R6/R5),输入信号0~5VPWM 信号需要转换成0~10V 输出。考虑到输入的PWM 信号有可能会略低于5V ,所以放大倍数稍大于2,这里R5选择9.1K ,R6选择10K 。 4.7 恒流源电路,电阻R7、R8、R10、R11、R13: 典型的恒流源电路,由图可知: )87/(7*)2_(2_R R R U Uout U U +-+=+ )1210/(10*1_R R R U U +=- 对于运放有-≈+U U ,所以有: )1210/(10*1_)87/(8*2_)87/(7*R R R U R R R U R R R Uout +≈+++ 我们取电阻R8=R10,R7=R12,则有: 8/12*2_1_R R Uout U U =- 当R13<

相关主题
文本预览
相关文档 最新文档